新人教版八年级数学第13章实数教案(全章)
- 格式:doc
- 大小:800.00 KB
- 文档页数:12
八级上册数学教案人教版(第一部分)一、教学目标1. 知识与技能:使学生掌握本册数学的基本概念、性质、定理和公式,提高学生的数学思维能力和解决问题的能力。
2. 过程与方法:通过自主学习、合作探讨、实践操作等方式,培养学生的数学学习兴趣,提高学生的数学素养。
3. 情感态度与价值观:让学生体验到数学在实际生活中的运用,认识到数学的重要性,培养学生的责任感和使命感。
二、教学内容1. 第一章:实数与函数(1) 实数的概念、性质和运算;(2) 函数的定义、性质和图像;(3) 一次函数、二次函数、反比例函数的解析式、图像和性质。
2. 第二章:几何基础(1) 点、线、面的基本概念和性质;(2) 直线方程、圆方程;(3) 三角形、四边形的性质和判定;(4) 坐标系的应用。
三、教学重点与难点1. 教学重点:实数的运算、函数的性质、几何图形的判定与性质。
2. 教学难点:函数的图像、几何图形的复杂计算和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探究数学问题;2. 运用案例分析法,让学生通过实际例子理解数学概念;3. 利用数形结合法,培养学生直观的数学思维;4. 实施分组合作学习,培养学生的团队协作能力。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的准确性、书写规范性,评估学生的学习效果。
3. 考试成绩:定期进行数学考试,对学生的知识掌握程度进行评估。
4. 学生自评:鼓励学生自我评价,反思自己的学习过程,提出改进措施。
八级上册数学教案人教版(第二部分)六、教学安排1. 课时分配:本部分共安排课时,具体分配如下:第一章:实数与函数:课时第二章:几何基础:课时第十五章:课时2. 教学计划:根据课时分配,合理安排每个章节的教学内容,确保教学目标的达成。
七、教学资源1. 教材:使用人教版八级上册数学教材。
2. 教辅资料:提供相应的教辅资料,辅助教学。
新人教版八年级上册第13章实数第3节实数第2课时实数的运算精品教案教学目标知识技能:熟悉无理数和实数的概念以及实数与数轴上的点具有一一对应关系.清楚有理数的乘法交换律、乘法结合律、乘法分配律对实数仍适用.有理数的混合运算顺序在实数中也适用.数学思考:懂得对实数进行分类,并能正确进行运算.解决问题通过无理数的引入,使学生对数的认识由有理数扩充到实数,能类比进行运算.情感态度:体会数系扩充对人类发展的作用.面对数学知识类比活动中的困难,能有意识地运用已有知识解决新问题.教学重点:实数的意义,实数的运算法则及运算律.教学难点:准确地进行实数范围内的运算.教学内容:课本第85至86页.教学过程设计:活动一. 复习回顾,导入新课1.用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律.2.用字母表示有理数的加法交换律和结合律.3.有理数的混合运算顺序.活动二.合作交流,自主探究1.阅读教材,引导归纳 当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算。
在进行实数的运算时,有理数的运算法则及运算性质等同样适用.2.讨论 下列各式错在哪里? (1)2133993393-⨯÷⨯=⨯÷=()21212-==当x =,2202x x -=- 3.练一练 计算下列各式的值:⑴-⑵解: ⑴(23-)-2=3+(22-)=3+0=3⑵(3+2)3=534.归纳 实数范围内的运算方法及运算顺序与在有理数范围内都是一样的.5.试一试 计算:(1π (精确到0.01) (2(结果保留3个有效数字)6.归纳 在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.7.练一练 计算⑴⑶)21⑷(11 提示 ⑴式的结构是平方差的形式. ⑶式的结构是完全平方的形式.8.归纳 在实数范围内,乘法公式仍然适用.活动三.知识应用迁,例题解析.例1.a 为何值时,下列各式有意义?(1 (2(3(4(5(6例2.计算⑴求5的算术平方根于的平方根之和(保留3位有效数字)0.01)⑶a a π-+a π<<)(精确到0.01) 例 3.已知实数abc 、、在数轴上的位置如下,化简()222a b a b a c+++--活动四.知识巩固,课堂练习.课本第86页小练习第2,3题.活动五.知识梳理,课堂小结.1.实数的运算法则及运算律.2.实数的相反数和绝对值的意义.活动六.知识反馈,作业布置.课本第87页第5,7,8,9题..c . O . b . a。
