集合的基本运算全集与补集
- 格式:ppt
- 大小:153.00 KB
- 文档页数:14
集合间的基本运算一、知识概述1交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A, B的交集记作 A ' B (读作‘ A 交B'),即卩 A 1 B= {x|x 已A,且B} 2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A, B的并集.记作:A」B (读作’A并B'),即卩A」B ={x|x三A,或B}.3、补集:一般地,设S是一个集合,A是S的一个子集(即…=1 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作。
貝, 即[/ ={小胡且入¥ 2}性质:%/)二月“J©乓0二用全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用S, U表示+4、运算性质:(1) I I 「I 'I ;(2)I — -「';(3)I . ;(4)T __「T 1 -;(5)、二一匚 _「丄一「* 二:.(6)「厂_「;:「:冷」'J':,二、例题讲解例1、设集合A={ —4, 2m- 1, m2} , B={9, m-5, 1 —m},又A B={9},求实数m的值.解:I A B={9},二2m—1=9或m2=9,解得m=5或m=3或m=—3.若m=5 贝U A={—4, 9, 25} , B={9, 0,—4}与A B={9}矛盾;若m=3则B中元素m—5=1—m=—2,与B中元素互异矛盾;若m=-3,则A={ —4,—7, 9} , B={9,—8, 4}满足 A B={9}.二m=- 3.例2、设A={x|x 2+ ax+ b=0}, B={x|x 2+ ex + 15=0},又A B={3, 5} , A A B={3}, 求实数a , b , e的值.解:v A A B={3},二3 € B,二32+ 3e+ 15=0,••• e= —8,由方程x2—8x+ 15=0 解得x=3 或x=5.••• B={3 , 5}.由A二(A」B)={3 , 5}知,3€ A, A (否则5€ A A B,与A G B={3}矛盾)故必有A={3},.••方程x2+ ax+ b=0有两相同的根3.由韦达定理得3+ 3=—a, 3 3=b,即a=—6, b=9, c=—8.例3、已知A={x|x 3+ 3x2+ 2x >0} , B={x|x 2+ ax+ b< 0},且A G B={x|0 v x< 2}, A U B={ x | x > —2},求a、b 的值.解:A={x| —2v x v—1 或x>0},设B= [x i, X2],由A G B= (0, 2]知X2= 2,且—1<xW 0,①由A U B= (—2 ,+x)知一2w X1w —1. ②由①②知X i =—1, X2 = 2,a=—( X1+ X2)=—1, b= X1X2= —2.例4、已知A={x|x 2—ax+ a2—19=0}, B={x|x 2—5x + 8=2}, C={x|x 2+ 2x —8=0}. 若E =A G B,且A G C=] , 求a 的值.解:—3)(x —2)=0}={3 , 2},•- B={x|(xC={x|(x + 4)(x —2)=0}={ —4 , 2},又••• E =AG B,又••• A G C==,•可知-4^A, 2^A, 3€ A.• •由9—3a+ a —19=0 ,解得a=5或a=—2.①当a=5 时,A={2, 3},此时A H C={2} ,矛盾,二a^ 5;②当a=—2时,A={—5, 3},此时A H C山,A H B={3}工它,符合条件.综上①②知a=—2.例5、已知全集U={不大于20的质数} ,M N是U的两个子集,且满足MA (•门)={3,5},(「r)H N={7,19},(」')H( •「)={2,17},求M N.解:用图示法表示集合U, M N (如图),将符合条件的元素依次填入图中相应的区域内,由图可知:M={3, 5, 11, 13}, N={7, 11, 13, 19}.点评:本题用填图的方法使问题轻松地解决,但要注意的是在填图时,应从已知区域填起,从已知区域推测未知区域的元素.特别提示:下列四个区域:对应的集合分别是:①一q : ::②一-r 二:③―_ 5 ■':④一I一、选择题1下列命题中,正确的是()A. 若U=R 祐u,匸B. 若U为全集,①表示空集,则-①=①;C. 若A={1,①,{2}},则{2}二A;D. 若A={1,2,3},B={x|x 二A},则A€ B.3 IM= {工 |畝迄忑€ 血¥_}= (x l 也}『2、设数集 ' - …且MN都是集合{x|0 < x< 1}的子集,如果把b—a叫做集合{x|a <x< b}的“长度”,那么集合Mn N 的“长度”的最小值是()1 2A. - B .」丄5C. 1- D .一3、设M N是两个非空集合,定义M与N的差集为M—N={x|x € M且x己N},则M—(M—N)等于()A. N B . MA NC. MU N D . M 4、已知全集:=R,集合朴11"弔刀和严砂亠■“ L的关系的韦恩(Venn)图如下图所示,贝U阴影部分所示的集合的元素共有()B . 