金属材料常见金相组织的名称和特征
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
图谱文字说明第一部分金相图谱一.铁碳合金平衡组织图1 名称铁素体( 工业纯铁退火)组织铁素体说明等轴多边形晶粒为铁素体,黑色线条为晶界图2 名称奥氏体(T8钢950℃加热)组织奥氏体说明白色多边形晶粒为奥氏体,黑色线条为晶界。
高温下部分晶粒已合并长大,形成了混合晶粒图3 名称渗碳体(从珠光体中电化学分离出来的滲碳体片)组织渗碳体片说明从珠光体中分离出来的渗碳体片,其形状是不规则的,一侧鸡冠似的形状,某些部位有孔图4 名称亚共析钢组织( 20钢退火)组织铁素体+珠光体说明白色块状为铁素体,因放大倍数低,层状结构未能显示出来,珠光体呈黑色块图5 名称亚共析钢组织( 45钢退火)组织铁素体+珠光体说明白色块状为铁素体,黑色块状为珠光体图6 名称亚共析钢组织( 60钢退火)组织铁素体+珠光体说明白色网状分布的为铁素体,珠光体呈黑色块状图7 名称共析钢组织(T8钢退火)组织层状珠光体说明层状珠光体是铁素体和滲碳体的层状组织,因放大倍数较低,且分辨率小于滲碳体层片厚度,故只能看到白色基体的铁素体和黑色线条的滲碳体图8 名称共析钢电镜组织(T8钢退火)组织层状珠光体说明深灰色基体为铁素体,白色条状为滲碳体图9 名称过共析钢组织(T12钢完全退火)组织层状珠光体+二次滲碳体说明基体为层状珠光体,晶界上的白色网络为二次滲碳体图10 名称亚共晶白口铸铁铸态组织组织珠光体+变态莱氏体+二次滲碳体说明变态莱氏体呈黑白相间的基体,大黑块为珠光体,大黑块珠光体外围的白色滲碳体为二次滲碳体图11 名称共晶白口铸铁铸态组织组织变态莱氏体说明变态莱氏体中白色基体为滲碳体(共晶滲碳体和二次滲碳体),黑色圆状及条状为珠光体图12 名称过共晶口铸铁铸态组织组织一次滲碳体+变态莱氏体说明基体为黑白相间分布的变态莱氏体,白色条状为一次滲碳体二.钢经热处理后组织图13 名称索氏体(T8钢正火)组织索氏体说明索氏体是细珠光体,其层状结构只有在高倍金相显微镜下才可分辩图14 名称索氏体电镜形貌(T8钢正火)组织索氏体说明浅灰色基体为铁素体,白色条状为滲碳体图15 名称托氏体(45钢860℃油淬,试样心部)组织托氏体+马氏体说明托氏体是极细珠光体,在光学金相显微镜下呈黑色团絮状。
贝氏体30年代初美国人E.C.Bain等发现低合金钢在中温等温下可获得一种高温转变及低温转变相异的组织后被人们称为贝氏体。
该组织具有较高的强韧性配合。
在硬度相同的情况下贝氏体组织的耐磨性明显优于马氏体,因此在钢铁材料中基体组织获得贝氏体是人们追求的目标。
贝氏体等温淬火:是将钢件奥氏体化,使之快冷到贝氏体转变温度区间(260~400℃)等温保持,使奥氏体转变为贝氏体的淬火工艺,有时也叫等温淬火。
一般保温时间为30~60min。
贝氏体;贝茵体;bainite又称贝茵体。
钢中相形态之一。
钢过冷奥氏体的中温(350~550℃)转变产物,α-Fe 和Fe3C 的复相组织。
贝氏体转变温度介于珠光体转变与马氏体转变之间。
在贝氏体转变温度偏高区域转变产物叫上贝氏体(up bai-nite),其外观形貌似羽毛状,也称羽毛状贝氏体。
冲击韧性较差,生产上应力求避免。
在贝氏体转变温度下端偏低温度区域转变产物叫下贝氏体。
其冲击韧性较好。
为提高韧性,生产上应通过热处理控制获得下贝氏体。
奥氏体奥氏体英文名称:austenite晶体结构:面心立方(fcc)字母代号:A、γ定义:碳在γ-Fe中形成的间隙固溶体性能特点:奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。
不具有铁磁性。
因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。
珠光体pearlite珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。
其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。
