煤层气地球物理测井技术的思考
- 格式:pdf
- 大小:285.11 KB
- 文档页数:2
浅析地球物理测井在煤田地质勘探中的应用摘要:我国的煤炭资源在世界位居前列,并且煤炭是我国主要的消耗能源,因此煤田地质勘探对我国能源开采的极其重要。
地球物理测井简称测井,是通过在钻孔中提拉探管来测量地下岩层的导电特性、声学特性、放射性等物理参数,从而达到识别地下岩层的目的。
本文主要简单地介绍几种地球物理测井方法及其在煤田地质勘探中的应用。
关键词:地球物理测井;测井方法;煤田勘探1 引言地球物理测井技术经过长达几十年的发展,形成了以核、声、电三种测井系列为主的诸多测井方法,在煤田地质勘探中通过利用这些技术方法,我们可以确定煤层的埋深、厚度及结构;划分地层岩性剖面,推算解释地层时代;确定地下断层性质、层位及断距;测算地层地温梯度;计算地层孔隙度,地层含水饱和度及含水层位置;测量钻孔的顶角和方位角等。
2 测井技术方法介绍2.1自然伽马测井自然伽马测井是煤田地质勘探测井中最常用的测井方法,它主要通过探管测量岩层的天然伽马射线强度。
在沉积岩地层中,因为放射性元素主要存在于黏土矿物中,因此地层泥质含量越多,其放射性越强。
通过这种规律,我们就可利用自然伽马测井来划分钻孔的岩性剖面、确定砂泥岩沉积地层中的泥质含量以及确定地层的渗透性。
通过自然伽马测井,我们也可以根据地层放射性来勘探地层中的其他具有放射性的矿产(如钾盐、钍、铀等)。
2.2密度测井自然伽马测井是测量岩石中的放射性元素发射的伽马射线强度,是被动的测量方式。
而密度测井是采用主动测量的方式:通过探管携带的人工放射源在地下产生射线,测量射线在与地下岩石经过相互作用后的射线强度,进而计算出地下岩层的体积密度,达到识别地下岩性的目的。
由于煤的密度与其他岩石的密度有着十分明显的差异,所以密度测井能让我们简单快速的识别到煤层,确定其埋藏深度及其厚度。
2.3电阻率测井电阻率测井是以地下岩层的导电性(电阻率或电导率)为基础,在钻孔中通过电极系来测量地层电阻率的一种方法。
地球物理学在地下煤层气开发中的应用地下煤层气是一种非常重要的能源资源,其开发和利用对于能源的可持续发展至关重要。
地球物理学是一门研究地球内部物理性质以及地球的物理过程的学科,其在地下煤层气开发中起着重要作用。
本文将探讨地球物理学在地下煤层气开发中的应用,并解析其在勘探、开采和监测方面的重要性。
一、地球物理勘探技术在地下煤层气开发中的应用地球物理勘探技术是通过观测和分析地球的物理现象,以获取地下结构和地质信息的方法。
在地下煤层气开发中,地球物理勘探技术可以提供地质模型、储量评估和选址等关键信息,帮助开发人员做出科学决策。
1. 重力勘探技术重力勘探技术是通过测量和分析地球的重力场变化,以揭示地下的密度变化、盆地深度和构造特征等信息。
在地下煤层气开发中,重力勘探技术可以帮助确定煤层的厚度、富集程度和分布范围,为煤层气的勘探提供重要参考。
2. 震波勘探技术震波勘探技术是通过产生震源并记录地震波在地下的传播和反射情况,以获取地下地层结构和岩性信息的方法。
在地下煤层气开发中,震波勘探技术可以帮助确定煤层和煤层间的界面、裂缝和孔隙特征,为煤层气的开发提供重要依据。
3. 电磁勘探技术电磁勘探技术是通过测量和分析地下的电磁场变化,以了解地下环境和储层特征的方法。
在地下煤层气开发中,电磁勘探技术可以帮助确定煤层的导电性、水含量和厚度等关键参数,为煤层气的勘探和评价提供重要信息。
二、地球物理技术在地下煤层气开发中的应用地球物理技术是指利用地球物理现象和理论,结合相关仪器设备,对地下煤层气进行勘探和开采的技术手段。