13.2.3 边角边掌握全等三角形的判定(S.A.S.),会进行全等的简单推理.重点会用S.A.S.证明两个三角形全等.难点应用综合法的格式证明三角形全等.一、动手操作教师活动:按教材第63页要求同排两个同学各画一个三角形,再放在一起判断它们是否全等.二、探究新知要画一个三角形与教师在黑板上画的三角形ABC全等,需要几个与边或角的大小有关的条件呢?1.画一画(1)只给一个条件:一条边BC=6 cm,大家画出三角形,小组交流画的三角形全等吗?一个角∠B=30°,大家画出三角形,小组交流画的三角形全等吗?(2)给出两个条件画三角形时,有几种可能的情况?这两个三角形一定会全等吗?分别按照下面的条件,用刻度尺或量角器画三角形,并和周围的同学比较一下,所画的图形是否全等.①三角形的一个内角为60°,一条边为3 cm;②三角形的两个内角分别为30°和70°;③三角形的两条边分别为3 cm和5 cm.你们在画图和同学比较过程中,能得出什么结论?学生各抒己见后,教师归纳:你们一定会发现,如果只知道两个三角形有一个或两个对应相等的部分(边或角),那么这两个三角形不一定全等.2.议一议如果给出三个条件画三角形,你能说出有哪几种可能的情况?教师讲解:如果两个三角形有3组对应相等的元素,那么含有以下四种情况:两边一角、两角一边、三角、三边.我们将对这四种情况分别进行讨论.如果两个三角形有两条边和一个角分别对应相等,这两个三角形一定全等吗?如图所示,此时应该有两种情况,一种是角夹在两条边的中间,形成两边夹一角;另一种情况是角不夹在两边的中间,形成两边一对角.(1)已知两边一夹角作三角形唯一性的体验教师提出问题,我们按下面的条件画一个三角形.如图,已知两条线段和一个角,以这两条线段为边,以这个角为这两条边的夹角,画一个三角形.把你画的三角形与其他同学画的三角形进行比较,所有的三角形都全等吗?换两条线段和一个角试试,看看是否有同样的结论.教师边讲边按下述步骤作图,要求学生模仿:第1步:画一条线段AB,使它等于3 cm;第2步:画∠MAB=45°;第3步:在射线AM上截取AC=2.5 cm;第4步:连结BC.△ABC即为所求.通过学生亲自实践,初步体会已知三角形两边一夹角作三角形的确定性,为证明S.A.S.提供实践体验.(2)S.A.S.的证明教师给出证明S.A.S.定理的条件:如图,在△ABC和△A′B′C′中,已知AB=A′B′,∠B=∠B′,BC=B′C′,我们要证明这两个三角形是全等的.由于AB=A′B′,我们移动其中的△ABC,使点A与点A′、点B与点B′重合.因为∠B=∠B′,因此可以使∠B与∠B′的另一边BC与B′C′重叠在一起,而BC=B′C′,因此点C与点C′重合,这就说明这两个三角形全等.由此可得判定三角形全等的一种简便方法:两边及其夹角分别相等的两个三角形全等,简记为S.A.S.(或边角边).(3)已知两边一对角问题探究教师提出问题:如图,已知两条线段和一个角,以长的线段为已知角的邻边,短的线段为已知角的对边画一个三角形.把你画的三角形与其他同学画的三角形进行比较,那么所有的三角形都全等吗?此时符合条件的三角形的形状能有多少种呢?上图中,∠B=45°,AB=3 cm,AC=AC′=2.5 cm,可以看出.我们可以作出两个不全等的三角形,可见已知两个三角形的两边和其中一边的对角分别对应相等,三角形不一定全等.三、练习巩固1.如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.2.如图,AB∥CD,AB=CD.求证:AD∥BC.四、小结与作业小结1.两边一夹角分别对应相等,两个三角形全等.2.两边和其中一边的对角分别对应相等,两个三角形不一定全等.作业教材第76页习题13.2第2题.这节课学习全等三角形的判定方法,通过学生画一画、比一比,得出基本事实S.A.S.,再利用S.A.S.证明两个三角形全等.教师应着重强调角应为夹角,防止学生任意找两边及一角证明两个三角形全等.学生刚学严格证明,应注意强化,条理要清晰,说理有据,因果关系分明.变量与函数一、选择题(每题4分,共12分)1.某型号的汽车在路面上的制动距离s=,其中变量是〔〕A.s,vB.s,v2C。
八年级数学(上)全册教案(新人教版)第一章:勾股定理1.1 勾股定理的发现导入:通过直角三角形的实际测量,让学生感受勾股定理的背景。
探究:引导学生通过实际操作,发现勾股定理,并能够用字母表示。
练习:让学生通过解决实际问题,巩固勾股定理的应用。
1.2 勾股定理的证明导入:通过回顾三角形知识,引导学生思考勾股定理的证明方法。
探究:让学生通过割补、折叠等方法,尝试证明勾股定理。