用符号P表示,含碳量为ωc=0.77%。
在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体.珠光体珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好σb=770MPa,180HBS,δ=20%~35%,AKU=24~32J).珠光体经2-4%硝酸酒精溶液浸蚀后,在不同放大倍数的显微镜下可以观察到不同特征的珠光体组织.当放大倍数较高时可以清晰地看到珠光体中平行排列分布的宽条铁素体和窄条渗碳体;当放大倍数较低时,珠光体中的渗碳体只能看到一条黑线;而当放大倍数继续降低或珠光体变细时,珠光体的层片状结构就不能分辨了,此时珠光体呈黑色的一团.图为光学显微镜200倍下薄壁铸件基体.经3%硝酸酒精溶液浸蚀.可见磷共晶体,片状石墨,珠光体及少量铁素体索氏体索氏体索氏体的定义及组织特征。
钢铁材料常见金相组织简介在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:一、铁素体铁素体(ferrite,缩写FN,用F表示),纯铁在912℃以下为具有体心立方晶格。
碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。
这部分铁素体称为先共析铁素体或组织上自由的铁素体。
随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。
铁素体还是珠光体组织的基体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。
碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。
碳的质量分数为0.09%。
图1:铁素体二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。
TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。
碳素或合金结构钢中的奥氏体在冷却过程中转变为其他相,只有在高碳钢和渗碳钢渗碳高温淬火后,奥氏体才能残留在马氏体的间隙中存在,其金相组织由于不易受侵蚀而呈白色。
三、渗碳体渗碳体(cementite),指铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C型碳化物。
金属材料常见金相组织的名称和特征名称定义特征奥氏体碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体针间的空隙处铁素体碳与合金元素溶解在a-Fe中的固溶体亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出渗碳体碳与铁形成的一种化合物在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状珠光体铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体上贝氏体过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。
若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。
转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶下贝氏体同上,但渗碳体在铁素体针内过冷奥氏体在350℃~Ms的转变产物。
钢中典型金相组织钢是一种重要的金属材料,具有优异的机械性能和耐腐蚀性能。
钢的组织和性能之间密切相关,钢中的金相组织是其性能形成的重要因素之一。
下面将详细介绍钢中典型的金相组织。
1. 贝氏体组织贝氏体组织是钢中典型的金相组织之一。
该组织由相似于鹿角的条状组织构成,因其形状类似于法国冶金学家贝尔纳德的鹿角而得名。