它们可以帮助探寻煤层气的分布、储量和运移规律,为煤层气的高效开发提供科学依据。
1. 井下地球物理技术井下地球物理技术是指在井筒内或井口周围进行的地球物理勘探方法。
通过井下地球物理技术,可以获取井壁周围地层的地质信息、地层应力状况等。
这些信息对于煤层气的勘探和开采具有重要意义。
2. 三维地震勘探技术三维地震勘探技术是利用震源、检波器和数据处理等手段,对地下进行立体观测和分析的方法。
煤层气地球物理勘探技术方法分析煤层气是优质高效清洁的新型能源,我国煤层气资源量十分丰富,加大对煤层气勘探技术的研究,能够更好的实现煤层气的开发与利用,对于改善我国能源结构具有重要意义,同时还能降低瓦斯事故的发生,减少温室气体的排放,带来丰厚的经济效益。
基于煤层气开采与利用的良好前景,各国对于其勘探技术的研究都十分重视,文章从煤层气勘探常用技术手段地球物理勘探技术方法出发,从地震技术以及测井技术进行了详细分析。
标签:煤层气;地球物理勘探;地震技术;测井技术0 引言煤层气俗称“瓦斯”,属于煤的伴生资源,主要由甲烷以及烃类气体组成,是最近国际上兴起的一种新型能源,用途十分广泛、可以作为民用、工业、化工等多个行业的燃料进行使用。
煤层气的热值较高,能够作为一种高效能源使用,燃烧后几乎不会有废气产生,环保性能良好,对煤层气加以合理利用,可以从根源上杜绝瓦斯爆炸事故的发生,缓解全球温室效应,拥有十分广阔的开采利用前景,我国出台了一系列政策推动了煤层气产业的发展。
1 地震技术1.1 纵波方位A VO技术方向各向异形是纵波在裂缝地层中表现出来的一种特征,纵波的速度和振幅是由裂缝与入射方向之间的关系决定的,当两者垂直时,波速较慢、振幅较强;当两者平行时,波速较快、振幅较弱,根据纵波速度、振幅的不同可以对地下情况进行判断[1]。
经大量研究证明裂缝系统发育地带往往会有大量的煤层气,此时煤层的褶曲转折部位与断层两侧表现为明显的各向异性特性。
目前A VO技术已经被广泛应用于煤层气勘探中,应用范围包括二维地震勘测、三维三分量地震勘探等,特别是在三维三分量地震勘探中的应用,可以得到准确的地震资料,对降低裂缝检测风险具有重要意义。
但是A VO技术也存在一定的局限性,当地层的较多且裂缝方向和角度不同时,不适合使用A VO技术,要根据实际情况合理选用A VO技术。
1.2 转换横波技术地震波在地层中传播过程中,当裂缝的走向与入射方向关系不同时,横波所表现出来的分裂情况也会不同,两者垂直时,波速较快;两者平行时,波速较慢,与纵波的波速情况正好相反。
煤层气地质勘探技术研究与应用探讨煤层气是指在煤层中储存的可燃气体,是一种新型的清洁能源。
煤层气的勘探和开发对于节约能源、保护环境、促进经济发展具有重要意义。
为了获得高效的煤层气开发,对煤层气地质勘探技术的研究和应用进行探讨显得尤为重要。
一、勘探目标明确在进行煤层气勘探前,需要对勘探区域进行详尽的煤层气成藏评价。
通过对地质地球化学、地球物理、数值模拟等多种勘探手段进行汇总,确定煤层气勘探范围和目标。
同时,对煤层气的成藏类型和特征、埋藏深度等重要参数进行综合分析和判断。
这样能够使煤层气勘探工作更有针对性。
二、地震勘探技术地震勘探技术是现代煤层气勘探中非常重要的一环。
地震勘探通过分析地震波传播路径和反射波的地形特征,来推断地下地质构造情况。
其中,地震勘探技术与其他勘探技术的配合使用可以取得更加准确的地质结构信息。
三、钻井技术煤层气的钻探过程中,采用传统的钻井技术存在成本高、钎头易损等问题。
因此,目前广泛采用的是钻井技术。
这种钻探技术有三个优势:首先,可以在煤层气勘探基础上实现储层的精细划分;其次,成本相对较低和时间短;最后,可以钻出较细小的孔洞,不影响开采过程。
