传感器测试系统的应用
- 格式:pdf
- 大小:264.74 KB
- 文档页数:1
Chapter 11.传感器的静态特性主要有那些?说明什么是线性度?传感器的特性主要是指传感器的输入(被测量)与输出(电量)的关系。
静态特性表示传感器在被测量各个值处于稳定状态时的输入输出关系。
也即当输入量为常量,或变化极慢时,这一关系就称为静态特性。
传感器的静态特性主要有:线性度、迟滞性、灵敏度、稳定性、重复性、阈值等。
传感器的静特性曲线可实际测试获得,用下列多项式程表示为:n n x a x a x a x a a y +++++= 332210式中y 为输出量、x 为输入量、0a 为零点输出、1a 为理论灵敏度、n a a a ,,32为非线性项系数。
在获得特性趋向之后,可以说问题已经得到解决。
但是为了标定和数据处理的方便,希望得到线性关系。
这时可采用各种方法,其中也包括硬件或软件补偿,进行显性化处理。
一般来说,这些办法都比较复杂。
所以在非线性误差不太大的情况下,总是采用直线拟合的方法来线性化。
在采用直线拟合线性化时,输出输入的校正曲线之间的最大偏差,就称为非线性误差,也就是线性度: max (/)100L L FS y γ=±⨯△%由此可见,非线性偏差的大小是以一定的拟合直线为基准直线而得来的。
拟合直线不同,非线性误差也不同。
所以,选择拟合直线的主要出发点,应是获得最小的非线性误差。
另外,还应考虑使用是否方便,计算是否简便。
2.什么是传感器的静态误差?传感器的静态误差是如何评定的?静态误差是指传感器在其全量程内任一点的输出值与其理论值的偏离程度。
静态误差的求取方法如下:把全部输出数据与拟合直线上对应值的残差,看成是随即分布,求出其标准偏差σ,即21)y (11∑-==n i i n △σ 式中 i y △— 各测试点的残差;n —测试点数。
取2σ和3σ值即为传感器的静态误差。
静态误差也可用相对误差来表示,即%100)/3(⨯±=FS y σγ (1-15)静态误差也是一向综合指标,他基本上包括了前面叙述的非线性误差、迟滞误差、重复性误差、灵敏度误差等,若者几项误差是随机的、独立的、正态分布的,也可以把这几个单项误差综合而得,即:2222S R H L γγγγγ+++±=3.某测温系统由以下四个环节组成,各自的灵敏度如下:铂电阻温度传感器:0.45Ω/℃电桥: 0.02V/Ω放大器: 100(放大倍数)笔式记录仪: 0.2cm/V求:(1)测温系统的总灵敏度;(2)记录仪笔尖位移4cm 时,所对应的温度变化值。
传感器与测试技术课程设计传感器与测试技术是现代工程技术中的重要组成部分,广泛应用于各个领域。
传感器是一种能够感知和测量某种特定物理量的装置,而测试技术则是利用各种手段对传感器进行验证、校准和评估的过程。
本文将从传感器和测试技术的基本概念、应用领域、发展趋势等方面进行探讨。
一、传感器的基本概念传感器是一种将感知到的物理量转化为可用电信号或其他形式输出的装置。
它可以感知温度、湿度、压力、光照强度、声音等各种物理量,并将其转化为电信号传递给其他设备。
传感器的种类繁多,包括光电传感器、温度传感器、压力传感器、加速度传感器等。
每种传感器都有其特定的工作原理和适用范围。
二、传感器的应用领域传感器广泛应用于各个领域,如工业制造、交通运输、环境监测、医疗健康等。
在工业制造中,传感器可以用于监测生产过程中的温度、压力、流量等参数,实现自动化控制。
在交通运输领域,传感器可以用于车辆的安全监测,如制动系统、轮胎压力等。
在环境监测中,传感器可以用于检测空气质量、水质污染等。
在医疗健康领域,传感器可以用于监测患者的心率、血压等生理参数。
三、传感器的发展趋势随着科技的不断发展,传感器也在不断创新和进步。
首先,传感器的尺寸越来越小,体积更加紧凑,便于集成到各种设备中。
其次,传感器的精度和灵敏度不断提高,可以实现更加准确的测量和感知。
再次,传感器的功耗越来越低,可以实现长时间的运行和续航。
此外,传感器的通信方式也在不断改进,如无线传输和互联网连接,使得传感器的数据可以实时传输和共享。
四、测试技术的作用和方法传感器的测试是保证其性能和可靠性的重要环节。
测试技术主要包括传感器的验证、校准和评估。
首先,传感器的验证是指通过一系列测试和实验验证传感器是否满足设计要求和规范。
其次,传感器的校准是指通过与已知标准进行比较,调整传感器的输出信号,使之与实际值保持一致。
最后,传感器的评估是指对传感器的性能进行综合评估,如灵敏度、响应时间、稳定性等。
