褶皱构造
- 格式:doc
- 大小:39.00 KB
- 文档页数:3
褶皱构造名词解释褶皱构造,即褶皱的形态,是由地质动力学过程在地表或者深层发育的一种地质作用,是构成造山带地貌的重要因素之一。
主要类型有倾斜褶皱、坍塌断层、翘起断层等,具有明显特征的山脉构造都是褶皱形态。
褶皱构造是构造地质学中一个重要的研究科目,它是构成地质形态的基本构造,也是构成地质结构的重要组成部分,它们实际上是地质变动的外部表现。
褶皱是由于绝对介质压力或者静水压力而形成的结构,它可以改变岩石的形状和性质,形成褶皱、拱型和细纹。
褶皱的形态,形状和性质可以分为两种:一种是曲线型,它比较低矮,山体较少;另一种是高耸型,它高耸而峻峭,山体较多。
这两种形态各具有其特有性,可以体现地质构造的特征。
褶皱构造也是大地构造学中最重要的构造组成部分,它与地壳构造变形有着密切的联系,可以解释地质事件的发生及其原因。
褶皱构造的形成既可能是由于内部地质动力学原因,如盆地或平原的深部断层破裂、构造变形而导致的;也可能是外力作用的结果,如静态压力、动态压力或地壳活动等。
从原因和历程上看,褶皱构造的发育既有内部的构造变形,也有外力作用。
褶皱构造主要体现在山脉构造上,它是山脉构造发展的重要形态之一。
山脉构造是造山带地貌的主要形式,也是褶皱构造的典型代表,可以说山脉构造与褶皱构造相辅相成,及其形成构成了地貌特征。
褶皱构造可以看作是山脉构造的地质表现,它是由地壳活动所改造的山脉、峡谷等物质结构,可以起到分开平原和高原的作用,影响到地表构造形态的变化。
褶皱构造是进行地质结构研究必不可少的重要参照,比如研究地壳活动、岩石结构及变形时,都需要研究褶皱构造对地质结构的影响及其作用等,以便更好的理解岩石圈的发展过程,从而探究岩石圈的演变过程。
综上所述,褶皱构造是构造地质学研究的重要科目,它可以体现在地壳构造变形的过程中,也是山脉构造及整个地貌发展的重要形态之一,褶皱构造对地质结构的影响及其作用也是不可忽视的。
褶皱构造的形成可以是由于内部地质动力学原因,也可以是外力作用的结果,各具有其特有性,可以体现地质构造的特征。
第二节褶皱构造一、褶皱的基本概念(一)褶皱的定义岩层或岩体在地应力长期作用下形成的波状弯曲称为褶皱,褶皱在地壳中分布广泛,形态各异,规模大小相差悬殊,大者延伸几十至几百公里,小者可在手标本上见到,甚至表现为显微构造。
褶皱岩层中的一个弯曲称为褶曲,它是褶皱构造的基本单位(图4-8)。
(二)褶曲的基本形式褶曲的基本形式可分为两种,即背斜和向斜。
1.背斜背斜是岩层向上弯拱的褶曲,核部是老岩层,两侧是新岩层,且对称重复出现,两翼岩层一般相反倾斜(图4-9a)。
2.向斜向斜是岩层向下弯拱的褶曲,核部是新岩层,两侧是老岩层,且对称重复出现,两翼岩层一般相对倾斜(图4-9b)。
(三)褶曲要素为了描述褶曲在空间的形态和特征,将它的各个部位分别规定了一个名称。
总起来称为褶曲要素。
或者说褶曲要素是褶曲的基本组成部分及其相互关系的几何要素(图4-10)。
褶曲要素主要有下列几种:1.核部褶曲的中心部位为核部。
背斜核部是老岩层,向斜核部为新岩层。
2.翼部褶曲核部两侧的岩层为翼部。
背斜两翼较核部岩层新;向斜两翼较核部岩层老。
相邻背斜和向斜之间的一个翼为二者所共有。
3.翼角褶曲两翼岩层与水平面的夹角,即翼部岩层的倾角。
4.转折端褶曲从一翼过度到另一翼的转折部位称为转折端。
5.轴面通过褶曲核部,平分褶曲两翼的假想面称为轴面,轴面可以是平面或曲面,也可以是直立的、倾斜的、甚至是水平的。