四、分析技术分析技术是煤层气勘探中的一个非常重要的环节。
在煤层气生产过程中,分析技术可以通过对气体成分分析、煤样分析等方式来确定煤层气的产出量、气体总含量、热值、气体品质等重要参数。
同时,分析技术的运用可以对煤层气系统的动态响应进行研究,提高开采效率。
总之,煤层气地质勘探技术和应用探讨是当前煤层气勘探开发工作中的一个重要环节。
要充分发挥现代技术的优势,进一步提高勘探技术的水平和煤层气勘探开发的效率,为促进地方经济发展、实现绿色低碳生长、提高能源供给安全做出积极贡献。
地球物理测井在煤层气勘探开发中的应用探析摘要:地球物理测井是进行煤层气勘探开发的一项重要技术,主要是用来获取煤层气储层测井的地质信息的,对这项技术进行研究与发展也是非常有意义的。
下面我们就对此进行了深入的探讨,希望能够为有关人员提供一些参考。
关键词:煤田地球物理测井;煤层气勘探开发;地球物理测井类型及应用导言:煤气层其实是植物在地质时期煤化过程中的伴生产物,这种矿产资源是比较清洁与高效的。
相关数据显示,我国有31.46×1012m3的埋深在两千米以下的煤层气资源,其开发应用的价值是非常大的。
对于煤层气的勘探开发来说地球物理测井技术是一项非常重要的技术,不过,如今,对于怎样对这一技术进行有效的应用还缺少系统、全面的总结。
1煤层气地球物理测井技术发展现状、存在的问题及面临的挑战1.1发展现状与常规的油气储层不同的是煤层气储层的结构是双孔隙类型的,要更加的复杂,而且这些煤层气储层大多都按照单分子层的形式在煤层表面进行附着的,很少有形成游离状态的,这样吸附气对于测井曲线的影响也不再是传统的气体的形式,而是还要考虑煤的四种工业分析,要对其进行科学的组分。
煤层气测井技术是在煤田测井和石油测井等技术的基础上发展起来的。
对于油气勘探和开发来说石油井是有着至关重要的作用的,且因为沉井技术的发展,精度越来越高,应用范围变得更广,这也大大的提升了煤层气测井技术的勘测精度,能够更准确的提供地质信息;然而煤田测井只能是用来标定煤层,它的应用方法还是很单一的。
各界对于煤层气测井采集技术的应用都是为了对煤层气进行勘探、开发收集地质条件信息,或者是为了研究,需要分析各种因素才能确定是否这一技术进行应用。
目前来说煤层气在勘探以及开发阶段的评价目的并不是完全一直的,国内外对于煤系地层在进行沉井采集方法的选用时也不一样。
总体上来将,可以将煤层气测井的评价方法有下面几种,一是定性识别法,其思想基础就是常规的天然气储层评价思想,二是储层评价法,有两种基础,分别是概率统计模型和神经网络模型,三是储层解释法,它的基础是体积模型。
地球物理测井在煤层气勘探开发中的应用摘要:煤层气是一种煤层在经过漫长的煤化作用和热解作用所形成的煤-气共存体,主要成分是甲烷,大多以吸附状态存在于煤层中,是一种地面可采的天然气。
其中,地球物理测井作为一种开发煤层气的关键技术工艺之一,能够实现对煤层气存储层的地质信息的高精度检测和提取,因此,开展对地球物理测井的相关技术研究对整个煤层气的开发具有重要的意义和前景。
特别的,我国在煤层气地球物理测井技术方面的研究虽然取得了长足的进步,但仍处于初始阶段,起点较低、数据积累较小,没有形成系统。
本文正是结国内外当前的煤层气地球物理测井技术的发展现状,对未来的发展趋势进行了相应的研究和探讨。
关键词:地球物理测井;煤田勘探;应用技术1关于煤田测井的概述我国煤田的资源在地下的沉积主要是由三个部分组成的,分别是顶板层、中间层和地板层。
其中含煤量比较突出的是中间层的底层位置,也称中间层是含没地层。
其中,在顶板层也可以分为四个部分,主要的煤量集中在第四层和第三层,在中间层比较突出的炭质泥岩是砂砾,地板层也有这些砂砾。
