第5章过渡金属氧硫化物催化剂及其催化作用课件
- 格式:ppt
- 大小:6.36 MB
- 文档页数:75
1 基本概念金属氧化物催化剂常为复合氧化物 (Complex oxides ),即多组分氧化物。
如VO5-MoO3 ,Bi2O3-MoO3 ,TiO2-V2O5-P2O5 ,V2O5-MoO3-Al2O3 ,MoO3-Bi2O3-Fe2O3-CoO-K2O-P2O5-SiO2 (即7 组分的代号为C14 的第三代生产丙烯腈催化剂)。
组分中至少有一种是过渡金属氧化物。
组分与组分之间可能相互作用,作用的情况常因条件而异。
复合氧化物系常是多相共存,如Bi2O3-MoO3,就有a B和Y相。
有所谓活性相概念。
它们的结构十分复杂,有固溶体,有杂多酸,有混晶等。
就催化剂作用和功能来说,有的组分是主催化剂,有的为助催化剂或者载体。
主催化剂单独存在时就有活性,如MoO3-Bi2O3 中的MoO3 ;助催化剂单独存在时无活性或很少活性,但能使主催化剂活性增强,如Bi2O3 就是。
助催化剂可以调变生成新相,或调控电子迁移速率,或促进活性相的形成等。
依其对催化剂性能改善的不同,有结构助剂,抗烧结助剂,有增强机械强度和促进分散等不同的助催功能。
调变的目的总是放在对活性、选择性或稳定性的促进上。
金属氧化物主要催化烃类的选择性氧化。
其特点是:反应系高放热的,有效的传热、传质十分重要,要考虑催化剂的飞温;有反应爆炸区存在,故在条件上有所谓“燃料过剩型”或“空气过剩型”两种;这类反应的产物,相对于原料或中间物要稳定,故有所谓“急冷措施”,以防止进一步反应或分解;为了保持高选择性,常在低转化率下操作,用第二反应器或原料循环等。
这类作为氧化用的氧化物催化剂,可分为三类:①过渡金属氧化物,易从其晶格中传递出氧给反应物分子,组成含 2 种以上且价态可变的阳离子,属非计量化合物,晶格中阳离子常能交叉互溶,形成相当复杂的结构。
②金属氧化物,用于氧化的活性组分为化学吸附型氧物种,吸附态可以是分子态、原子态乃至间隙氧(Interstitial Oxygen )。
金属氧化物催化剂及其催化作用金属氧化物催化剂通常为复合氧化物(complex oxides),即多组分的氧化物。
如V O -MoO , TiO -V 2O 5-P 2O 5,V 2O 5-MoO 3-Al 2O 3。
组分中至少有一个组分是过渡金属氧化物。
组分与组分之间可能相互作用,作用的情况因条件而异。
复合氧化物系通常是多相共存,如MoO 3-Al 2O 3,就有α-、β-、复杂,有固溶体、有杂多酸、有混晶等。
就催化作用与功能来说,有的组分是主催化剂,有的组分为助催化剂或者是载体。
金属氧化物催化作用机制-1z半导体的能带结构z催化中重要的是非化学计量的半导体,有n型和p型两大类。
非计量的化合物ZnO是典型的n型半导体(存在自由电子而产生导电行为)。
NiO是典型的p型半导体,由于缺正离子造成非计量性,形成氧离子空穴,温度升高时,此空穴变成自由空穴,可在固体表面迁移,成为NiO导电的来源。
z Fermi能级E f是表征半导体性质的一个重要物理量,可以衡量固体中电子逸出的难易,它与电子的逸出功∅直接相关。
∅是将一个电子从固体内部拉到外部变成自由电子所需的能量,此能量用以克服电子的平均位能,Fermi能级E就是这种平均位能。
fz对于给定的晶格结构,Fermi能级E f的位置对于其催化活性具有重O分解催化反应。
要意义。
如Nxz XPS研究固体催化剂中元素能级变化金属氧化物催化作用机制-2z氧化物表面的M=O键性质与催化活性的关联z晶格氧(O=)的催化作用:对于金属氧化物催化剂表面发生氧化反应时,作为氧化剂的氧存在吸附氧与晶格氧两种形态。
晶格氧由于氧化物结构产生。
选择性氧化(Selective Oxidation)是固体氧化物催化剂应用主要方向之一。
在选择性氧化中,存在典型的还原-氧化催化循环(Redox mechanism))。
这里晶格氧直接参与了选择性氧化反应。
z根据众多的复合氧化物催化氧化可以概括出:1 选择性氧化涉及有效的晶格氧;2 无选择性完全氧化反应,吸附氧和晶格氧都参加了反应;3 对于有两种不同阳离子参与的复合氧化物催化剂,一种阳离子M+承担对烃分子的活化与氧化功能,它们再氧化靠晶格氧O=;另一种金属氧化物阳离子处于还原态,承担接受气相氧。
