201x版中考数学总复习 第22讲 与圆有关的计算
- 格式:doc
- 大小:215.50 KB
- 文档页数:2
课题:第22讲与圆有关的计算教学目标:1.掌握:正多边形和圆的有关概念;弧长公式及扇形面积公式.2.会:进行正多边形的有关计算,计算弧长及扇形的面积,借助分割的方法与转化的思想巧求阴影部分图形的面积.3.通过本节的复习,进一步体会数学中的化归思想,在解决问题的过程中了解数学的价值,增强“用数学”的信心.重点与难点:重点:正多边形的有关计算,弧长及扇形的面积的计算,与圆有关的阴影面积的计算.难点:与圆有关的阴影面积的计算.课前准备::制作学案、多媒体课件.教学过程:一、考点自主梳理,热身反馈考点1 正多边形的有关计算(多媒体出示)【热身训练】1.(2013•咸宁)如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B. 36°C. 38°D. 45°2.(2013•天津)正六边形的边心距与边长之比为()A.:3 B.:2 C. 1:2 D.:23.(2013·绵阳中考)如图,要拧开一个边长为a=6mm的正六边形螺帽,扳手张开的开口b至少为( )A.6 mm B.12 mm C.6 mm D.4 mm4.(2013•自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是()A.4 B.5 C.6 D.7【归纳总结】1.概念:正多边形外接圆的圆心叫做这个正多边形的;外接圆的半径叫做第2题图这个正多边形的半径,正多边形每一条边所对的 叫做正多边形的中心角;中心到正多边形一边的距离叫做正多边形的 .2.计算:设正n 边形的半径为n R ,边心距为n r ,则:⑴正n 边形的每个内角为 ;每个外角为 ;中心角为 ; ⑵正n 边形的边长为 ; ⑶正n 边形的边心距为 ; ⑷正n 边形的面积为 .处理方式:先让学生独立做【热身训练】,师生共同校对答案,然后自主梳理归纳正多边形的有关概念及正多边形与圆的关系.考点2 弧长及扇形的面积(多媒体出示) 【热身训练】1.(2014▪北海)已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是( )A .5πB .6πC .8πD .10π 2.(2014▪东营)如图,已知扇形的圆心角为60︒ 则图中弓形的面积为( )ABCD3.(2014▪衡阳)圆心角为120,弧长为12π的扇形半径为( ) A .6 B .9 C .18 D .36 4.(2014•绥化)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为 (结果保留π)5.(2014•河北)如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S 扇形= cm 2.【归纳总结】1.弧长公式:设弧所对的圆心角为︒n ,所在圆的半径为R ,则弧长为 . 2.扇形面积公式:设扇形的圆心角为︒n ,所在圆的半径为R ,l 为扇形弧长,那么扇 形的面积为 ,或 .处理方式:先让学生独立做【热身训练】,师生共同校对答案,然后自主梳理归纳弧长与扇形面积公式.【知识树】设计意图:通过设计“热身训练”,让学生在解题的过程中回顾正多边形、弧长与扇形的相关知识,再借助知识树让学生将零散、孤立的知识形成网络,完成知识脉络的梳理,明确正多边形、弧长与扇形在相应的知识体系中的位置,有助于学生掌握知识的纵横联系,为下一步灵活运用这些知识打好基础. 二、考向互动探究,方法归纳探究一 正多边形的有关计算例1 (2014▪天津)正六边形的边心距为,则该正六边形的边长是( ) A . B . 2 C . 3 D . 2处理方式:先找两名学生板演,其余学生在练习本上完成,师生共同纠错,然后教师引导学生归纳这一类题目的解法(多媒体出示):【方法归纳】:正多边形的有关计算的常用公式(1)有关角的计算:正n 边形的内角和,外角和、中心角; (2)有关边的计算:①2222R a r =⎪⎭⎫⎝⎛+(r 表示边心距,R 表示半径,a 表示边长).②na l =(l 表示周长,n 表示边数,a 表示边长). ③S 正n 边形=lr 21(l 表示周长,r 表示边心距).探究二 弧长及扇形的面积例2 (2014•兰州)如图,在△ABC 中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC 绕直角顶点C 逆时针旋转60°得△A ′B ′C ′,则点B 转过的路径长为( )A .B .C .D . π例3 (2014•莆田)如图,点D 是线段BC 的中点,分别以点B ,C 为圆心,BC 长为半径画弧,两弧相交于点A ,连接AB ,AC ,AD ,点E 为AD 上一点,连接BE , CE .(1)求证:BE=CE ;(2)以点E 为圆心,ED 长为半径画弧,分别交BE ,CE 于点F ,G . 若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.处理方式:先找两名学生板演,其余学生在练习本上完成,师生共同纠错,然后教师引导学生归纳这一类题目的解法(多媒体出示):【方法归纳】:1.解决动点运动的路线长问题,通过探究得出这个点所经过的路线情况,利用弧长公式求出运动的路线长.2.