受扭构件承载力
- 格式:ppt
- 大小:1.73 MB
- 文档页数:53
第8章受扭构件承载力的计算§8.1 概述实际工程中哪些构件属于受扭构件?工程结构中,结构或构件处于受扭的情况很多,但处于纯扭矩作用的情况很少,大多数都是处于弯矩、剪力、扭矩共同作用下的复合受扭情况,比如吊车梁、框架边梁、雨棚梁等,如图8-1所示。
图8-1 受扭构件实例受扭的两种情况:平衡扭转和协调扭转。
静定的受扭构件,由荷载产生的扭矩是由构件的静力平衡条件确定的,与受扭构件的扭转刚度无关,此时称为平衡扭转。
如图8-1(a )所示的吊车梁,在竖向轮压和吊车横向刹车力的共同作用下,对吊车梁截面产生扭矩T 的情形即为平衡扭转问题。
对于超静定结构体系,构件上产生的扭矩除了静力平衡条件以外,还必须由相邻构件的变形协调条件才能确定,此时称为协调扭转。
如图8-1(b )所示的框架楼面梁体系,框架的边梁和楼面梁的刚度比对边梁的扭转影响显著,当边梁刚度较大时,对楼面梁的约束就大,则楼面梁的支座弯矩就大,此支座弯矩作用在边梁上即是其承受的扭矩,该扭矩由楼面梁支承点处的转角与该处框架边梁扭转角的变形协调条件所决定,所以这种受扭情况为协调扭转。
§8.2 纯扭构件的试验研究8.2.1 破坏形态钢筋混凝土纯扭构件的最终破坏形态为:三面螺旋形受拉裂缝和一面(截面长边)的斜压破坏面,如图8-3所示。
试验研究表明,钢筋混凝土构件截面的极限扭矩比相应的素混凝土构件增大很多,但开裂扭矩增大不多。
图8-2 未开裂混凝土构件受扭图8-3 开裂混凝土构件的受力状态 8.2.2 纵筋和箍筋配置对纯扭构件破坏性态的影响受扭构件的四种破坏形态受扭构件的破坏形态与受扭纵筋和受扭箍筋配筋率的大小有关,大致可分为适筋破坏、部分超筋破坏、完全超筋破坏和少筋破坏四类。
对于正常配筋条件下的钢筋混凝土构件,在扭矩作用下,纵筋和箍筋先到达屈服强度,然后混凝土被压碎而破坏。
这种破坏与受弯构件适筋梁类似,属延性破坏。
此类受扭构件称为适筋受扭构件。
结构设计原理第5章受扭构件承载力计算(Chapter 5 Calculation to Carrying Capacity of Torsional Members)本章目录5.1 纯扭构件的破坏特征和承载力计算5.2 在弯、剪、扭共同作用下矩形截面构件的承载力计算5.3 T形和工字形截面受扭构件5.4 箱形截面受扭构件5.5 构造要求教学要求了解矩形截面纯扭构件破坏特征。
理解变角度空间桁架模型和扭曲破坏面极限平衡理论。
掌握矩形截面弯扭构件的承载力计算方法,了解T 形和箱形截面受扭构件计算特点。
掌握受扭构件的构造要求。
第5章受扭构件承载力计算5.1 纯扭构件的破坏特征和承载力计算5.2 在弯、剪、扭共同作用下矩形截面构件的承载力计算5.3 T形和工字形截面受扭构件5.4 箱形截面受扭构件5.5 构造要求学习内容材料特性 受弯构件受剪构件受扭构件桥梁工程基础知识结构设计,后续课程设计方法 偏压、偏拉构件 轴拉构件轴压构件变形、裂缝预应力混凝土结构构件设计简介工程中常见受扭构件1、曲线梁(弯梁桥)、斜梁(板)2、支撑悬臂板的梁曲线梁示意图3、偏心荷载作用下的梁4、螺旋楼梯板螺旋楼梯中扭矩也较大雨蓬梁要承受弯矩、剪力和扭矩。
工程中只承受纯扭作用的结构很少,大多数情况下结构都处于弯矩、剪力、扭矩等内力共同作用下的复杂受力状态。
由于扭矩、弯矩和剪力的共同作用,构件的截面上将产生相应的主拉应力。
图5-1 曲线梁截面内力示意图当主拉应力超过混凝土的抗拉强度时,构件便会开裂。
因此,必须配置适量的钢筋(纵筋和箍筋)来限制裂缝的开展和提高钢筋混凝土构件的承载能力。
5.1 纯扭构件的破坏特征和承载力计算图5-2为配置箍筋和纵筋的钢筋混凝土受扭构件,从加载直到破坏全过程的扭矩T和扭转角θ的关系曲线。
图5-2 钢筋混凝土受扭构件的T-θ曲线图5-3 扭转裂缝分布图钢筋混凝土构件抗扭性能的两个重要衡量指标是:(1)构件的开裂扭矩;(2)构件的破坏扭矩。