传感器与测试技术教案一、教学目标1.了解传感器的基本概念和分类;2.掌握传感器的工作原理和特点;3.掌握传感器的应用领域和相关测试技术;4.实践操作传感器的测试技术。
二、教学内容1.传感器的基本概念和分类1.1传感器的定义和作用1.2传感器的分类与特点2.传感器的工作原理和特点2.1传感器的工作原理介绍2.2传感器的特点和性能指标分析3.传感器的应用领域和测试技术3.1传感器在工业自动化领域的应用3.2传感器在环境监测领域的应用3.3传感器在医疗健康领域的应用3.4传感器在农业领域的应用3.5传感器在智能家居领域的应用3.6传感器相关测试技术介绍4.实践操作传感器的测试技术4.1传感器测量系统的搭建4.2传感器信号的处理与分析4.3传感器测试和校准方法4.4传感器测试仪器和设备的使用三、教学方法1.理论讲授:通过课堂讲解传感器的基本概念、工作原理和应用领域,让学生掌握相关的理论知识。
2.案例分析:结合实际案例,分析传感器在不同领域的具体应用和测试技术,激发学生的兴趣和参与度。
3.实践操作:组织学生进行传感器的测试技术实践操作,锻炼学生的实际操作能力和解决问题的能力。
4.讨论交流:鼓励学生在课堂上提问和发表观点,启发学生思考和互相学习。
四、教学过程1.引入:通过引入一些实际案例,让学生了解传感器的基本概念和作用。
2.讲解传感器的基本概念和分类,让学生了解传感器的种类和特点。
3.介绍传感器的工作原理和特点,让学生了解传感器的工作原理和性能指标。
4.通过案例分析,介绍传感器在不同领域的应用和测试技术。
5.组织学生进行传感器的测试技术实践操作,让学生掌握传感器的测试方法和工具的使用。
6.总结与评价:对本节课的学习内容进行总结和评价,鼓励学生提出自己的观点和疑问。
五、教学评估1.课堂讨论中,学生能够积极参与,提出问题并发表观点。
2.实践操作中,学生能够独立搭建传感器测量系统,进行传感器的测试和校准。
3.学生能够正确运用传感器测试技术,分析传感器信号并进行处理。
MEMS传感器在测试测量领域的应用MEMS经过四十多年的发展已成为世界瞩目的重大科技领域之一。
与传统的传感器相比,采用微电子和微机械加工技术制造出来的MEMS传感器具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点,在测试测量领域的应用也极为广泛。
模态分析模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构固有的、整体的特性。
通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。
因此,模态分析是结构动态设计及设备故障诊断的重要方法。
机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。
模态分析提供了研究各类振动特性的一条有效途径。
首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。
用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。
根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。
近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。
已有多种档次、各种原理的模态分析硬件与软件问世。
位移传感器原理及应用领域位移传感器是一种用来测量物体或系统位移改变的装置。
它通过将物体的位移转化为信号输出,以实现对位移进行准确测量和监测。
位移传感器在许多领域都有广泛的应用,包括工业自动化、航空航天、建筑工程、医疗设备等。
位移传感器的工作原理有多种,下面列举了几种常见的工作原理:1. 电阻式位移传感器:该传感器利用电阻元件的电阻随物体位移变化而发生变化的原理,将位移转化为电阻值的变化。
2. 容积式位移传感器:该传感器利用物体位移改变容积的原理,通过测量容器内介质的体积变化来获得位移信息。
3. 电感式位移传感器:该传感器利用线圈的电感随物体位移变化而发生变化的原理,将位移转化为电感值的变化。
4. 光电式位移传感器:该传感器利用光电元件的光强随物体位移变化而发生变化的原理,将位移转化为光强值的变化。
5. 压电式位移传感器:该传感器利用压电材料的晶体结构随物体位移变化而发生变化的原理,将位移转化为电荷或电压信号的变化。
位移传感器在工业自动化中的应用非常广泛。
在机械加工、车床、数控机床等设备中,位移传感器可以用来监测加工过程中各个部件的位移和位置,确保加工精度和质量。