另外,测井的基本任务是对煤层的深度和厚度進行确定,而要完成这个工作首先是对煤岩层的性质进行完善的分析,在沿煤层的定性方面常用天然伽玛、长源距伽玛、电阻率和双收时差等曲线参数的综合应用。
同时,在进行煤层方面的定厚处理中,需要采用物性反应比较好的GR、NR等测井参数,并利用这些参数在曲线放大的基础上进行操作解释。
2地球物理测井技术的应用2.1自然电位测井岩石的自然电位由以下几种物理、化学现象引起:第一,地层水中的离子向钻井液中扩散或钻井液中的离子向地层水中扩散,即扩散电位;第二,岩石颗粒对离子的吸附作用,即吸附电位;第三,在岩石与其周围的介质接触而产生氧化还原反应,即氧化还原电位;第四,地层水向井内及钻井滤液向孔隙岩石中过滤,即过滤电位。
这几种现象引起的自然电位取决于岩石的岩性、矿物成分、物理性质以及地层水和钻井液的物理、化学性质。
关于煤层气测井技术的探讨摘要:本文作者结合实际工作经验,对煤层气测井技术进行了分析探讨,供同行参考借鉴。
关键词:煤层气;测井技术;探讨Abstract: The authors combine practical work experience, analyze the CBM Well Logging Technology for peer reference draw.Keywords: CBM; logging technology; explore1 煤层气测井现状目前用于煤层气测井的主要设备有美国蒙特系列Ⅲ数字测井仪、渭南煤矿专用设备厂TYSC 型和北京中地英捷物探仪器研究所PSJ-2 型数字测井仪系统。
煤层气裸眼井常测的参数有自然伽玛、长短源距人工伽玛、自然电位、双侧向、双井径、声波、补偿中子、井温、井斜等,而固井质量检查测井则用自然伽玛、声幅、声波变密度和磁定位等方法。
受井径过大的影响,密度三侧向测井、声速和补偿中子测井会存在较大误差。
另外《煤层气测井作业规程》是单一企业标准,其中有些规定在实际执行过程中存在诸多问题,需在实践中进行修正。
①早先国内各大石油勘探局(公司)凭着技术、仪器设备的优势和固井、射孔、压裂方面的能力,率先进入煤层气测井市场,测井项目、测井参数、报告格式均按照石油测井模式进行。
现行的唯一一个煤层气测井规程--《煤层气测井作业规程》(中联煤层气有限责任公司企业标准Q/CUCBM 0401-2002)基本照搬了石油测井的标准。
测井仪器系统有CSU-D、SKD-3000、SKH-2000、SKN-3000 等等。
②随着煤层气测井市场的不断扩大,许多煤田勘探测井队伍进入煤层气测井市场,测井仪器设备主要有美国蒙特系列Ⅲ数字测井仪、渭南煤矿专用设备厂的TYSC 型和北京中地英捷物探仪器研究所的PSJ-2 型数字测井仪系统。
2 煤层气测井仪器对比分析①石油测井仪器设备具有组合化程度高、可测参数多等优点,如感应测井、地层产状测井、微球聚焦等仪器。
地球物理测井方法在煤层气储层评价中的应用【摘要】煤层气是一种重要的非常规天然气资源,其开发对能源安全具有重要意义。
地球物理测井方法在煤层气储层评价中发挥着重要作用。
本文从引言、地震测井、电磁测井、密度测井、声波测井和核磁共振测井几个方面探讨地球物理测井方法在煤层气储层评价中的应用。
通过这些方法,可以对煤层气储层进行有效评估,为煤层气资源的合理开发提供重要参考。
地球物理测井方法在煤层气储层评价中具有很多优势,并且对煤层气行业的未来发展具有积极意义。
对地球物理测井方法在煤层气储层开发中的前景进行展望,有助于推动煤层气资源的有效利用,促进煤层气产业的健康发展。