练习:让学生通过解决实际问题,加深对勾股定理证明的理解。
第二章:实数与方程2.1 实数的分类导入:通过生活中的实例,引导学生理解实数的概念。
探究:让学生通过分类讨论,理解实数的分类,包括有理数和无理数。
练习:让学生通过解决实际问题,加深对实数分类的理解。
2.2 一元一次方程导入:通过实例引入方程的概念,引导学生理解一元一次方程的特点。
探究:让学生通过解方程的方法,掌握一元一次方程的解法。
练习:让学生通过解决实际问题,巩固一元一次方程的应用。
第三章:不等式与不等式组3.1 不等式的概念导入:通过比较大小引入不等式的概念,引导学生理解不等式的表示方法。
探究:让学生通过实际操作,理解不等式的性质。
练习:让学生通过解决实际问题,加深对不等式概念的理解。
3.2 不等式的解法导入:通过实例引入不等式的解法,引导学生掌握解不等式的方法。
探究:让学生通过实际操作,掌握不等式的解法。
练习:让学生通过解决实际问题,巩固不等式的解法。
第四章:函数及其图象4.1 函数的概念导入:通过实例引入函数的概念,引导学生理解函数的表示方法。
探究:让学生通过实际操作,理解函数的性质。
练习:让学生通过解决实际问题,加深对函数概念的理解。
4.2 一次函数的图象导入:通过实例引入一次函数的图象,引导学生理解一次函数图象的特点。
探究:让学生通过实际操作,绘制一次函数的图象。
练习:让学生通过解决实际问题,巩固一次函数图象的应用。
第五章:平面图形的认识5.1 线段的性质导入:通过实例引入线段的概念,引导学生理解线段的性质。
初中数学实数教案模板一、教学目标1. 知识与技能:使学生了解实数的定义和性质,能够运用实数解决一些简单的问题。
2. 过程与方法:通过学生自主探究、合作交流,培养学生推理、概括的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和自信心。
二、教学重点与难点1. 重点:实数的定义和性质。
2. 难点:实数的运算和应用。
三、教学过程1. 复习提问:复习有关有理数的相关知识,提问学生有理数的运算规则。
2. 引入新课:讲解实数的定义和性质,通过实例让学生理解实数的概念。
3. 自主探究:让学生自主探究实数的性质,如加法、减法、乘法、除法的运算规则。
4. 合作交流:学生分组讨论,分享自己探究的结果,教师给予指导和点评。
5. 巩固练习:给出一些练习题,让学生运用实数的知识解决问题,教师及时给予反馈和讲解。
6. 课堂小结:让学生总结实数的定义和性质,以及运算规则。
7. 课后作业:布置一些相关的作业题,让学生巩固所学知识。
四、教学策略1. 情境教学:通过生活实例引入实数的概念,让学生感受数学与实际的联系。
2. 启发式教学:引导学生自主探究实数的性质,培养学生的推理能力。
3. 合作学习:鼓励学生分组讨论,培养学生的合作意识和沟通能力。
4. 及时反馈:教师在学生练习时及时给予反馈,帮助学生纠正错误,提高正确率。
五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与情况,提问和回答问题的积极性。
2. 作业完成情况:检查学生作业的完成质量,包括答案的正确性和解题过程的清晰度。
3. 自主学习能力:评价学生在自主探究过程中的表现,如独立思考、解决问题的能力。
4. 合作交流能力:评价学生在合作交流中的表现,如沟通、协调、合作的能力。
六、教学资源1. 教材:使用符合课程标准的数学教材,提供丰富的学习材料。
2. 课件:制作多媒体课件,生动展示实数的定义和性质。
3. 练习题:准备一些实数相关的练习题,包括基础题和拓展题。
第二章实数6.实数教学目标:1.了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。
4.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。
5.了解数系扩展对人类认识发展的必要性;教学重点1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
教学难点利用数轴上的点表示无理数三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗? 意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。
效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。
通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。