在机器人技术中,位移传感器被用来测量和控制机器人各个部件的位移变化,实现协调运动和精准抓取。
在工厂自动化生产线中,位移传感器可以用来监测和控制物料的位移和位置,提高生产效率和质量。
位移传感器在航空航天领域也有重要的应用。
在航空器设计和测试中,位移传感器可以用来测量各个关键部件的位移和变形,确保航空器的结构稳定性和安全性。
在飞行器导航和自动驾驶系统中,位移传感器可以用来测量飞行器的位移和姿态,实现精准的飞行控制。
在建筑工程中,位移传感器可以用来监测和记录建筑物的变形和位移,包括地基的变形、桥梁的位移等。
这对于建筑物的结构安全和稳定性具有重要意义。
在医疗设备领域,位移传感器可以用来测量人体的运动和位移,包括手术机器人的运动、矫形器的调整等。
它们为医生提供了精确而可靠的数据来指导手术和治疗。
传感器与测试技术是现代工程领域中非常重要的一部分,涉及到各种类型的传感器、数据采集、信号处理和测试技术。
以下是一个可能的课程设计方案:实验名称:传感器与测试技术综合实验实验目的:1. 了解各种传感器的工作原理和应用领域;2. 学习数据采集和信号处理的基本方法;3. 掌握常见测试技术在工程实践中的应用。
实验内容:1. 传感器原理与特性测试:-使用温度传感器、光敏电阻等不同类型的传感器,测量环境温度、光照强度等参数,并比较它们的特性和响应速度。
2. 数据采集与信号处理:-连接传感器到数据采集卡或微控制器,采集传感器输出的模拟信号,并进行数字化处理和分析,如滤波、采样等。
3. 传感器应用实验:-结合实际应用场景,设计并搭建一个简单的智能家居系统,利用传感器检测环境参数并控制相关设备的运行。
4. 测试技术应用:-学习使用示波器、多用表等测试仪器对电路进行测试和故障排除,加深对电路性能分析的理解。
实验器材与设备:1. 温度传感器、光敏电阻等传感器元件2. 数据采集卡、微控制器等数据采集设备3. 示波器、数字万用表等测试仪器4. 电路元件和连接线5. 相关的实验软件和工具实验注意事项:1. 操作过程中要严格遵守安全规定,避免对设备和自身造成损坏。
2. 确保实验器材的正确连接和使用,避免因操作失误导致意外发生。
3. 实验结束后要对设备进行清洁和整理,保持实验环境整洁。
预期结果:通过该综合实验,学生可以深入了解各种传感器的特性和应用,掌握数据采集和信号处理的基本方法,以及学习常见测试技术在工程实践中的应用。
同时,通过实际操控传感器和测试仪器,培养学生的实验操作能力和问题解决能力。
这样的综合实验设计旨在帮助学生深入理解传感器与测试技术的原理和应用,提升他们的实践能力和工程素养。
传感器测试系统的应用
发表时间:2018-07-09T09:56:58.937Z 来源:《电力设备》2018年第6期作者:褚福彬里宇枢
[导读] 摘要:检测系统是将传感器同变换装置、测量仪表进行有机组合,在进行工程的操作中,通过传感器与多个测量仪器的有机组合,从而构成一个完整体,随后开始对信号进行检测,这样就有了整个检测系统。
(中国电子科技集团公司第四十九研究所黑龙江省哈尔滨市 150001)
摘要:检测系统是将传感器同变换装置、测量仪表进行有机组合,在进行工程的操作中,通过传感器与多个测量仪器的有机组合,从而构成一个完整体,随后开始对信号进行检测,这样就有了整个检测系统。
随着计算机技术的普及和信息处理技术的完善与发展,检测系统中涉及到的内容不断得到充实。
在现代化生产生活中,检测系统自动完成检测任务,因此有必要探究和掌握检测系统的构成原理及相关应用。
关键词:传感器;测试系统;应用
1传感器的分类
传感器是可以对规定范围内的信息进行感受、接收的器件和装置,它可以对机电一体化系统控制范围内操作环境、操作对象,以及机电一体化系统本身进行检测,使系统有效运行。
根据不同的规则,传感器可分为多种类型。
根据能量转换规则设计制造的传感器有两种———能量控制型传感器和能量转换型传感器,它们可以在脱离外加电源的情况下,通过能量转化产生的物理效应获取信息;根据被测参量设计制造的传感器有三种———物性参量、机械量参量、热工参量;根据制作材料不同,传感器可分为包括晶体结构、物理性质在内的多种类型;根据工作原理,还可分为生物传感器、物理传感器、化学传感器。
传感器在长期的发展过程中,已形成了多个不同特性的种类,适用于多种不同的环境,用途也更为多样,因此可满足不同机电一体化系统的要求,只需结合使用要求合理选择即可。
2传感器测试系统相关概况
传感器测试系统中的传感器对物体进行探测后得知其大小,随后输出对应下的可用信号,这个环节主要为了数据的传输功能服务,如果想要让每个环节能够独立,也就是可以一个区域向另一个区域传输数据,整个过程就是传输功能的体现。
