dcac变换技术
- 格式:pdf
- 大小:829.70 KB
- 文档页数:47
DC/DCDC/DC 【中文解释】就是指直流转直流电源。
DC/DC概念是指将一个固定的直流电压变换为可变的直流电压,也称为直流斩波器。
这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。
用直流斩波器代替变阻器可节约电能(20~30)%。
直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。
DC/DC工作原理DC/DC变换是将原直流电通过调整其PWM(占空比)来控制输出的有效电压的大小。
AC/DC的概念AC=Alternating Current.DC=Direct Current.AC/DC即为将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为“整流”,功率流由负载返回电源的称为“有源逆变”。
AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作消耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。
AC/DC变换按电路的接线方式可分为,半波电路、全波电路。
按电源相数可分为,单项、三相、多相。
按电路工作象限又可分为一象限、二象限、三象限、四象限。
dc转ac原理
直流转换交流(Direct Current to Alternating Current, 简称DC
转AC)的原理可以通过逆变器实现。
逆变器是一种电子器件,能够将直流电源转换为交流电源。
逆变器的工作原理是通过调整电源中电压的极性和频率来产生交流电。
首先,直流电源通过变压器或电感元件进行分流和滤波处理,以消除直流电源中的脉动。
然后,直流电源经过一个开关电路,将电源的正负极性交换。
这个开关电路可以使用MOSFET或IGBT等器件实现。
开关周期性地打开和关闭,以生成交流电压的波形。
在设置好开关频率后,逆变器会通过调整开关的开启和关闭时间来控制输出电压的波形和频率。
例如,对于输出50Hz的交
流电,逆变器会以50Hz的频率开启和关闭开关,以产生所需
的正弦波形。
此外,逆变器通常还包括一系列保护电路,用于监测电流、电压和温度等参数,并保护逆变器和连接设备免受潜在的故障或过载引起的损坏。
总的来说,DC转AC的原理是通过逆变器将直流电源中的电
能转换为交流电能。
逆变器通过调整电源中电压极性和频率来生成所需的交流电波形。
逆变器还包括保护电路,用于确保逆变器和连接设备的安全运行。
dc转ac电路原理
直流(DC)转交流(AC)电路是一种能将直流电转换为交流
电的电路。
它主要由直流电源、转换器、滤波器和输出负载四部分组成。
直流电源:直流电源提供稳定的直流电,通常通过整流电路将交流电源转换成直流电,并通过电容器储存电荷。
转换器:转换器是直流转交流电路的核心部分。
它包含一个或多个开关元件(如可控硅、晶体管和MOSFET)以及相应的
驱动电路。
转换器的工作原理是通过定时打开和关闭开关元件,将直流电源的电能转换成交流电能。
开关元件的周期性操作使得直流电源产生像正弦波一样的交流电信号。
滤波器:由于转换器输出的交流电信号由脉冲组成,在输出端产生了很多谐波成分。
为了滤除这些谐波并使输出信号接近理想的正弦波形态,需要添加滤波器。
滤波器一般由电感和电容组成,通过选择适当的元器件参数可以实现对谐波的滤除。
输出负载:输出负载通常是指将交流电路连接到需要供电的设备或装置上。
负载的特性和功率需求会影响到电路设计和转换器的选择。
通过以上四部分的协作,直流转交流电路可以将直流电源转换为交流电,并提供给负载使用,满足设备对交流电的需求。
这种转换电路在一些特定的应用领域,如可调速电机驱动和太阳能发电系统中得到了广泛应用。
电力变换的四大类型在现代电力系统中,电力变换是一项至关重要的技术,它可以将电能从一种形式转换为另一种形式,以满足不同电气设备的需求。
电力变换可以分为四种类型,分别是直流到直流(DC-DC)变换、交流到直流(AC-DC)变换、直流到交流(DC-AC)变换和交流到交流(AC-AC)变换。
一、直流到直流(DC-DC)变换直流到直流变换,顾名思义,就是将直流电源转换为不同的直流电压和电流。
由于直流电压不能直接被改变,因此需要采用电力变换技术来实现这一转换。
直流到直流变换可以分为降压变换、升压变换、反相变换和隔离变换等不同类型。
二、交流到直流(AC-DC)变换交流到直流变换是将交流电源转换为直流电源,也称为整流器。
它可以将交流电压和电流转换为具有恒定电压和电流的直流电源。
交流到直流变换可以分为单相半波整流、单相全波整流、三相半波整流和三相全波整流等不同类型。
三、直流到交流(DC-AC)变换直流到交流变换是将直流电源转换为交流电源,也称为逆变器。
它可以将直流电压和电流转换为具有可调频率和电压的交流电源。
直流到交流变换可以分为单相半桥逆变、单相全桥逆变、三相半桥逆变和三相全桥逆变等不同类型。
四、交流到交流(AC-AC)变换交流到交流变换是将一个交流电源转换为另一个交流电源,它可以改变电源的电压、频率和相位等参数。
交流到交流变换可以分为变压器变换、相位控制变换和频率控制变换等不同类型。
在现代电力系统中,电力变换技术已经成为不可或缺的一部分,它能够实现电能的高效转换和传输,使得电气设备能够更加灵活和高效地工作。
因此,了解电力变换的四大类型对于电气工程师和电力工作者来说是非常重要的。
第五章直流-交流(DC-AC)变换一、概述DC-AC变换器(无源逆变器)V1、V4和V2、V3轮流切换导通,u o为交变电压(1)电网换流 利用电网电压换流,只适合可控整流、有源逆变电路、交—交变频器(2)负载谐振式换流 利用负载回路中形成的振荡特性,使电流自动过零,只要负载 电流超前于电压时间大于t q ,即能实现换流,分串,并联。
VT 2、VT 3通后,u 0经VT 2、VT 3反向加在VT 1、VT 4上1. 晶闸管逆变电路的换流方式换流概念:直流供电时,如何使已通元件关断VT 1导通,C 充电左(-)右(+),为换流做准备; VT 2导通,C 上电压反向加至VT 1,换流,C 反向充电。
(3)强迫换流附加换流环节,任何时刻都能换流直接耦合式强迫换流2. 逆变电路的类型(1)电压源型逆变器电流源型逆变器电流源型逆变器功率流向控制(3)两类逆变器的比较比较点电流型电压型直流回路滤波环节电抗器电容器输出电压波形决定于负载,当负载为异步电动机时,近似为正弦波矩形输出电流波形矩形近似正弦波,有较大谐波分量输出动态阻抗大小续流二极管不需要需要过流及短路保护容易困难线路结构较简单较复杂适用范围适用于单机拖动,频繁加减速下运行,需经常反向的场合适用于多机供电不可逆拖动,稳速工作,快速性不高的场合二、强迫换流式逆变电路1.串联二极管式电流源型逆变器结构VT1~VT6为晶闸管C1~C6为换流电容VD1~VD6为隔离二极管2.工作过程(换流机理)(1)换流前运行阶段(2)晶闸管换流与恒流充、放电阶段(3)二极管换流阶段(4)换流后运行阶段diL dt引起三、逆变器的多重化技术及多电平化1. 多重化技术改善方波逆变的输出波形:中小容量:SPWM大容量:多重化技术思路:用阶梯波逼近正弦波(1)串联多重化特点:适合于电压源型逆变器二重化三相电压源逆变器单个三相逆变电路输出电压波形桥Ⅱ输出电压相位比桥Ⅰ滞后30º桥Ⅰ输出变压器△/Y,桥Ⅱ输出变压器△/Z变比为1变比为13二重化逆变电路输出电压比单个逆变电路输出电压台阶更多、更接近正弦。