6.轴线和轴迹褶曲轴面与水平面的交线,称为轴线。
轴线的方向表示褶曲的延伸方向。
轴线的长度表示褶曲的延伸长度。
轴面与地表面的交线称为轴迹。
只有在轴面直立和地面水平的情况下,轴迹和轴线重合为一条线。
7.枢纽枢纽指褶曲中同一岩层面与轴面的交线。
其产状可以是水平的、倾斜的,也可是波状起伏的,甚至是直立的,枢纽主要是用来表示褶曲在延伸方向上产状的变化。
8.高点及鞍部背斜隆起的最高部位称为高点。
有的背斜可以有几个高点,同一背斜相邻两高点之间的相对低洼部分称为鞍部(图4-11)。
褶皱构造名词解释褶皱构造是一种研究地球表面和地下地质构造的研究方法。
它可以帮助科学家理解地质构造的结构,更好的了解地质规律。
本文旨在探讨褶皱构造的概念,其结构特征及其对地质学研究的重要性。
褶皱构造又称褶皱结构,是地壳或地幔被折叠变形形成的褶皱状地貌。
它是由构造力及其在地质构造中产生的压力变形而形成的地貌,它主要有断裂、折叠和延伸三种形式。
它们都是由上斜压力作用的结果,比如地壳抬升或下沉均可引起褶皱形成。
褶皱构造以层状、水平和倾斜等三维结构特征存在。
它的层状和水平特征通常由山脉的前后褶皱带标示出来,而倾斜特征则体现在山脉的斜坡上,因此可以通过观测山脉的斜坡分布来确定地质构造中存在的褶皱水平及倾斜。
褶皱构造具有广泛的地质学意义,首先,它可以帮助科学家掌握地质海洋运动的规律,从而进一步了解地质构造;其次,它可以帮助科学家确定构造活动的方向、强度以及时间;最后,它还可以帮助科学家预测构造活动的变化趋势,从而做出更准确的地质研究。
此外,褶皱构造也可以用于岩石圈构造研究,岩石圈能够揭示地壳厚度,形成历史,构造形成时间及其持续时间,以及构造活动模式等,而褶皱构造正是地质学家从中获取这些信息的重要手段。
总而言之,褶皱构造是一种重要的地质学方法,它的研究结果可以帮助地质学家更好的理解地质构造的结构,有助于研究地理遗迹、构造活动的时间及强度以及地壳的厚度等地质学问题。
它的研究对科学研究有重要的意义,以更好的理解和掌握褶皱构造以及地质学的规律是未来研究的重要方向。
折腾,褶皱构造是地质学中获取地壳或地幔构造信息的重要方法,它不仅可以帮助科学家理解地质构造的结构,还可以用于揭示地质构造活动的方向、强度及时间,以及岩石圈形成历史、构造形成时间及其持续时间等。
它的研究有助于掌握地球表面和地下地质构造的规律,从而为地质学的发展带来重大的贡献。
未来,要深入研究褶皱构造以及地质学的规律,需要进一步改进此方法,以提高研究成果的准确性和可行性。
第四节褶皱构造一、褶皱的概念岩层的弯曲现象称为褶皱。
岩层在构造运动作用下,或者说在地应力作用下,改变了岩层的原始产状,不仅使岩层发生倾斜,而且大多数形成各式各样的弯曲。
褶皱是岩层塑性变形的结果,是地壳中广泛发育的地质构造的基本形态之一。
褶皱的规模可以长达几十到几百千米,也可以小到在手标本上出现。
褶皱构造通常指一系列弯曲的岩层;而把其中一个弯曲称为褶曲。
但褶皱和褶曲二个术语有时并无严格的区别,而且在许多外文中也只是同一术语。
从成因上讲,褶皱主要是由构造运动形成的,它可能是由升降运动使岩层向上拱起和向下拗曲,但大多数是在水平运动下受到挤压而形成的,而且缩短了岩层的水平距离。
在外力地质作用下如冰川、滑坡、流水等作用,也可以造成岩层的弯曲变形,但一般不包括在褶皱变动的范畴中。
褶曲的形态是多种多样的,但基本形式只有背斜和向斜两种。
从外形上看,背斜是岩层向上突出的弯曲,两翼岩层从中心向外倾斜;向斜是岩层向下突出的弯曲,两翼岩层自两侧向中心倾斜。