2个 D .无穷个1、 - ••匚 I -①=U, {2} € A, {2}单独看是一个集合,但它又是A 中的一个元素.3 £2、集合M 的“长度”为-,集合N 的“长度”为」,而集合—+ — — 1{x|0 <x < 1}的“长度”为1,故MAN 的“长度”最小值为4」3、M-N={x|x €“且x^N}是指图(1)中的阴影部分.同样M-( M- N )是指图(2)中的阴影部分.4、t 图形中的阴影部分表示的是集合 =;,由;解得集合‘"一—二一,而N 是正奇数的集合;-「,故选B.二、填空题 5、已知集合A={x|x 2— 3x + 2=0},集合B={x|ax — 2=0}(其中a 为实数),且A U B=A 则集合 C={a|a 使得 A U B=A}= ______________ . 5、{0, 1, 2}解析:A={1, 2},由 A U B=A 得 匪 A.••• 1€ A,即得 a=2;或 2€ A,即得 a=1 ;或 B=©,此时 a=0.••• C={0, 1, 2}.A. 3个C. 1个⑴6、非空集合S^{1 ,2,3,4,5},且若a€ S,则6-a€ S,这样的S共有________ 个.6、6解析:S={1, 5}或{2 , 4}或⑶,或{1 , 3, 5},或{2 , 4 , 3},或{1 , 5 , 2 , 4}.三、解答题7、设集合卫={込加7-①,吕―^ —另1—^,9}(1)若■■-丄),求实数a的值.(2)若.''■,求实数a的值.7、解:(1):9 三’1 '',二9 A.则a2=9或.解得a=±3或5.当时,'' ■' ■ ' - '-(舍)当a =—3时,卫={9,一兀一4},£=〔一出4,9〕(符合)当a = 5时,乂={25,9, —= {0,—4,9〕(符合).综上知一 ?或“一-.(2)由(1)知•,一二8已知全集U= R,叮•二•….丄v 0・,_ = “ V呗亠」或x >5 —「一:,,若- J,求实数⑴的取值范围8解:依题设可知全集】=三且打丨■■-0 =0月=缶1一2三工W5),「月=仗冲+1=工w2喘_1},由题设分类如下:①若',贝U m^ 1>2mn 1= mV 2.②若加工0,则m^ i<2mn 1,且I®用一1« 5,解得2< 3.由①②可得:me 3.•••实数m的取值范围为{m|mc 3}.9、已知全集U={|a -1|,(a - 2)(a -1),4,6}.(1)若-八「•求实数a的值;(2)若:4 '求实数a的值.9、解:(1)t L •厂一;' 且多U,•••|a - 1|=0,且(a - 2)(a - 1)=1 ,或|a -1|=1 ,且(a - 2)(a -1)=0 ;第一种情况显然不成立,在第二种情况中由|a -1|=1得a=0或a=2, --a=2.(2)依题意知|a - 1|=3 ,或(a - 2)(a - 1)=3,若|a -1|=3 ,则a=4, 或a=-2;若(a —2)(a —1)=3,贝U -经检验知a=4时,(4 —2)(4 —1)=6,与元素的互异性矛盾.二a=- 2或亠 .10、设集合A ={::广「二1}, B 屮 | ...... - ,*},若A B=B求实数二的值.10、解:先化简集合A=J '.由A】B=B则F A,可知集合B可为二:,或为{0},或{- 4},或".(i) 若B』:,则贝:,解得立<-:;(ii) 若- - B,代入得-- =0=应=1 或:'=一-,当丸=1时,B=A符合题意;当:』=-1时,B={0}二A,也符合题意.(iii)若一4^B,代入得工上L = 口=7或“ =1,当:』=1时,已经讨论,符合题意;当屯=7时,B={- 12,—4},不符合题意.综上可得,^ =1或立€-1.11、已知集合A={x|x —4m灶2计6=0},B={x|x V 0},若A A B M,求实数m的取值范围.= ^ | A = (-4jK)3-4(2^ 4-5)^ 0} = (/w | 或朋11、解:设全集 ' 」m皂U,< 珂4- x- = 4^ 鼻0,若方程X2—4mx+ 2m^ 6=0的两根x’,x?均非负,贝卩山忑八载以―D胆沖一••• {m|- }关于U的补集是{m|m<—1},二实数m的取值范围是{m|m<—1}.1、(全国I,1)设集合A={4,5, 7,9},B={3,4,乙8, 9},全集U=A U B,则集合・⑺厂启)中的元素共有()A. 3个B. 4个C. 5个D. 6个答案:A解析:2、(福建,2)已知全集U=R,集合A={x|x2—2x>0},则干」等于()A. {x|0 < x< 2}B. {x|0<x<2}C. {x|x<0 或x>2} D . {x|x < 0 或x > 2}答案:A解析:■/ x2—2x>0,二x(x —2)>0,得x<0 或x>2,••• A={x|x<0 或x>2},[ 4 ;. ■ i•.3、(山东,1)集合A={0 , 2, a}, B={1 , a2}.若A U B={0, 1, 2, 4, 16},则a 的值为()A. 0B. 1C. 2D. 4答案:D解析:T A U B={0, 1, 2, a, a2},又A U B={0, 1, 2, 4, 16}, • {a , a2}={4 , 16} , • a=4 ,故选D.集合中的交、并、补等运算,可以借助图形进行思考。