第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)有理数集合无理数集合知识整理:有理数和无理数统称为实数。
意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念。
新人教版八年级上册第13章实数第2节第1课时立方根的概念精品教案教学目标知识技能:理解立方根的概念,能够用根号表示一个数的立方根.能用类比平方根的方法学习立方根,及开立方运算,并区分立方根与平方根的不同.数学思考:会运用熟悉的知识解决新问题是数学的重要思想.解决问题:用类比的方法探寻出立方根的运算及表示方法,•并能自我总结出平方根与立方根的异同.情感态度:发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理.教学重点:立方根的概念,能够用根号表示一个数的立方根.并能利用立方运算求一个数的立方根.教学难点:灵活运用立方运算求一个数的立方根.教学内容:课本第77至78页.教学过程设计活动一.复习回顾,导入新课1.什么叫平方根?如何用符号表示数a(≥0)的平方根?(如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.非负数a的平方根 .)是:a2.什么叫算术平方根?如何用符号表示数a(≥0)的算术平方根?(如果一个非负数x的平方等于a,即x2=a,那么这个非负数x叫做a的算术平方根.非负数a3.正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(正数的有两个平方根,它们互为相反数.0的平方根是0.负数没有平方根.) 这是我们前面已学过的知识.活动二.解决问题,概念探究.1.问题:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的边长应该是多少?解:设这种包装箱的边长为x m则x3=27这就是要求一个数,使它的立方等于27∵33=27∴x=3答:这种包装箱的边长应为3 m象这样要求出问题中的X的值,就是我们今天要研究的课题—立方根2.定义:一般地,如果一个数X的立方等于a,这个数X就叫做a的立方根(也叫做三次方根).用式子表示,如果X3 =a,那么X叫做a的立方根.如上述问题中,由于33=27 ,所以把3叫做27的立方根.求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.活动三.探究思考,总结规律.1.探究.根据立方根的意义填空,正数、0和负数的立方根各有什么特点?∵ 23=8, ∴ 8的立方根是( )∵ ( )3=-8, ∴ -8的立方根是( )∵ ( )3=0.125, ∴ 0.125的立方根是( )∵ ( )3=-0.125,∴ -0.125的立方根是( )∵ ( )3=827, ∴ 827的立方根是( ) ∵ ( )3=-827, ∴ -827的立方根是( ) ∵ ( )3=0, ∴ 0的立方根是( )2.归纳.通过上述探究我们得到立方根的性质:(1).正数的立方根是一个正数.(2).负数的立方根是一个负数.(3).零的立方根是零.记住:每一个数都只有一个立方根.3.说一说.数的平方根和数的立方根的定义和性质有没有什么不同?(1)平方根的定义:如果一个数的平方等于a,那么这个数叫做a 的平方根.立方根的定义:如果一个数的立方等于a,那么这个数叫做a 的立方根.(2)平方根的性质:①正数有两个平方根,这两个平方根互为相反数.②0的平方根还是0. ③负数没有平方根.立方根的性质:①正数的立方根还是正数.②0的立方根还是0.③负数的立方根还是负数.4.判断下列说法是否正确,并说明理由:(1)278的立方根是32± . (2)负数没有立方根. (3)4的平方根是2.(4)-8的立方根是-2. (5)立方根是它本身的数只有0.(6)互为相反数的数的立方根也互为相反数.5.大家记得a 的平方根怎样表示吧?类似的请同学们想一想a 的立方根怎样表示?一个x 数的立方等于a,则a 的立方根(即x 3=a 则x 为a 的立方根.),读作“三次根号a ”. 其中a 为被开方数,3为根指数,且根指数为3不能省略,8的立方根,-8的立方根, 根指数为3不能省略.6.议一议,你会区别下列的数吗?a a ± 3aa 表示非负数a 的算术平方根.a ±表示非负数a 的平方根或a 的二次方根.3a 表示数a 的立方根或a 的三次方根.活动四.自主探究,总结规律1.探究.2.由此可归纳出其规律3.立方根的性质:(1)正数的立方根还是正数.