【关键词】关键词:地球物理测井方法、煤层气储层评价、地震测井、电磁测井、密度测井、声波测井、核磁共振测井、优势、发展前景1. 引言1.1 煤层气资源开发的重要性在煤层气资源开发的过程中,对煤层气储层进行准确评价至关重要。
煤层气储层的地质结构复杂,单一的地质勘探方法无法全面揭示储层的情况。
需要借助各种地球物理测井方法来获取更加详细和全面的储层信息,从而指导煤层气的开发和生产。
地球物理测井方法在煤层气储层评价中起着至关重要的作用,不仅可以有效评估煤层气资源的储量和产能,还可以提高煤层气勘探的准确性和效率。
煤层气资源的开发与地球物理测井方法的结合,将为能源领域的发展带来新的机遇和挑战。
1.2 地球物理测井方法的概述地球物理测井方法是指利用地球物理学原理和仪器设备对井下储层进行测量和分析的一种技术手段。
地球物理测井方法通过测量地下储层中的物理性质参数,如地震波速度、电磁特性、密度、声波特性和核磁共振等,来获取与地层构造、岩性、含气性等相关的信息。
地球物理测井方法在煤层气储层评价中发挥着重要作用,帮助研究人员对煤层气资源进行合理评估和开发。
地球物理测井方法可以为煤层气勘探提供丰富的地质信息,有利于确定煤储层的储集性质、厚度和分布规律,为煤层气勘探和开发提供重要的技术支持。
煤层气地质勘查服务中的地球物理勘查技术应用煤层气地质勘查是对地下煤层气资源的调查和评估工作,具体包括采集、分析和解释大量的地质、地球物理和地球化学数据。
地球物理勘查作为煤层气地质勘查的重要组成部分,通过利用地球物理仪器和技术,能够获取到关于地下地质构造、物性参数和气体储层分布等关键信息,为煤层气勘查和开发提供可靠的科学依据。
一、地球物理勘查在煤层气地质勘查中的作用地球物理勘查是煤层气勘查的重要手段之一,可为煤层气资源的储量评估、勘探目标的确定、气层分布图的绘制等提供必要的数据支撑。
1. 地球物理勘查在煤层气储量评估中的应用地球物理勘查技术可以通过测量、刻度、解释地震资料,确定煤层气地质构造,推断地层的物性参数,从而为煤层气储量评估提供基本数据。
通过地震勘探技术,可以预测煤层气储层的厚度、空间分布以及各项物性,进而对储层的含气量、产能进行评估。
2. 地球物理勘查在煤层气勘探目标确定中的应用地球物理勘查可通过电法、磁法等方法检测储层分布、特征以及含气性质。
通过测量煤层气储层的物性参数,如电阻率、自然电位等,可以确定潜在的煤层气勘探目标。
同时,通过地球物理勘查,还可以识别矿井、断裂带等地质构造,为煤层气的勘探和开发提供路线指引。
3. 地球物理勘查在绘制煤层气气层分布图中的应用地球物理勘查能够获取地下煤层气资源储层的分布情况,特别是勘探区域内不同地层和储气层的分布特征。
通过地震勘探、电法测井等技术,可以获取到地下储层的厚度、深度、形态、内部结构等信息,进而绘制煤层气气层分布图,为煤层气勘探和开发提供重要参考。
二、地球物理勘查技术在煤层气地质勘查中的应用1. 电法勘探技术电法勘探技术通过测量地下介质的电性差异,揭示储层岩石的空隙度和导电性,从而对煤层气地质构造进行解释和刻度。
常用的电法勘探方法包括大地电法、高密度电阻率法等。
电法勘探技术在煤层气地质勘查中的应用主要体现在对煤层气勘查目标的确定和勘探工作的展开上。
煤层气地球物理测井技术的思考摘要:近一二十年来,随着大气污染,环保形势越来越严峻,煤层气作为一种热值高,燃烧后清洁,被重新审视,成为国际国内崛起的洁净、优质能源和化工原料。
作为传统的煤田地质勘探行业,对煤层气这一新型的非常规能源的开采利用须要引起足够的重视。
煤层气可以作为能源利用的开采方法,现在主要参照天然气开采模式,即采用地面钻井抽采。