第5章过渡金属氧(硫)化物催化剂及其催化作用5.1过渡金属氧(硫)化物催化剂的应用及氧化物的类型5.2金属氧化物中的缺陷和半导体性质5.3半导体催化剂的化学吸附与半导体电子催化理论5.4过渡金属氧化物催化剂的氧化•还原机理5.5过渡金属氧化物中晶体场的影响5.6过渡金属氧化物催化剂典型催化过程分析5.1.1过渡金属氧(硫)化物催化剂的应用及其特点1.过渡金属氧化物催化剂的应用主要用于氧化还原型催化反应过程过渡族元素IB、IIB和IVB-VDIB副族元素的氧化物,多由两种及以上氧化物组成,又称为半导体催化剂(具有半导体性质)过渡金属氧化物的电子结构特征决定了其催化性能。
1 C G H G+M S 〜VQ 5- (Ag > Si,Ni, P )等氧化v2o B Ag、Si、Ni、P 等氧化物< ALO3栽C4H2O3 二 2HQ+2COZ 体)CioHs • -T7-O2 —* C A H I034^H20+2C02VQs-CT,Ti, Ag, K)等代化物 -硫酸盐+藻土v2O5P、Ti、Ag、K 等氣化物-硫酸盐(硅藻上)莪体2.过渡金属氧化物的电子特性1)金属阳离子的d电子层容易失去或得到电子,具有较强的氧化还原性。
轨道被电子占有,对反应物分子有亲核性,起还原作用。
轨道未被电子占有,对反应物分子有亲电性,起氧化作用。
2)过渡金属氧化物具有半导体性质。
合成受到气氛和杂质的影响,容易产生偏离化学计量组成,或由于引入杂质原子或离子使其具有半导体性质。
2.过渡金属氧化物的电子特性3)过渡金属氧化物中金属离子内层价轨道保留原子轨道特性,与外来轨道相遇时可重新分裂,组成新轨道,在能级分裂过程中产生的晶体场稳定化能可对化学吸附做出贡献,影响催化反应。
4)过渡金属氧化物比过渡金属具有耐热、抗毒性强,还具有光敏、热敏、杂质敏感性,便于催化剂的调变。
5.1.2过渡金属氧化物催化剂的结构类型1. M2。
和MO 型氧化物 1) M,O 型(Ag 2O> Cu 2O )M :直线型2配位(sp 杂化),O : 4配位(sp3杂化)图屮虚线不是C10O 结构屮真实单位品胞的大小,真实Cu,O 是co 加%合成甲醇 的优良雇化剂。
第五章_金属氧化物和金属硫化物催化剂及其催化作用2第五章_金属氧化物和金属硫化物催化剂及其催化作用2金属氧化物催化剂是由金属元素和氧元素组成的化合物。
常见的金属氧化物催化剂有二氧化钛、氧化铁、氧化铝等。
这些催化剂具有良好的化学稳定性和热稳定性,能够在高温条件下保持催化活性。
此外,金属氧化物催化剂具有较高的表面积和孔隙度,有利于催化反应物的吸附和扩散。
金属氧化物催化剂广泛应用于有机合成、氧化反应、脱硫反应等领域。
金属硫化物催化剂是由金属元素和硫元素组成的化合物。
常见的金属硫化物催化剂有硫化钼、硫化铜、硫化铁等。
这些催化剂具有较高的催化活性和选择性,能够在相对温和的条件下促进各种催化反应。
金属硫化物催化剂具有较高的电导率和导电性,能够促进电子转移和催化反应的进行。
金属硫化物催化剂广泛应用于石油加工、氨合成、脱硫反应等领域。
金属氧化物和金属硫化物催化剂的催化作用主要包括以下几个方面:1.氧化反应:金属氧化物催化剂能够促进物质的氧化反应,如氧化还原反应、羰基化反应等。
以二氧化钛为例,它可以催化苯酚的氧化反应,将苯酚氧化为苯醌。
此外,金属硫化物催化剂也能够催化氧化反应,如硫化钼催化剂能够催化苯胺的氧化反应,将苯胺氧化为苯酚。
2.脱硫反应:金属氧化物和金属硫化物催化剂能够催化硫化物的脱硫反应,将硫化物转化为无毒的化合物。
以硫化钼为例,它可以催化硫化氢的脱硫反应,将硫化氢转化为水和硫。
3.氢化反应:金属氧化物和金属硫化物催化剂能够催化物质的氢化反应,如氢化加成反应、氢解反应等。
以氧化铝为例,它可以催化苯酚的氢化反应,将苯酚氢化为环己醇。
此外,金属硫化物催化剂也能够催化氢化反应,如硫化铁催化剂能够催化乙烯的氢化反应,将乙烯氢化为乙烷。
4.烷基化反应:金属氧化物和金属硫化物催化剂还能催化烷基化反应,将有机化合物中的烯烃或芳香化合物转化为烷烃。
以氧化铁为例,它可以催化芳烃的烷基化反应,将芳烃转化为相应的烷烃。
总之,金属氧化物和金属硫化物催化剂具有广泛的应用前景。