贝氏体组织的形成与钢的淬火工艺密切相关,通过快速冷却钢材可以使奥氏体转变为贝氏体。
贝氏体组织具有高强度、高硬度和较好的耐磨性,因此在制造强度要求高、耐磨性要求高的零件时常采用贝氏体钢。
马氏体组织是钢中另一个典型的金相组织。
与贝氏体不同,马氏体组织属于无定形组织,其结构不规则、复杂。
同时,马氏体组织具有较高的强度和硬度,且具有较好的抗拉强度和耐磨性,因此广泛应用于地质勘探、采矿、石油化工等领域。
在淬火工艺中,将钢材加热至温度较高后迅速冷却可制得马氏体组织。
珠光体组织是钢中一种较为典型的变形组织,属于半钢中生组织。
该组织由类似“珠子”形状的球体团进行构成,因其形态类似于珠子而得名。
珠光体组织是一种中等强度的钢结构,具有优秀的成形性和可加工性,在制造材料强度、变形性好的零件时常采用珠光体钢。
4. 混合组织混合组织是一种钢中常见的金相组织,其由两种或多种不同的金相组织混合而成。
例如,当沿晶腐蚀与导致钢中存在晶界和粗晶的杂质混合存在时,就会形成混合组织。
混合组织具有钢中两种或多种组织的优点,可以在不同的应用场合中具有更为广泛的适用性。
总之,钢中的金相组织是其性能形成的重要因素。
贝氏体组织、马氏体组织、珠光体组织和混合组织等是钢中典型的金相组织,采用不同的工艺可以得到不同种类的金相组织,从而满足不同的应用需求。
原材料金相组织下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!金相分析是一种研究材料组织结构的重要手段,通过对金相组织的分析可以了解材料的微观结构和性质。
钯的金相组织介绍钯(Pd)是一种常见的贵金属,具有良好的化学稳定性和高的熔点。
钯的金相组织是研究钯材料性质和应用的重要内容之一。
本文将从钯的金相组织的定义、分类、表征和形成机制等方面进行探讨。
定义和分类钯的金相组织是指钯材料内部的微观结构特征和组织分布。
根据微观结构的形态和组织分布情况,可以将钯的金相组织分为以下几种类型:1.均匀晶粒结构:钯材料中晶粒尺寸基本相同,分布均匀。
2.含有晶界的结构:钯材料中存在晶界,晶界是相邻晶粒之间的界面区域,通常含有弯曲、扭曲和滑移等缺陷。
3.孪晶结构:钯材料中存在孪生晶体,孪晶是由于结构畸变产生的,使晶体沿某个平面产生对称性变形。
4.非晶态结构:钯材料中晶粒无法明确区分,呈无定形状态。
5.多相结构:钯材料中存在多种不同的相,相互之间有一定的界面。
表征方法要了解钯的金相组织,需要借助一些表征方法来观察和分析。
常用的表征方法包括:1.金相显微镜观察:使用金相显微镜可以观察到钯材料的金相组织,通过显微镜放大图像,可以看到晶粒的形态、大小和分布情况。
2.扫描电子显微镜(SEM)观察:SEM可以提供更高的放大倍数和更详细的表面形貌信息,可以观察到更加细微的晶粒特征和晶粒边界的形态。
3.透射电子显微镜(TEM)观察:TEM可以观察到钯材料的超细结构特征,如晶粒内部的位错、孪晶和晶界的原子排列等。
4.X射线衍射(XRD)分析:XRD可以确定钯材料的晶体结构、晶粒尺寸和晶粒取向等信息,通过衍射峰的位置和强度可以确定钯的晶体结构类型和相对晶粒尺寸。
形成机制钯的金相组织形成的主要机制包括晶体生长、晶界迁移和再结晶等。
具体来说,有以下几个过程:1.晶体生长:钯材料在凝固过程中,由于原子间的吸引力,形成晶体。
晶体在凝固过程中,晶粒尺寸逐渐增大,并且晶粒的分布不均匀性会受到多种因素的影响,如合金成分、凝固速率等。
2.晶界迁移:在钯材料的加工和热处理过程中,晶界可能会发生迁移,以实现能量的最小化。
常用金属材料的显微组织观察一、实验目的观察几种常用合金钢、铸铁和有色金属的显微组织;了解这些金属材料的成分、组织和性能的特点。
二、仪器与材料仪器: XJP-2A( 单目 ) 金相显微镜; XJP-3C( 双目 ) 金相显微镜;材料: 10 种常用金属材料表 1 常用金属材料的金相试样三、实验原理及教学内容1 合金钢在合金钢中,由于合金元素对相图及相变过程的影响,其显微组织比碳钢复杂得多,组成相除了合金铁素体、合金奥氏体、合金渗碳体外,还可能出现金属间化合物,其组织形态随钢种的不同而呈现出不同的特征。
