第4章 快速成型技术概述
- 格式:ppt
- 大小:1.57 MB
- 文档页数:62
快速成型技术的综述概要:快速成型技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,被认为是近20年来制造领域的一个重大成果。
不断提高RP技术的应用水平是推动RP技术发展的重要方面。
并且随着这一技术本身的发展,其应用领域将不断拓展。
关键词:引言:随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。
制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。
因此,产品的开发速度和制造技术的柔性就十分关键。
从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。
一.RP技术的定义快速成型技术是集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。
即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。
二.RP技术的基本原理快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。
1、从成形角度看,零件可视为“点”或“面”的叠加。
从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。
2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。
三.特点(1) 制造原型所用的材料不限,各种金属和非金属材料均可使用;(2) 原型的复制性、互换性高;(3) 制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越;(4) 加工周期短,成本低,成本与产品复杂程度无关,一般制造费用降低50%,加工周期节约70%以上;(5) 高度技术集成,可实现了设计制造一体化;三.类型3D打印技术是一系列快速原型成型技术的统称,其基本原理都是叠层制造,由快速原型机在X-Y平面内通过扫描形式形成工件的截面形状,而在Z坐标间断地作层面厚度的位移,最终形成三维制件。
快速成型[编辑]使用快速成型技术生成的精致模型使用快速成型技术,不借助于模具而生成一个球体。
〔加工过程为30分钟,本视频精简为4分钟〕快速成型或快速成形〔英语:Rapid prototyping,RP〕是一种快速生成模型或者零件的制造技术。
在电脑控制与管理下,依靠已有的CAD数据,采用材料精确堆积的方式,即由点堆积成面,由面堆积成三维,最终生成实体[1]。
依靠此技术可以生成非常复杂的实体,而且成型的过程中无需模具的辅助[2]。
目录[隐藏]1 发展历史2 技术原理2.1 工艺过程2.2 工艺技术2.2.1 光固化立体造型〔SLA〕2.2.2 层片叠加制造〔LOM〕2.2.3 选择性激光烧结〔SLS〕2.2.4 熔融沉积造型〔FDM〕2.2.5 三维印刷工艺〔三维P〕2.3 工艺与材料3 特点4 应用5 参见6 相关文献7 参考资料发展历史[编辑]对于快速成型技术的研究始于1970年代,但是直到1980年代末才逐渐出现了成熟的制造设备[3]。
美国3M公司的Alan J.Herbert〔1982年〕、日本名古屋市工业研究所的小玉秀男〔1980年〕、美国UVP公司的Charles W. Hull〔1984年〕、日本大阪工业技术研究所的丸谷洋二〔1984年〕,各自独立地提出了快速成型的技术设想,实现的材料和方式有差异,但均以多层叠加并固化来产生实体。
在1986年,Charles W. Hull在美国获得了光固化立体造型设备〔SLA〕的专利,标志着快速成型技术即开始进入实用阶段[4],在设计领域及汽车工业上有广泛应用。
技术原理[编辑]快速成型过程示意图〔使用SLA工艺〕1.在电脑中创建的实体造型2.实体造型中的一层3.通过聚合反应生成的一层实体4.平台5. 激光器快速成型设备开始生成模型〔图中灰色部分〕模型逐渐增厚模型完成一个完成的模型尽管快速成型有多种不同工艺技术,但基本原理都和三维打印相同,即将一定厚度的材料反复打印在平台上,循环往复,直到生成整个成型件。
快速成型技术总结快速成型总结报告一、快速成型技术的发展及原理快速成形技术(RapidPrototyping,简称RP)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术.是由CAD模型直接驱动的快速制造任意复杂形状三维物理实体的技术总称,其基本过程是:首先设计出所需零件的计算机三维模型(数字模型、CAD 模型),然后根据工艺要求,按照一定的规律将该模型离散为一系列有序的单元,通常在Z向将其按一定厚度进行离散(习惯称为分层),把原来的三维CAD模型变成一系列的层片;再根据每个层片的轮廓信息,输入加工参数,自动生成数控代码;最后由成形机成形一系列层片并自动将它们联接起来,得到一个三维物理实体。