这种从形态上的划分,大多数情况下是对的。
但在有些情况下则是无法判断的,例如当褶曲是横卧时,或褶曲两翼平行而顶部被剥蚀掉时,或褶曲呈扇形弯曲而顶部亦被剥蚀,或褶曲呈翻卷状态时,等等,都无法利用形态区分是背斜或向斜。
从本质上讲,应该根据组成褶曲核部和两翼岩层的新老关系来区分,即褶曲的核部是老岩层,而两翼是新岩层,就是背斜;相反,褶曲核部是新岩层,而两翼是老岩层,就是向斜。
或者说,由核到翼,岩层越来越新,并在两翼呈对称出现,为背斜;由核到翼,岩层越来越老,并在两翼呈对称出现,为向斜。
二、褶曲要素为了便于对褶曲进行分类和描述褶曲的空间展布特征,首先应该了解褶曲要素。
褶曲要素是指褶曲的各个组成部分和确定其几何形态的要素。
褶曲具有以下各要素:(一)核褶曲的中心部分。
通常指褶曲两侧同一岩层之间的部分。
但也往往只把褶曲出露地表最中心部分的岩层叫核。
(二)翼指褶曲核部两侧的岩层。
一个褶曲具有两个翼。
褶皱构造名词解释褶皱构造是地质学中概念,是指地层在物理变形作用下形成的三维凹凸曲面的综合称谓。
它以力学能量的变形过程为基础,表明地层以矿物组合,变形结构及其空间分布的特征来描述地表和地下的地质构造。
褶皱构造的研究有助于深入理解地质变形过程和地质构造的构造原理,为地质探测和成矿规律的揭示提供依据。
褶皱构造有着独特的形态特征,具有结构、变形和空间三方面的特征。
结构方面,褶皱构造可以按照层厚度、层内构造复杂程度和外貌特征进行类别划分;变形方面,褶皱构造由原型层序、变形量、变形方向、结构运动方式和构造层厚度等组成;空间方面,褶皱构造是以层厚度、地表外貌形状及其空间分布构成的。
褶皱构造的形成主要是受构造的剪切应力及物理变形的控制。
当构造剪切应力大于岩石的抗剪强度时,地层就会发生物理变形,形成褶皱构造。
在物理变形的控制下,褶皱构造的表面和三维凹凸曲面的综合称谓也随变形性质而有不同的呈现。
褶皱构造的研究可以为地质学提供客观有效的地质证据,帮助人们更好理解地质变形过程及其规律。
它们不仅可以研究地壳层的变形历史,而且可以用来解释地质构造的变形特征。
此外,褶皱构造的识别也非常重要。
通过对褶皱构造的观测,可以研究地质构造发育的时代、动力作用、变形模式和场地运动规律等地质成因。
褶皱构造研究使用的技术有三维变形技术、三维成像技术、空间分析技术和栅格数据处理技术等。
三维变形技术用于描述岩石变形性质;三维成像技术用于表征地表形态及其空间分布特征;空间分析技术用于研究地表形态、岩层厚度及其邻近关系;栅格数据处理技术用于研究褶皱构造的特征变化规律。
褶皱构造的研究对于揭示地质探测和成矿规律具有重要意义。
它有助于更好的理解地质变形过程和地质构造的构造原理,为地质活动的活跃性及其空间分布特征提供重要依据。
同时褶皱构造研究也能够帮助人们深入了解矿物组合、矿物交代年代和变形结构等,有助于区域地质调查中的矿物成矿规律和矿区勘探规划。
综上所述,褶皱构造是一种客观有效反映地质变形过程和地质构造的构造原理的概念,通过对褶皱构造的研究,可以有效解释地质构造的特征,有助于研究地质探测和成矿规律,有助于地质调查中的矿物成矿规律和矿区勘探规划。
§2. 褶皱构造一、概念褶皱构造:岩层受力作用后产生变形,形成一系列连续完整的弯曲形态。
大多数是受挤压力形成的,也受垂直作用力后力偶作用下形成。
研究褶皱的产状、形态、类型、成因等特点,对查明区域构造,工程地质条件非常重要。
二、预研究褶皱产状等于研究岩层产状。
1、岩层产状:三要素:岩层走向、倾向、倾角。