桥梁受扭构件破坏特征及承载力计算桥梁是连接两个地理位置的重要交通设施,它承载着车辆和行人的重量。
桥梁的承载力是指其能够支撑的最大荷载,而桥梁受扭构件是桥梁中的重要组成部分。
本文将介绍桥梁受扭构件的破坏特征和承载力计算方法。
一、桥梁受扭构件的破坏特征1.剪切破坏:扭转会产生剪应力,当剪应力大于材料的抗剪强度时,受扭构件会发生剪切破坏。
2.扭转破坏:在受扭构件上,扭转力作用会使其发生相对旋转,当达到一定角度时,受扭构件会失去承载能力,发生扭转破坏。
3.弯曲破坏:受扭构件在受到扭矩力矩作用时,由于材料的抗弯刚度有限,会发生弯曲破坏。
4.龙骨翻转:龙骨是支撑桥面板的主要构件,受到扭矩作用时,龙骨可能会翻转,导致桥面板的破坏。
1.线性弹性理论法:在这种计算方法中,假设受扭构件材料的应力-应变关系服从线性弹性的规律,利用弹性力学理论进行力学计算,得到受扭构件的最大承载力。
2.极限强度理论法:这种计算方法基于构件材料的极限强度,假设受扭构件在超过一定弯曲角度后失去承载能力,利用建筑结构力学知识和试验数据,根据构件的几何形状、材料性能和边界条件等因素,确定承载力。
无论采用何种计算方法,桥梁受扭构件的承载力计算都需要考虑以下因素:1.受扭构件的几何形状和材料性能。
2.受扭构件所受的荷载类型和大小。
3.受扭构件所处的边界条件和约束。
4.受扭构件的安全系数。
通过对以上因素的综合考虑和计算,可以得到桥梁受扭构件的承载力。
在实际设计和施工中,为了保证桥梁的安全性和稳定性,通常会采用一定的安全系数,并结合实际情况进行合理的调整。
总之,桥梁受扭构件的破坏特征和承载力计算是保证桥梁安全可靠运行的重要内容。
通过合理的设计和计算,可以确保桥梁受扭构件具备足够的承载能力,满足实际的使用需求。
第七章 受扭构件承载力计算7.1 概述工程中的钢筋砼受扭构件有两类:● 一类是 —— 平衡扭矩:是静定结构由于荷载的直接作用所产生的扭矩,这种构件所承受的扭矩可由静力平衡条件求得,与构件的抗扭刚度无关。
如:教材图7·1a 、b 所示受檐口竖向荷载作用的挑檐梁,及受水平制动力作用的吊车梁以及平面曲梁、折线梁、螺旋楼梯等。
● 另一类是 —— 协调扭矩:是超静定结构中由于变形协调条件使截面产生的扭矩,构件所承受的扭矩与其抗扭刚度有关。
如:教材图7·2 所示现浇框架的边梁。
由于次梁在支座(边梁)处的转角产生的扭转,边梁开裂后其抗扭刚度降低,对次梁转角的约束作用减小,相应地边梁的扭矩也减小。
● 本章只讨论平衡扭转情况下的受扭构件承载力计算。
在工程结构中,直接承受扭矩、弯矩、剪力和轴向力复合作用的构件是常遇的。
但规范对弯扭、剪扭和弯剪扭构件的设计计算,是以抗弯、抗剪能力计算理论和纯扭构件的承载力计算理论为基础,采用分别计算和叠加配筋的方法进行的,故有必要先了解纯扭构件的受力性能和承载力的计算方法。
7.2 纯扭构件的受力性能7.2.1 素砼纯扭构件的受力性能素砼构件也能承受一定的扭矩。
素砼构件在扭矩T 的作用下,在构件截面中产生剪应力τ及相应的主拉应力tp σ 和主压应力cp σ(教材图7·3)。
根据微元体平衡条件可知:τστσ==cp tp ,由于砼的抗拉强度远低于它的抗压程度,因此当主拉应力达到砼的抗拉强度时,即t tp f ≥=τσ时,砼就会沿垂直于主拉应力方向裂开(教材图7·3)。
所以在纯扭矩作用下的砼构件的裂缝方向总是与构件轴线成45o的角度。
并且砼开裂时的扭矩T 也就是相当于t f =τ时的扭矩,即砼纯扭构件的受扭承载力co T 。
为了求得co T ,需要建立扭矩和剪应力之间的关系,然后根据强度条件,即砼纯扭构件的破坏条件求出受扭承载力co T 。
7.2.2 素砼纯扭构件的承载力计算(一) 、弹性分析法:用弹性分析方法计算砼纯扭构件承载力时,认为砼构件为单一匀质弹性材料。