快速成型技术的原理:快速成型技术(RP)的成型原理是基于离散-叠加原理而实现快速加工原型或零件.这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用.而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性.二、快速成型技术的分类快速成型技术 - 分类快速成型技术根据成型方法可分为两类:基于喷射的成型技术(JettingTechnoloy),例如:熔融沉积成型(FDM)、三维印刷(3DP)、多相喷射沉积(MJD)。
下面对其中比较成熟的工艺作简单的介绍。
SLA技术是基于液态光敏树脂的光聚合原理工作的。
这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
1、SLA(光固化成型)SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。
成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。
当一层扫描完成后.未被照射的地方仍是液态树脂。
然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
快速成型技术的主要工艺一、概述快速成型技术是指通过计算机辅助设计、制造及快速成型设备,将三维数字模型直接转化为实体模型的制造技术。
其主要工艺包括:CAD 建模、STL文件生成、切片处理、快速成型设备加工等。
二、CAD建模CAD(计算机辅助设计)建模是快速成型技术的第一步。
它通过计算机软件进行三维物体的建模,生成三维数字模型。
CAD建模需要注意以下几点:1. 精度要求高:由于快速成型技术制造的实体模型必须与数字模型完全一致,因此CAD建模时需要精确到小数点后几位。
2. 模型结构简单:复杂的结构会增加后续工艺中的难度和时间成本。
3. 设计合理性:需要考虑到实际应用场景中可能遇到的问题,例如支撑结构、壁厚等。
三、STL文件生成STL(Standard Triangle Language)文件是将CAD建模生成的三维数字模型转化为可供切片处理和快速成型设备加工的格式。
STL文件生成需要注意以下几点:1. 模型完整性:STL文件必须包含完整的物体表面信息,否则会影响后续切片和加工。
2. 模型精度:STL文件生成时需要设置合适的精度,以保证数字模型与实体模型的一致性。
3. 文件大小:STL文件大小直接影响切片处理和快速成型设备加工的效率,因此需要控制在合理范围内。
四、切片处理切片处理是将STL文件按照一定厚度进行分层,并将每一层转化为快速成型设备可以识别的加工指令。
切片处理需要注意以下几点:1. 切片厚度:不同的快速成型设备对切片厚度有不同要求,需要根据设备要求进行设置。
2. 支撑结构:由于快速成型设备在制造过程中需要支撑结构来保证模型稳定性,因此在切片处理时需要设置支撑结构。
3. 加工顺序:不同部位的加工顺序会影响到实体模型的质量和加工效率,因此需要根据实际情况进行设置。
五、快速成型设备加工快速成型设备加工是将经过CAD建模、STL文件生成和切片处理后的数字模型转化为实体模型。
快速成型设备包括SLA、SLS、FDM、3DP等多种类型,其加工过程大致相同,需要注意以下几点:1. 材料选择:不同的快速成型设备需要使用不同材料进行加工,需要根据设备要求进行选择。
激光诱导蚀刻快速成型技术概述及解释说明1. 引言1.1 概述激光诱导蚀刻快速成型技术是一种先进的制造方法,通过利用高能激光束对材料表面进行精确的物理和化学处理,实现对复杂结构零件的快速制造。
这项技术在工业界引起了广泛关注,并被广泛应用于各个领域。
1.2 文章结构本文将分为五个主要部分来介绍激光诱导蚀刻快速成型技术。
首先在引言部分将简要介绍该技术的背景和重要性。
接下来,在第二部分中将详细解释这项技术的定义、原理以及其发展历程。
第三部分将探讨激光源与扫描系统、材料选择与准备工作以及制造参数优化与控制策略等关键技术与方法。
然后,我们将通过实际应用案例分析,包括制造行业中的运用、医疗领域中的应用实例以及航空航天及国防领域的实践案例,来说明该技术在不同领域的优势和应用前景。
最后,在结论部分总结概括了本文的主要内容,并展望了未来该技术的发展趋势和前景。
1.3 目的本文的目标是全面介绍激光诱导蚀刻快速成型技术,包括定义、原理、发展历程以及其在不同领域中的应用案例。
通过深入了解这项技术,我们可以认识到其重要性和潜力,在未来的制造业中推动其进一步发展并促进创新。
此外,本文还旨在为相关领域的研究人员和工程师提供指导,以便更好地应用和开发该技术。
2. 激光诱导蚀刻快速成型技术2.1 定义和原理激光诱导蚀刻快速成型技术(Laser-Induced Etching Rapid Prototyping,简称LIEP)是一种基于激光与材料相互作用的三维打印技术。
它通过控制激光在材料表面的扫描路径和能量分布来实现高精度、高效率的零件制造。
该技术基于激光束在材料表面聚焦产生局部加热,在材料与环境之间形成临界温度,使材料发生化学反应或物理改变。
这些反应或改变可以通过调整激光的功率、扫描速度和扫描路径等参数来精确控制。
同时,由于激光束可以非常准确地聚焦并扫描在材料表面,因此LIEP技术具有较高的空间分辨率和制造精度。
2.2 发展历程激光诱导蚀刻快速成型技术最早起源于20世纪90年代初期,随着激光器、计算机控制系统和材料研究的不断进步,该技术得到了快速发展。