当已知半径r 和圆心角的度数n 求扇形面积时,应选用3602r n S π=扇;当已知半径r 和弧长l 求扇形面积时,应选用公式lr S 21=扇. 探究三 与圆有关的阴影面积的计算例4 (2014▪昆明)如图,在△ABC 中,∠ABC=90°,D 是边AC 上的一点,连接BD ,使∠A=2∠1,E 是BC 上的一点,以BE 为直径的⊙O 经过点D. (1)求证:AC 是⊙O 的切线;(2)若∠A=60°,⊙O 的半径为2,求阴影部分的面积.(结果保留根号和π)处理方式:先让学生独立思考,然后小组交流,再找两名学生板演,其余学生在练习本上完成,师生共同纠错,然后教师引导学生归纳这一类题目的解法(多媒体出示):【方法归纳】:与圆有关的阴影面积的计算最基本的思想就是转化思想,即把所求的不规则的图形的面积转化为规则图形的面积,常用的方法有:1.直接用公式求解;2.将所求面积分割后,利用规则图形面积的和差求解;3.将阴影中某些图形等积变形后移位,重组成规则图形求解.4.将所求面积分割后,利用旋转,将部分阴影图形移位后,组成规则图形求解.设计意图:通过本环节复习使学生掌握求解与圆有关的阴影面积的计算的基本方法,在做的过程中逐步领悟转化的思想方法,进而提高学生分析问题及解决问题的能力,培养学生在解题的过程中及时总结的习惯. 三、回顾反思,提炼升华活动内容:通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.处理方式:学生畅谈自己的收获!设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识. 四、达标检测,反馈提高(多媒体出示)活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.1.(2014▪自贡)一个扇形的半径为8cm ,弧长为316cm ,则扇形的圆心角为( ) A .60° B .120° C .150° D .180°2.(2014•莱芜)如图,AB 为半圆的直径,且AB=4,半圆绕点B 顺时针旋转45°,点A 旋转到A ′的位置,则图中阴影部分的面积为( )A .πB .2πC .D .4π3.(2014•日照)如图,正六边形ABCDEF 是边长为2cm 的螺母,点P 是FA 延长线上的点,在A 、P 之间拉一条长为12cm 的无伸缩性细线,一端固定在点A ,握住另一端点P 拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P 运动的路径长为( ) A .13πcm B .14πcmC .15πcmD .16πcm4.(2014▪南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD= .5.(2014▪绵阳)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)6.(2013•内江)如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm.7.(2014▪黔西南州)如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)处理方式:学生做完后,教师出示答案,指导学生同位互批,并统计学生答题情况.学生根据答案进行纠错.设计意图:当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.五、布置作业,课堂延伸(多媒体出示) 拓展作业:1.(2014▪南充)如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )A .25π2B.13πC .25πD .2.(2014▪烟台)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则阴影部分的面积等于 .3.(2014▪河南)如图,在菱形ABCD 中,AB=1,∠DAB=60°,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB ′C ′D ′,其中点C 的运动路径为,则图中阴影部分的面积为 .4.(2014•乐山)如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为S 1、S 2.则S 1﹣S 2= . 5.(2014•吉林)如图,将半径为3的圆形纸片,按下列顺序折叠.若和都经过圆心O ,则阴影部分的面积是 (结果保留π)AB CDl第1题图第2题图第3题图第4题图第5题图板书设计:。
第二十二讲园幂定理相交弦定理、切割线定理、割线定理统称为圆幂定理.圆幂定理实质上是反映两条相交直线与圆的位置关系的性质定理,其本质是与比例线段有关.相交弦定理、切割线定理、割线定理有着密切的联系,主要体现在:1.用运动的观点看,切割线定理、割线定理是相交弦定理另一种情形,即移动圆内两条相交弦使其交点在圆外的情况;2.从定理的证明方法看,都是由一对相似三角形得到的等积式.熟悉以下基本图形、基本结论:【例题求解】【例1】如图,PT切⊙O于点T,PA交⊙O于A、B两点,且与直径CT交于点D,CD=2,AD=3,BD=6,则PB= .思路点拨综合运用圆幂定理、勾股定理求PB长.