作为非传统能源,煤层气的勘探开采工艺肯定区别于传统煤田的工艺,这对勘探开采中起重要作用的测井工作也提出了新的要求。
煤层气作为煤田伴生的一种非传统能源,因其的环保性,越来越受到广泛重视,本文就煤层气勘探开采过程中需要用到的测井技术浅谈下想法。
关键词:煤层气;测井技术;勘探开采煤层气,指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,俗称“瓦斯”,瓦斯是古代植物在堆积成煤的初期,纤维素和有机质经厌氧菌的作用分解而成。
在高温、高压的环境中,在成煤的同时,由于物理和化学作用,继续生成瓦斯。
瓦斯是无色、无味的气体,但有时可以闻到类似苹果的香味,这是由于芳香族的碳氢气体同瓦斯同时涌出的缘故。
瓦斯对空气的相对密度是0.554,在标准状态下瓦斯的密度为0.716kg/m³,瓦斯的渗透能力是空气的1.6倍,难溶于水,不助燃也不能维持呼吸,达到一定浓度时,能使人因缺氧而窒息,并能发生燃烧或爆炸。
瓦斯在煤体或围岩中是以游离状态和吸着状态存在的。
瓦斯是煤的伴生矿产资源,属非常规天然气,其主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般还含有硫化氢、二氧化碳、氮和水气,以及微量的惰性气体,如氦和氩等。
在标准状况下,甲烷至丁烷以气体状态存在,戊烷以上为液体。
如遇明火,即可燃烧,发生“瓦斯”爆炸,直接威胁着矿工的生命安全。
因此,矿井工作对“瓦斯”十分重视,除去采取一些必要的安全措施外,有的矿工会提着一个装有金丝雀的鸟笼下到矿井,把鸟笼挂在工作区内。
分析煤层气地球物理测井技术现状及发展趋势摘要:随着现在环保要求的提高,煤层气作为一种清洁的能源,其开发变得日益重要。
我国已经把煤层气的勘探开发作为能源发展的战略重点之一,地球物理测井方法在煤层气储层评价中发挥了重要作用。
关键词:煤层气;地球物理;测井技术现状;发展趋势引言煤层气勘探开发配套工艺的重要技术之一为地球物理层测井,该技术向煤层气储层测井提供了高精度的地质信息。
研究结果表明,煤层气地球物理测井技术具备广阔的市场前景,尤其是随着我国经济与技术的发展,煤层气地球物理测井技术已经发展到了一定的高度。
1.煤层气储层的测井响应特征通常煤岩测井响应特征为低密度值、高中子值和高声波时差值。
由于受煤级、灰份和水份等多种因素的影响,侧向电阻率变化较大;煤层在强还原环境下铀元素的富集,使得自然伽马的测井响应值较高,自然伽马曲线不能准确划分煤层厚度,不能明确反映煤层的灰份含量。
相同煤级固定碳、灰份、挥发份、水份等含量不同,测井响应也不同。
从无烟煤、低挥发物烟煤、高挥发物烟煤到褐煤,固定碳含量逐渐减少,灰份、挥发份、水份含量增加。
煤级的确定是解释煤层天然气的关键,决定着煤层各参数的选取,以及煤层各组份含量的计算。
因为中子、密度、双侧向电阻率曲线都能很好地反映出煤层的厚度及煤级特征,所以通常用上述曲线对煤层进行解释。
2.煤层气的主要评价参数简介2.1 煤层的孔隙性煤层是一种特殊的储层,而且煤层具有双重孔隙结构,即裂隙和基质的孔洞孔隙(以微孔隙为主)。
煤层在形成过程中自然形成两组相互垂直的内生裂缝(割理),一组为面割理为主要裂隙组,可以延伸很远;另一组为端割理,只发育于面割理之间。
两组割理与层理面正交或陡角相交,从而把煤层分割成若干小块体(基质块体)。
这些基质块体中发育了许多以微孔隙为主的孔洞孔隙,其内表面上吸附着水和气体,这些吸附气体就是煤层气(以甲烷为主)。
而游离气和水溶气一般很少,可以忽略不计。
因此煤层气储层的含气量只与其基质有关。
煤层气地球物理测井技术的思考