走向:代表岩层水平延伸方向。
倾向:垂直于走向线,沿层倾斜,面向下所引的最大倾斜线,在水平面上所指的方向。
同一岩层:倾向-走向=90。
倾角:最大倾斜线与其在水平面上投影线的夹角,岩层面与水平面所夹的最大锐角。
2、产状记录法:用方位角表示:走向45。
倾向135。
倾角40用象限角表示:NE45。
SE45。
<40。
只记倾向倾角:SW205。
<25。
三、褶皱形态类型背斜:中间——老地层,两恻——岩层依次更新1、形态向斜:中间——新地层,两恻——岩层依次更老且两边对称。
2、褶皱要素:核、翼、轴面、轴线小、枢纽、转折端。
四、褶皱构造分类:1、据轴、两翼岩层产状对褶皱形态分类:直立褶皱倾斜褶皱平卧褶皱倒转褶皱翻卷褶皱2、据枢纽产状分类:水平褶皱倾伏褶皱穹隆构造枢纽向两端倾伏或扬起,岩层向四周倾或向中间倾构造盆地3、按褶皱的组合分类:复背斜、复向斜翼部有多个次一级的小背斜、小向斜组成。
复背斜:在一个大背斜两翼,是由若干个较小的褶皱组成。
复向斜:在一个大向斜两翼,是由若干个较小的褶皱组成。
二者是复式褶皱,是由强烈的构造运动挤压形成,规模很大。
五、褶皱构造的野外识别方法:1、垂直岩层走向观察,追索地区地层分布。
如出现地层重复出现褶皱构造。
2、分析地层新老关系变化规律判断是背斜还是向斜背斜:中间——老地层,两恻——岩层依次更新向斜:中间——新地层,两恻——岩层依次更老3、分析褶皱组成要素产状划分类型。
六、褶皱的工程性质1、核部岩层节理发育,岩层破碎,易风化剥蚀,岩石力学性质差,强度低,渗透性大,地坝基或洞室稳定不利,在选坝址、邃洞位置。
褶皱
在地壳运动的强大挤压作用下,岩层会发生塑性变形,产生一系列的波状弯曲,叫做褶皱。
褶皱的基本单位是褶曲,褶曲有两种基本形态,一种是向斜,一种是背斜。
褶皱构造中褶曲的基本形态之一,与“向斜”相对。
背斜外形上一般是向上突出的弯曲。
岩层自中心向外倾斜,核部是老岩层,两翼是新岩层(这一点是其与向斜的根本区别)。
但是,由于向斜槽部受到挤压,物质坚实不易被侵蚀,经长期侵蚀后反而可能成为山岭,相应的背斜却会因岩石拉张易被侵蚀而形成谷地。
因此,我们应该根据岩层新老关系来确定一个褶皱是背斜还是向斜,而不能单凭地表形态来判断。
由于背斜岩层向上拱起,且油、气的密度比水小,所以背斜常是良好的储油、气构造。
与之相对,向斜是良好的储水构造。
背斜顶部受张力作用,岩性脆弱,易被侵蚀,在外力作用下形成谷。
向斜与背斜的情况相反,底部岩性坚硬,不易侵蚀,易接受沉积。
背斜是良好的储油、储天然气构造。
开发石油、天然气多寻找背斜构造。
(包括海底油、气开采)
背斜因其拱形结构,受力均匀,隧道、铁路等对地质要求较高的工程多选址背斜。
背斜外形上一般是向上突出的弯曲。
岩层自中心向外倾斜,核部是老岩层,两翼是新岩层。
向斜一般是向下突出的弯曲。
岩层自两侧向中心倾斜,核部为新岩层,两翼为老岩层。
背斜是良好的储油构造,向斜是良好的储水构造。
最主要的是因为水与石油的密度不一样。
此外,煤、石油等是由千万年的地质演化形成的,与岩层的新老关系密切。
有些含有油气的沉积岩层,由于受到巨大压力而发生变形,石油都跑到背斜里去了,形成富集区。
所以背斜构造往往是储藏石油的“仓库”,在石油地质学上叫“储油构造”。
通常,由于天然气密度最小,处在背斜构造的顶部,石油处在中间,下部则是水。
寻找油气资源就是要先找这种地方。
形成石油圈闭(oil trap)之地质结构有很多种类型。