(2)0的立方根还是0.(3)负数的立方根还是负数活动五.知识应用,例题解析.1.例题:求下列各式的值:解:35 活动六.知识巩固,课堂练习.1.课本第79页小练习.2.补充题.①求下列各数的立方根:①0 ②8 ③-64 ④解:; ;④∵;∴75②你能求出下列各式中的未知数x 吗?(1)x 3=343(2)(x -1)3=125 (3)3x -2 (4)32-x =4 活动七.知识梳理,课堂总结.这节课学习了立方根的概念和性质,立方根的表示方法以及如何求一个数的立方根. 活动八.知识反馈,作业布置.1.课本第80至81页第1,3,5,8题.2.补充题.①某数的立方根等于它本身,这个数是多少?②某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm 和40cm,求原来立方体钢铁的边长.③有一边长为6cm 的正方体的容器中盛满水,将这些水倒入另一正方体容器时,•还需再加水127cm 3才满,求另一正方体容器的棱长.④设1995x 3=1996y 3=1997z 3,xyz>0,求111x y z++的值.参考答案1.这个数为0,±12.803cm 3.7cm 4.令1995x 3=1996y 3=1997z 3=k,k ≠0,则1995=3k x ,1996=3k y ,1997=3k z ,+即111x y z ++. 而x>0,y>0,z>0,所以得到:111x y z ++=1.。
第 十 三 章 《实 数》 教 案是互为逆运算的关系,会用计算器求一些正数的算术平方根示一个数的平方根分算术平方根与平方根第1课时一、创设情景,导入新课请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为252dm 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少dm ?如果这块画布的面积是212dm ?这个问题实际上是已知一个正数的平方,求这个正数的问题(引入新课)二、合作交流,解读探究讨论:1、什么样的运算是平方运算? 2、你还记得1~20之间整数的平方吗? 自主探索:让学生独立看书,自学教材总结:一般地,如果一个正数x 的平方为a ,即2x a =,那么正数x 叫做a 的算术平方根,记为a ,读作根号a ,其中a 叫做被开方数。
另外:0的算术平方根是0 探究:怎样用两个面积为1的正方形拼成一个面积为2的大正方形把两个小正方形沿对角剪开,将所得的四个直角形拼在一起,就的到一个面积为2的大正方形。
设大正方形的边长为x ,则22x =; 由算术平方根的意义,2x =即大正方形的边长为2。
讨论:2有多大呢?思考:你能举些象2这样的无限不循环小数吗?三、应用迁移,巩固提高例1 求下列各数的算术平方根⑴100 ⑵4964 ⑶0.0001 ⑷0 ⑸124点拨:由一个数的算术平方根的定义出发来解决问题思考:-4有算术平方根吗?备选例题:要使代数式23x -有意义,则x 的取值范围是( )A. 2x ≠B. 2x ≥C. 2x >D. 2x ≤四、总结反思,拓展升华小结:1、算术平方根的定义和性质; 2、用计算器求一个正数的算术平方根拓展:已知21a -的算术平方根是3,31a b +-的算术平方根是4,c 是13的整数部分,求2a b c +-的算术平方根五、课堂跟踪反馈1、 非负数a 的算术平方根表示为___,225的算术平方根是____,0的算术平方根是____2、 1612181___,____,_____2581==-= 3、 16的算术平方根是_____, 0.64-的算术平方根____4、 若x 是49的算术平方根,则x =( )A. 7B. -7C. 49D.-495、 若47x -=,则x 的算术平方根是( ) A. 49 B. 53 C.7 D 53.6、 若()2130x y x y z -+++++=,求,,x y z 的值。
第1课时 平方根(1)
教 学 目 标 1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
教学重点 算术平方根的概念。
教学难点
根据算术平方根的概念正确求出非负数的算术平方根。
教 学 互 动 设 计
设计意图 一、创设情境 导入新课
【问题1】学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为252
dm 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少dm ?若面积是1、9、16、36、
25
4
时,边长又是多少呢?