发表时间:2018-08-06T10:35:55.557Z 来源:《科技中国》2018年3期作者:唐万亨
[导读] 摘要:近一二十年来,随着大气污染,环保形势越来越严峻,煤层气作为一种热值高,燃烧后清洁,被重新审视,成为国际国内崛起的洁净、优质能源和化工原料。
作为传统的煤田地质勘探行业,对煤层气这一新型的非常规能源的开采利用须要引起足够的重视。
煤层气可以作为能源利用的开采方法,现在主要参照天然气开采模式,即采用地面钻井抽采。
作为非传统能源,煤层气的勘探开采工艺肯定区别于传统煤田的工艺,这对勘探开采中起重要作用的
摘要:近一二十年来,随着大气污染,环保形势越来越严峻,煤层气作为一种热值高,燃烧后清洁,被重新审视,成为国际国内崛起的洁净、优质能源和化工原料。
作为传统的煤田地质勘探行业,对煤层气这一新型的非常规能源的开采利用须要引起足够的重视。
煤层气可以作为能源利用的开采方法,现在主要参照天然气开采模式,即采用地面钻井抽采。
作为非传统能源,煤层气的勘探开采工艺肯定区别于传统煤田的工艺,这对勘探开采中起重要作用的测井工作也提出了新的要求。
煤层气作为煤田伴生的一种非传统能源,因其的环保性,越来越受到广泛重视,本文就煤层气勘探开采过程中需要用到的测井技术浅谈下想法。
关键词:煤层气;测井技术;勘探开采
煤层气,指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,俗称“瓦斯”,瓦斯是古代植物在堆积成煤的初期,纤维素和有机质经厌氧菌的作用分解而成。
在高温、高压的环境中,在成煤的同时,由于物理和化学作用,继续生成瓦斯。
瓦斯是无色、无味的气体,但有时可以闻到类似苹果的香味,这是由于芳香族的碳氢气体同瓦斯同时涌出的缘故。
瓦斯对空气的相对密度是0.554,在标准状态下瓦斯的密度为0.716kg/m³,瓦斯的渗透能力是空气的1.6倍,难溶于水,不助燃也不能维持呼吸,达到一定浓度时,能使人因缺氧而窒息,并能发生燃烧或爆炸。
瓦斯在煤体或围岩中是以游离状态和吸着状态存在的。
瓦斯是煤的伴生矿产资源,属非常规天然气,其主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般还含有硫化氢、二氧化碳、氮和水气,以及微量的惰性气体,如氦和氩等。
在标准状况下,甲烷至丁烷以气体状态存在,戊烷以上为液体。
如遇明火,即可燃烧,发生“瓦斯”爆炸,直接威胁着矿工的生命安全。
因此,矿井工作对“瓦斯”十分重视,除去采取一些必要的安全措施外,有的矿工会提着一个装有金丝雀的鸟笼下到矿井,把鸟笼挂在工作区内。
原来,金丝雀对“瓦斯”或其他毒气特别敏感,只要有非常淡薄的“瓦斯”产生,对人体还远不能有致命作用时,金丝雀就已经失去知觉而昏倒。
矿工们察觉到这种情景后,可立即撤出矿井,避免伤亡事故的发生。
瓦斯爆炸一直是煤矿安全生产的一个重大隐患。
近一二十年来,随着大气污染,环保形势越来越严峻,煤层气作为一种热值高,燃烧后清洁,被重新审视,成为国际国内崛起的洁净、优质能源和化工原料。
作为传统的煤田地质勘探行业,对煤层气这一新型的非常规能源的开采利用须要引起足够的重视。
煤层气可以作为能源利用的开采方法,现在主要参照天然气开采模式,即采用地面钻井抽采。
作为非传统能源,煤层气的勘探开采工艺肯定区别于传统煤田的工艺,这对勘探开采中起重要作用的测井工作也提出了新的要求。
下面就煤层气的勘探开采对于测井工作所需要解决的的技术需求,浅谈下想法。
一、勘探过程中的测井
众所周知,气体能够长期保存在地下,有其必要的条件,因而应该从其赋存条件选择合适的测井方法。
煤层气作为一种气体,评价其储量,必须有含气量、饱和度、孔隙度、渗透率(绝对渗透率和相对渗透率)、储层压力等。