根据其用途可分为:合金结构钢、合金工具钢、特殊性能钢。
• 40Cr 调质钢(合金结构钢)合金调质钢是指调质处理后的合金结构钢,调质处理后具有高强度与良好的塑性及韧性。
40表示含碳量0.4%,Cr是加入的合金元素,起着增加淬透性,使调质后的回火索氏体组织得到强化。
回火索氏体以前我们学过,是由等轴状F和粒状渗碳体构成。
40Cr调质处理(淬火后高温回火) W18Cr4V退火• W18Cr4V 高速钢(合金工具钢)高速钢是一种高合金工具钢,具有高硬度、高耐磨性和高热硬性,还具有一定的强度、韧性和塑性。
加入合金元素W提高热硬性;Cr可以提高钢的淬透性;加入合金元素V可显著提高钢的耐磨性和热硬性。
a. 铸态组织显微组织分为三个部分:晶界附近为骨骼状莱氏体共晶碳化物Fe4W2C及WC,严重地分割了基体,使钢受载时极易脆裂;晶粒外层为奥氏体分解产物—马氏体及残余奥氏体,因为它不易被浸蚀而呈亮色,常称为“白色组织”;晶粒的心部是δ共析体,为极细的共析组织,易受浸蚀而呈黑色,通常称为“黑色组织”。
b. 锻造和退火后的组织为了改善碳化物的不均匀性,生产上采用反复锻造的方法将共晶碳化物击碎使其分布均匀。
为了去除锻造内应力,清除不平衡组织,降低了硬度,改善切削加工性能,为淬火提供良好的原始组织,必须对高速钢进行退火处理。
经过860~880℃退火后,高速钢 W18Cr4V 的退火组织为较粗大的共晶碳化物颗粒及稍细的二次碳化物,分布在索氏体基体上。
不锈钢金相组织及标准介绍
1. 不锈钢常见金相组织
不锈钢是一种具有高度耐腐蚀性的金属材料,其常见的金相组织包括奥氏体(Austenite)、马氏体(Martensite)和铁素体(Ferrite)。
奥氏体是一种面心立方结构,具有较高的塑性和韧性,但硬度较低。
马氏体是一种体心立方结构,具有高硬度但韧性较差。
铁素体是一种具有多边形晶格结构的材料,其硬度、韧性和耐腐蚀性均较低。
2. 金相组织判定标准
判定不锈钢的金相组织通常是通过显微组织观察来进行的。
不同类型的不锈钢具有不同的金相组织特征。
判定标准包括晶格结构、晶粒大小、相含量和相形态等方面。
3. 金相组织与材料性能关系
金相组织与不锈钢的材料性能之间存在密切的关系。
不同的金相组织会影响材料的硬度、韧性、耐腐蚀性和耐磨性等性能。
因此,了解金相组织与材料性能之间的关系对于合理选用不锈钢材料具有重要意义。
金相组织基本概念金相组织是指金属在宏观上呈现出的颗粒、晶粒和晶界等微观结构组成情况,是金属材料性质的重要因素。
金相组织研究的内容主要包括金属的晶体结构、晶体缺陷、晶粒形状、晶界形态、相组成及相分布等方面。
晶体结构是金相组织研究的核心内容之一。
金属晶体结构是由原子在晶体中的排列方式所决定的有序性结构,不同金属的晶体结构是不同的。
常见的金属晶体结构包括面心立方晶体结构、体心立方晶体结构、六方最密堆积晶体结构等。
晶体缺陷是指晶体结构中存在的各种缺陷,包括点缺陷、线缺陷和面缺陷。
在点缺陷中,最常见的是晶格缺陷,即原子在晶体中的位置存在偏移。
而在面缺陷中,则包括晶界和孪晶。
晶粒形状是指金属材料中晶粒在宏观上呈现出的形态特征。
晶粒的形状对材料的性能有重要影响,如晶粒尺寸越小,硬度越大、塑性越好。
晶粒形状的改变也会影响材料的性能,如晶粒长大会导致塑性降低而强度提高。
晶界形态是指晶粒和晶粒之间的边界形态。
不同形态的晶界对材料的性能影响也不同,如曲线形晶界有助于提高强度和塑性。
而宽晶界则容易引起材料的脆性断裂。
相组成及相分布是指金属材料中不同相的组成和分布情况。
金属材料中的相有多种,如铁碳相、铝铁相等。
不同相之间的化学成分和力学性能差异很大,相间界面处的特殊结构也影响着材料以及特殊属性,如相界面吸附能、界面能和迁移能等。
相分布和相间距等参数也是反映材料性能的重要参数之一。
总之,金相组织研究的目的是探究金属材料的微观结构,为材料的制备和选用提供依据。
同时,金相组织研究也为材料的性能分析和优化提供了途径。
因此,金相组织研究具有重要的理论和应用价值。