从现实生活中提出数学问题,使学生积极主动地投入到数学活动中去,同时为学习算术平方根提供背景和生活素材.
二、合作交流 解读探究 学生独立思考回答问题.
教师倾听学生的解题过程,并对学生的回答总结如下:
因为52=25,所以正方形画布的边长是5 dm .
在此基础上,学生独立求出面积为1、9、16、36、25
4
的正方形的边长为1、3、4、6、5
2.
这个问题实际上是已知一个正数的平方,求这个正数的问题?
【问题2】已知一个数的平方,怎样求出这个数呢?
【知识储备】
1、什么样的运算是平方运算?
2、你还记得1~20之间整数的平方吗?
【自主探究】学生清理思路,阐述观点. 教师对学生的回答做出总结:已知一个正数的平方,求这个正数的思想方法是平方运算的逆运算.在此基础上教师给出算术平方根的有关概念及规定. 【总结】一般地,如果一个正数x 的平方等于a ,即2
x =a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根
号a ”,a 叫做被开方数. 规定:0的算术平方根是0.
【思考】卓玛认为,因为(-4)2
=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?
a 表示的是正数、负数、非正数还是非负数?
在求正方形边长的活动中,从学生已有求一个数平方的经验出发,求平方数的算术
平方根.根据平方与
开方互逆运算的关
系,建立新旧知识之间的联系,为引入一种新的运算作好铺
垫.
在会求一个平方数算
术平方根的基础上,
给出算术平方根的定义,有利于学生对概念的理解和把握. 让学生用自己的语言
有条理地、清晰地阐
述自己求算术平方根
的方法,提高语言表
达能力.
让学生知道a 是一种非负数的常见的表现形式。
根号被开方数a
第2课时平方根(2)
教学目标1、会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.
2、能用夹值法求一个数的算术平方根的近似值.
3、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数。
教学重点夹值法及估计一个(无理)数的大小。
教学难点夹值法及估计一个(无理)数的大小的思想。
教学互动设计设计意图一、创设情境导入新课
【问题1】怎样用两个面积为1的正方形拼成一个面积为2的大正方形?它的边长a是多少?创设设问题情境,激发学生兴趣。
教师提出问题,学生以小组为单位,动手拼剪,教师深入小组参与活动,帮助指导学生完成拼图活动.
二、合作交流解读探究
教师提出问题,学生以小组为单位,动手拼剪,教师深入小组参与活动,帮助指导学生完成拼图活动.
方法1、如上图,把两个小正方形沿对角剪开,将所得的四个直角形拼在一起,就的到一个面积为2的大正方形。
设大正方形的边长为x,则22
x=
由算术平方根的意义,2
x=
即大正方形的边长为2
方法2、如右图,
【问题2】大正方形的边长是2,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
学生在独立思考的基础上,再次分组活动.
教师深入小组参与活动,倾听学生的交流,对学生的探究过程进行指导和帮助.
引导对学生的探究结果进行总结和交流,在此基础上教师明确:
2是无限不循环小数,许多正有理数的算术平方根都是无限不循环小数,如3、5、6、7等.
【教师关注】
(1)探究2大小的活动中,学生怎样初步估计2接近哪一个数;
(2)怎样利用无限逼近的方法将2的位数不断增加;
(3)在与学生沟通的过程中及时发现学生探究过程中的困难,给通过拼图活动得到与有理数不同的另一类数——
无理数,以2为例子.通过形的研究来感受无理数的存在.
通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维.
在探究活动中发挥计算器的作用,加强培养学生的估算能力,渗透估算的思想和方法,感受两个方向无限逼近的数学思想,发展了学生的抽象思维.
第3课时平方根(3)
第4课时立方根
第5课时实数(1)
第6课时实数(2)。