注:比例线段是几何之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段:(1)平行线分线段对应成比例;(2)相似三角形对应边成比例;(3)直角三角形中的比例线段可以用积的形式简捷地表示出;(4)圆中的比例线段通过圆幂定理明快地反映出.【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C .415 D .516思路点拨 连AC ,CE ,由条件可得许多等线段,为切割线定理的运用创设条件.注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键.【例3】 如图,△ABC 内接于⊙O ,AB 是∠O 的直径,PA 是过A 点的直线,∠PAC=∠B .(1)求证:PA 是⊙O 的切线;(2)如果弦CD 交AB 于E ,CD 的延长线交PA 于F ,AC=8,CE :ED=6:5,,AE :BE=2:3,求AB 的长和∠ECB 的正切值.思路点拨 直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x 、k 处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x 与k 的关系,建立x 或k 的方程.【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE思路点拨由切割线定理得EG2=EF·EP,要证明EG=DE,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明.注:圆中的许多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁.需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几何各种类型的问题中.【例5】如图,以正方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF 切半圆于点E,交AB的延长线于点F,BF=4.求:(1)cos∠F的值;(2)BE的长.思路点拨解决本例的基础是:熟悉圆中常用辅助线的添法(连OE,AE);熟悉圆中重要性质定理及角与线段的转化方法.对于(1),先求出EF,FO值;对于(2),从△BE F∽△EAF,Rt△AEB入手.注:当直线形与圆结合时就产生错综复杂的图形,善于分析图形是解与圆相关综合题的关键,分析图形可从以下方面入手:(1)多视点观察图形.如本例从D点看可用切线长定理,从F点看可用切割线定理.(2)多元素分析图形.图中有没有特殊点、特殊线、特殊三角形、特殊四边形、全等三角形、相似三角形.(3)将以上分析组合,寻找联系.学力训练1.如图,PT是⊙O的切线,T为切点,PB是⊙O的割线,交⊙O于A、B两点,交弦CD于点M,已知CM=10,MD=2,PA=MB=4,则PT的长为.2.如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,则AC:BD= .3.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点F,若AB=CD=2,则CE= .4.如图,在△ABC中,∠C=90°,AB=10,AC=6,以AC为直径作圆与斜边交于点P,则BP的长为( )A.6.4 B.3.2 C .3.6 D.85.如图,⊙O 的弦AB 平分半径OC ,交OC 于P 点,已知PA 、PB 的长分别为方程024122=+-x x 的两根,则此圆的直径为( )A .28B .26C .24D .226.如图,⊙O 的直径Ab 垂直于弦CD ,垂足为H ,点P 是AC 上一点(点P 不与A 、C 两点重合),连结PC 、PD 、PA 、AD ,点E 在AP 的延长线上,PD 与AB 交于点F ,给出下列四个结论:①CH 2=AH ·BH ;②AD =AC :③AD 2=DF ·DP ;④∠EPC=∠APD ,其中正确的个数是( )A .1B .2C .3D .47.如图,BC 是半圆的直径,O 为圆心,P 是BC 延长线上一点,PA 切半圆于点A ,AD ⊥BC 于点D .(1)若∠B=30°,问AB 与AP 是否相等?请说明理由; (2)求证:PD ·PO=PC ·PB ;(3)若BD :DC=4:l ,且BC =10,求PC 的长.8.如图,已知PA 切⊙O 于点A ,割线PBC 交⊙O 于点B 、C ,PD ⊥AB 于点D ,PD 、AO 的延长线相交于点E ,连CE 并延长交⊙O 于点F ,连AF . (1)求证:△PBD ∽△PEC ; (2)若AB=12,tan ∠EAF=32,求⊙O 的半径的长.9.如图,已知AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,PF 分别交AB 、BC 于E 、D ,交⊙O 于F 、G ,且BE 、BD 恰哈好是关于x 的方程0)134(622=+++-m m x x⌒⌒⌒(其中m 为实数)的两根.(1)求证:BE=BD ;(2)若GE ·EF=36,求∠A 的度数.10.如图,△ABC 中,∠C=90°,O 为AB 上一点,以O 为圆心,OB 为半径的圆与AB 相交于点E ,与AC 相切于点D ,已知AD=2,AE=1,那么BC= .11.如图,已知A 、B 、C 、D 在同一个圆上,BC=CD ,AC 与BD 交于E ,若AC=8,CD=4,且线段BE 、ED 为正整数,则BD= .12.