第一种类型称为背斜型圈闭(anticline trap),外形如窟隆状,天然气、石油和水均储存在储油岩(reservoir rock)内,而储油岩被一层非渗透性岩所覆盖,它可防止天然气和石油之逸离;第二种类型称为断层型圈闭(fault trap),因为不渗透性岩发生断层而阻止石油和天然气之逃逸;第三种类型称为可变渗透性型圈闭,由於储油岩之渗透性发生变化而导致石油无法逸离储油岩。
工程建设上,背斜处适合建隧道,向斜处适合建水库。
-------------------------------------------------
背斜、向斜统称为褶皱,它们都是在挤压作用下,岩层受力弯曲形成的。
背斜岩层向上拱起,向斜岩层向下弯曲。
所以,年代较新的背斜一般形成褶皱山脉,年代较新的向斜一般形成谷地。
而在褶皱形成过程中,背斜顶部受张力,发生张裂,物质不坚实,易受外力侵蚀,最终
成为谷地,而向斜槽部受挤压,物质坚实,不易受侵蚀,最终成为山岭。
这叫做地形倒置,一般发生于年代较老的背斜与向斜处。
断裂构造
断裂构造又称断裂。
岩石受地应力作用,当作用力超过岩石本身的抗压强度时就会在岩石的薄弱地带发生破裂。
断裂构造是岩石破裂的总称,包括劈理、节理、断层、深大断裂和超壳断裂等。
研究断裂构造对找矿勘探、水文地质与工程地质以及了解区域构造特点均有实际意义。
断裂可以作为石油天然气二次运移的良好通道,油气沿断裂通道运移比在岩石孔隙中运移更加容易。
岩石中的裂隙,其两侧岩石没有明显的位移。
地壳上部岩石中最广泛发育的一种断裂构造。
通常,受风化作用后易于识别,在石灰岩地区,节理和水溶作用形成喀斯特。
岩石中的裂隙,是没有明显位移的断裂。
节理是地壳上部岩石中最广泛发育的一种断裂构造。
按成因节理可分为:①原生节理,成岩过程中形成,如沉积岩中因缩水而造成的泥裂或火成岩冷却收缩而成的柱状节理;②构造节理,由构造变形而成;③非构造节理,由外动力作用形成的,如风化作用、山崩或地滑等引起的节理,常局限于地表浅处。
按形成的力学机制节理可分为:①剪节理,由剪裂作用形成的节理。
节理面平直,延伸较长,两壁常闭合,沿节理面可见两侧岩块有微小的错开,节理面上可有擦痕,见图1。
②张节理,由张裂作用形成的节理。
节理面常粗糙不平,延伸较短,常曲折,多分叉,两壁可轻微张开或被结晶物质充填而成脉。
节理
构造节理按其与岩层产状的关系,可分为:两者走向近于一致的走向节理,两者走向近于垂直的倾向节理,斜向节理及顺层节理。
按其与所在褶皱轴向的关系,节理可分为:其走向与褶轴一致的纵节理,与褶轴直交的横节理及斜交褶轴的斜节理。
构造节理常有规律地成群出现。
一群产状一致且力学性质相同的节理构成节理组。
在统一应力场中形成的两组以上的节理构成节理系。
如剪节理常发育两组,互相交切成菱形或X 型,称为共轭剪节理系, 其交角称共轭剪裂角。
张节理可呈平行状,也可呈雁列式展布成组。
两组雁列式张节理构成共轭雁列张节理系(图2)。
节理
与褶皱或断层伴生的节理,常有规律地分布于大构造的不同部位,反映了各部分的应变状态,如褶皱顶部的垂直层面的正扇形张节理,或断层一侧的羽毛状节理等。
区域性节理是指在较大区域内产状稳定、规模大的节理,又称主节理,反映了区域性的构造应力。
研究节理不仅有助于查明其生成时的应力状态及演变历史,而且有重要的实际意义。
节理常作为矿液的流动通道和停积场所,直接控制着脉状金属矿床的分布。
节理也是石油、天然气和地下水的运移通道和储聚场所。
节理过多发育会影响到水的渗漏和岩体的不稳定,为水库和大坝或大型建筑带来隐患。