常规的煤田地质测井参数双侧向(DLL)、自然伽玛(GR)、自然电位(SP)、补偿密度(DEN)、补偿声波(AC)、井温(TEMP)、顶角(DEV)、方位角(AZIM)、双井径(CAL)等曲线。
这些曲线显然不能满足对煤层气的评价,应引入新的测井参数,对煤层及所赋存的煤层气进行综合评价。
补偿中子(CNL)测井,是在贴井壁的滑板上安装同位素中子源和远、近两个热中子探测器,用远、近探测器计数率比值来测量地层含氢指数的一种测井方法。
目前广泛使用补偿中子来进行孔隙度测井。
利用孔隙度和其它参数结合可以推算出渗透率、饱和度等相关评价参数。
这些参数可以有效的对煤层气钻孔中煤层气的储量进行评价。
二、完井开采过程中的测井
固井阶段
煤层气开采井在裸眼井完工后,为了保证抽取生产,需要进行固井完井工艺。
在此过程中,需要对固井完井质量进行检查,需要引入水泥胶结测井(CBL)和声波变密度测井(VDL)。
两种方法的原理是通过声波幅度进行测井。
水泥胶结测井(CBL)可以判断固井水泥环和套管的胶结程度,再引入声波变密度测井(VDL)可以评价水泥环和地层、套管的胶结程度。
这些基本上可以解决固井质量评价。
基于这两种原理的基础上,最新发展起来了水泥评价测井(CET)和脉冲回声测井(PET),可以更好的不受外界微小环境及自身所处环境状态的影响,更好的完成水泥胶结评价。
射孔阶段
射孔是采用特殊聚能器材进入井眼预定层位进行爆炸开孔让井下地层内流体进入孔眼的作业活动。
煤层气裸眼井固井完成后,需要进行目的层射孔。
参考中国石油天然气集团对旗下的五大钻探工程公司(大庆、川庆、西部、渤海、长城)的测井分公司及中国石油天然气集团测井公司的分工,射孔属于测井公司业务的一部分。
目前世界各国的射孔技术按输送方式可以分为两类:一是电缆输送射孔;二是油管输送射孔。
按其穿孔作用原理可分为子弹射孔技术、聚能式射孔技术、水力喷射射孔技术、机械割缝式射孔技术、复合射孔技术等。
煤层气抽采井在固井完成之后,要投入生产阶段,必须要进行目的层的射孔作业,因此射孔作业,也是煤层气测井需要关注的一个方面。
三、结语
煤层气测井是指根据煤层气储层(煤层) 与围岩在岩性物性上的差别,利用自然电位、双侧向(或感应)、微电极、补偿密度、自然伽马、声波时差、声波全波列、中子孔隙度以及井径测井等对其进行测井,煤层不仅是储存甲烷的储层,而且是生成甲烷的源岩。
煤层的物理结构是一个双重孔隙,即煤层中有由基质孔隙和裂缝孔隙的孔隙系统,其裂缝孔隙又由主割理(面割理)和次级割理(端割理)组成。
煤层甲烷呈三种状态存在于煤中,即以分子状态吸附在基质孔隙的内表面上;以游离气体状态存在于孔隙和裂缝;或溶于煤层的地层水中。
由于煤层的物理结构以及煤层气(甲烷)的存储、运移等方面区别于常规天然气,因而传统的常规天然气储层的评价方法不适合于评价煤层气层。
综上所述,煤层气测井对于我们传统煤田地质勘探系统的测井工作,面临诸多的新技术、问题和挑战,但是也有我们自身的优势。
我们对
煤层、地层的划分是强项,对煤炭储量的计算是强项。
在此基础上,引进相关的测井技术设备,结合相应的测井数据,探索研究新的综合性的先进解释理论及软件,对煤层气测井工作会有新的推动发展。
参考文献:
【1】洪有密测井原理与综合解释山东石油大学出版社 2004
【2】煤田地质勘查测井工程技术手册河北省煤田地质局 2009
【3】中华人民共和国地质矿产行业标准煤田地球物理测井规范(DZ/T 0080-93)【4】宋延杰,陈科贵,王向公《地球物理测井》石油工业出版社 2011年【5】《河北省主要煤田典型测井曲线图集》—河北省煤田地质局1992年。