如图,P 是半圆O 的直径BC 延长线上一点,PA 切半圆于点A ,AH ⊥BC 于H ,若PA=1,PB+PC=a (a >2),则PH=( )A .a 2 B .a 1 C .2a D .3a13.如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长为( )A .21 B .215 C .23D .1 14.如图,已知AB 为⊙O 的直径,C 为⊙O 上一点,延长BC 至D ,使CD=BC ,CE ⊥AD 于E ,BE 交⊙O 于F ,AF 交CE 于P ,求证:PE=PC .15.已知:如图,ABCD 为正方形,以D 点为圆心,AD 为半径的圆弧与以BC 为直径的⊙O 相交于P 、C 两点,连结AC 、AP 、CP ,并延长CP 、AP 分别交AB 、BC 、⊙O 于E 、H 、F 三点,连结OF .(1)求证:△AEP ∽△CEA ;(2)判断线段AB 与OF 的位置关系,并证明你的结论; (3)求BHHC16.如图,PA 、PB 是⊙O 的两条切线,PEC 是一条割线,D 是AB 与PC 的交点,若PE=2,CD=1,求DE 的长.17.如图,⊙O 的直径的长是关于x 的二次方程0)2(22=+-+k x k x (k 是整数)的最大整数根,P 是⊙O 外一点,过点P 作⊙O 的切线PA 和割线PBC ,其中A 为切点,点B 、C 是直线PBC 与⊙O 的交点,若PA 、PB 、PC 的长都是正整数,且PB 的长不是合数,求PA+PB+PC 的值.参考答案。
第二十二讲 园幂定理相交弦定理、切割线定理、割线定理统称为圆幂定理.圆幂定理实质上是反映两条相交直线与圆的位置关系的性质定理,其本质是与比例线段有关.相交弦定理、切割线定理、割线定理有着密切的联系,主要体现在:1.用运动的观点看,切割线定理、割线定理是相交弦定理另一种情形,即移动圆内两条相交弦使其交点在圆外的情况;2.从定理的证明方法看,都是由一对相似三角形得到的等积式.熟悉以下基本图形、基本结论:【例题求解】【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= .思路点拨 综合运用圆幂定理、勾股定理求PB 长.注:比例线段是几何之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段:(1)平行线分线段对应成比例; (2)相似三角形对应边成比例;(3)直角三角形中的比例线段可以用积的形式简捷地表示出; (4)圆中的比例线段通过圆幂定理明快地反映出.【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C .415 D .516思路点拨 连AC ,CE ,由条件可得许多等线段,为切割线定理的运用创设条件.注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键.【例3】如图,△ABC内接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B.(1)求证:PA是⊙O的切线;(2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值.思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x 与k的关系,建立x或k的方程.【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE思路点拨由切割线定理得EG2=EF·EP,要证明EG=DE,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明.注:圆中的许多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁.需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几何各种类型的问题中.【例5】如图,以正方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF切半圆于点E,交AB的延长线于点F,BF=4.求:(1)cos∠F的值;(2)BE的长.思路点拨解决本例的基础是:熟悉圆中常用辅助线的添法(连OE,AE);熟悉圆中重要性质定理及角与线段的转化方法.对于(1),先求出EF,FO值;对于(2),从△BE F∽△EAF,Rt△AEB入手.注:当直线形与圆结合时就产生错综复杂的图形,善于分析图形是解与圆相关综合题的关键,分析图形可从以下方面入手:(1)多视点观察图形.如本例从D 点看可用切线长定理,从F 点看可用切割线定理. (2)多元素分析图形.图中有没有特殊点、特殊线、特殊三角形、特殊四边形、全等三角形、相似三角形.(3)将以上分析组合,寻找联系.学力训练1.如图,PT 是⊙O 的切线,T 为切点,PB 是⊙O 的割线,交⊙O 于A 、B 两点,交弦CD 于点M ,已知CM=10,MD=2,PA=MB=4,则PT 的长为 .2.如图,PAB 、PCD 为⊙O 的两条割线,若PA=5,AB=7,CD=11,则AC :BD= . 3.