数据处理环节指的是处理或者变换传感器的输出信号,例如想要放大、运算或线性化一个信号,又或者想要转换数模(D/A)或模数(A/D),得到的信号为了符合标准参数,同时又能清晰的进行分析与记录,所有的信息在处理和系统控制时可以直接与计算机连接。
经过处理后的数据在显示时信息会变成了人的感官可以清晰接受的形式,从而有利于对监视的数据进行监视、控制以及分析。
测量后的数据既可以用模拟的效果来表达,也可以用数据的方式直接显现,人们习惯性接受哪个就会选择哪种方式进行记录,有时为了更直观的分析,还可以用打印机直接打印出来,所有的数据是真实有效的。
3传感器测试系统的应用
3.1气体传感器的动态高精度测试系统应用
气体传感器是将所要转换的气体体积积分数进行对应电信号转换的装置,传感器的探测头调理气体样品,对气体样品中的杂质和干扰气体进行滤除处理,对样品进行干燥或制冷处理。
这是一种将气体的成分、浓度等信息转化成能够被人员、仪器仪表、计算机等利用的信息装置,被得以广泛应用。
当今人们的生活水平逐渐提高,人们专注身体健康与人身安全的时候会对有毒害的气体进行检测,并着手于监控有污染的大气和有废气的工业工厂,其中传感器测试系统起到了至关重要的作用,当前半导体气体传感器是最常见的,最初的气体传感器主要采用SnO2和ZnO为气敏材料,随着研究的展开,复合金属氧化物和混合金属氧化物半导体传感器开始走入研究中,SnO2和ZnO有吸附和催化的作用,可以对表面进行控制,使用时需要将温度调高一些,200-500℃即可。
如果对含量在1×10-5数量级的H2S气体添加1%2rO2的2rO2-SnO2气体传感器,与未添加2rO2元件相比,其灵敏度增加了50倍,并且采用薄膜技术和集成电路技术可以不进提高灵敏度,结构和制作上更加精良。
3.2探针式传感器测试系统的设计应用
为了提高线源模型的工程应用效率,探针式传感器测试系统被运用,该系统由测试平台和传感器探针组成,测试平台的流程为计算机通过USB将数据传输给基站SPOT,基站和远端节点通过802.15.4无线通信协议进行通信,探针主要由加热丝和温度传感器构成。
探针式温度传感器采用的是有针状结构的不锈钢外壳,有很强的硬度和尖锐性,能够轻易刺入被测试物体的内部,测试物体内部温度的时候十分快捷便利,例如选取A级Pt100,温度-20-60℃,管径为4mm,保护管长度为200mm,探头结构为直插式,导线为三线制300mm,线材为聚氯乙烯线。
该设计广泛应用于粮食、食品、土壤、木材、实验室等测温场所,方便了人们对温度的控制和分析,有助于相关行业的进步。
3.3多铁纳米MEMS传感器测试系统应用
多铁纳米MEMS传感器的敏感元件是多纳米纤维构成的,多纳米纤维具有压电特性。
机械装置设计下部分为压力容器,方便待测MEMS传感器提供压力差,量程范围控制在0-20KPa,上部分作为测试装置固定待测样片及测试环境,材料建议选择铝合金,更加方便加工和处理。
控制系统的硬件电路以STM32微处理器为核心,软件包括整个测试系统的主程序和上位机界面,通过对C++和LabVIEW等软件设计及运用,程序软件将所有数据在最短时间内显示出来并进行储存,未来研究实验中能够直接取来应用分析。
实验平台利用薄膜压力传感器的测试实验系统的功能,将静态特性值和标准传感器测量值对比,分析误差,从而进一步完善装置。
最后得出该测试装置能够提供一定的温度、压力和磁场的测试环境,根据相关数据的对比分析,得出传感器所输入的压力值同输出电压值之间的数据联系,透过分析验证了测试方案的可行性和装置功能的完整性,在不同环境下的应用体现了该装置测试系统能够促进工业生产与生活的发展。
结论
通过举例和检测分析得知,任何传感器检测系统本身性能并不理想,测试的方法无法达到完善的地步,外在客观干扰因素和人为疏漏无法避免,被测参数的测量值与真实值最后不一样,这种情况下误差是会存在的。
为了避免误差过大保证数据的真实程度,对传感器检测系统的研究还需继续进行,无论是选择探针式传感器检测系统还是选择气体传感器检测系统,尽管应用的范围很大,功能也不相同,但最后都是同样的目标,都是求得真实数据,从而达到当前现代化生产的需求与标准。
参考文献:
[1]周杭霞,於可广,郑朋.探针式传感器测试系统设计及数据处理算法研究[J].传感技术学报,2011,24(05):705-709.
[2]崔远慧,唐祯安,余隽,张双岩.气体传感器的动态高精度测试系统设计[J].仪器仪表学报,2010,31(10):2180-2185.。