如图,AB 是⊙O 的直径,C 是AB 延长线上的一点,CD 是⊙O 的切线,D 为切点,过点B 作⊙O 的切线交CD 于点F ,若AB=CD=2,则CE= .4.如图,在△ABC 中,∠C=90°,AB=10,AC=6,以AC 为直径作圆与斜边交于点P ,则BP 的长为( )A .6.4B .3.2C .3.6D .85.如图,⊙O 的弦AB 平分半径OC ,交OC 于P 点,已知PA 、PB 的长分别为方程024122=+-x x 的两根,则此圆的直径为( )A .28B .26C .24D .226.如图,⊙O 的直径Ab 垂直于弦CD ,垂足为H ,点P 是AC 上一点(点P 不与A 、C 两点重合),连结PC 、PD 、PA 、AD ,点E 在AP 的延长线上,PD 与AB 交于点F ,给出下列四个结论:①CH 2=AH ·BH ;②AD =AC :③AD 2=DF ·DP ;④∠EPC=∠APD ,其中正确的个数是( )A .1B .2C .3D .47.如图,BC 是半圆的直径,O 为圆心,P 是BC 延长线上一点,PA 切半圆于点A ,AD ⊥BC 于点D .(1)若∠B=30°,问AB 与AP 是否相等?请说明理由; (2)求证:PD ·PO=PC ·PB ;(3)若BD :DC=4:l ,且BC =10,求PC 的长.8.如图,已知PA 切⊙O 于点A ,割线PBC 交⊙O 于点B 、C ,PD ⊥AB 于点D ,PD 、AO 的延长线相交于点E ,连CE 并延长交⊙O 于点F ,连AF . (1)求证:△PBD ∽△PEC ; (2)若AB=12,tan ∠EAF=32,求⊙O 的半径的长.9.如图,已知AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,PF 分别交AB 、BC 于E 、D ,交⊙O 于F 、G ,且BE 、BD 恰哈好是关于x 的方程0)134(622=+++-m m x x (其中m 为实数)的两根.(1)求证:BE=BD ;(2)若GE ·EF=36,求∠A 的度数.10.如图,△ABC 中,∠C=90°,O 为AB 上一点,以O 为圆心,OB 为半径的圆与AB 相交于点E ,与AC 相切于点D ,已知AD=2,AE=1,那么BC= .11.如图,已知A 、B 、C 、D 在同一个圆上,BC=CD ,AC 与BD 交于E ,若AC=8,CD=4,且线段BE 、ED 为正整数,则BD= .⌒⌒⌒12.如图,P 是半圆O 的直径BC 延长线上一点,PA 切半圆于点A ,AH ⊥BC 于H ,若PA=1,PB+PC=a (a >2),则PH=( )A .a 2 B .a 1 C .2a D .3a13.如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长为( )A .21 B .215- C .23 D .1 14.如图,已知AB 为⊙O 的直径,C 为⊙O 上一点,延长BC 至D ,使CD=BC ,CE ⊥AD于E ,BE 交⊙O 于F ,AF 交CE 于P ,求证:PE=PC .15.已知:如图,ABCD 为正方形,以D 点为圆心,AD 为半径的圆弧与以BC 为直径的⊙O 相交于P 、C 两点,连结AC 、AP 、CP ,并延长CP 、AP 分别交AB 、BC 、⊙O 于E 、H 、F 三点,连结OF .(1)求证:△AEP ∽△CEA ;(2)判断线段AB 与OF 的位置关系,并证明你的结论; (3)求BHHC16.如图,PA 、PB 是⊙O 的两条切线,PEC 是一条割线,D 是AB 与PC 的交点,若PE=2,CD=1,求DE 的长.17.如图,⊙O 的直径的长是关于x 的二次方程0)2(22=+-+k x k x (k 是整数)的最大整数根,P 是⊙O 外一点,过点P 作⊙O 的切线PA 和割线PBC ,其中A 为切点,点B 、C 是直线PBC 与⊙O 的交点,若PA 、PB 、PC 的长都是正整数,且PB 的长不是合数,求PA+PB+PC 的值.参考答案。
2019版中考数学总复习第22讲与圆有关的计算
一、知识清单梳理
知识点一:正多边形与圆关键点拨与对应举例
1.正多边
形与圆
(1)正多边形的有关概念:边长(a)、中心(O)、
中心角(∠AOB)、半径(R))、边心距(r),如图所示
①.
(2)特殊正多边形中各中心角、长度比:
中心角=120°中心角=90°中心角=60°,△BOC为等边△
知识点二:与圆有关的计算公式
2.弧长和
扇形面积
的计算
扇形的弧长l=
;
扇形的面积S==
3.圆锥与
侧面展
开图
(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧
长等于圆锥的底面周长.
(2)计算公式:
,S侧==πrl
在求不规则图形的面积时,
注意利用割补法与等积变化
方法归为规则图形,再利用
规则图形的公式求解.
二、例题试做:
例1:(1) 如果一个正多边形的中心角为72°,那么这个正多边形的边数是
(2)半径为6的正四边形的边心距为,中心角等于,面积为 .
例2:已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为
例3:如图,已知一扇形的半径为3,圆心角为60°,则图中
阴影部分的面积为
三、课后练习:
内参:选择题:19、21、22、23、24
填空题:16、17、18、19、20、21
如有侵权请联系告知删除,感谢你们的配合!。