填料塔设计
- 格式:doc
- 大小:159.48 KB
- 文档页数:20
填料塔设计标准及规范最新1. 设备设计基础填料塔的设计应基于详细的工艺流程和操作条件,包括但不限于流体的性质、流量、压力、温度以及所需的分离效率。
2. 材料选择材料的选择应考虑到介质的化学性质、温度、压力以及可能的腐蚀性。
常用的材料包括不锈钢、碳钢、塑料和陶瓷等。
3. 填料类型选择填料塔的效率和性能很大程度上取决于所选填料的类型。
常见的填料类型包括散堆填料、规整填料和金属网填料等。
4. 流体力学设计填料塔的流体力学设计应确保气体和液体在塔内均匀分布,避免局部过载或死区。
设计时需考虑流体的流速、压降和湍流程度。
5. 塔体结构设计塔体结构设计应保证足够的强度和刚度,以承受操作过程中可能产生的各种载荷,包括静载荷、动载荷和热应力。
6. 塔内附件设计塔内附件包括分布器、收集器、支撑结构等,它们的设计应确保流体的均匀分布和有效收集。
7. 安全与环保要求填料塔的设计应符合当地的安全和环保法规,包括排放标准、防火防爆要求以及紧急排放系统的设计。
8. 控制与监测系统填料塔应配备必要的控制和监测系统,以实现过程的自动控制和实时监测,确保操作的稳定性和安全性。
9. 维护与清洗设计时应考虑到设备的维护和清洗方便性,确保在必要时可以快速进行清洗和维护工作。
10. 经济性评估在满足工艺要求的前提下,填料塔的设计应考虑成本效益,包括材料成本、制造成本和运行成本。
11. 规范和标准遵循设计过程中应遵循国际和国内的相关行业标准,如API、ASME、GB等,确保设计的合规性。
结语填料塔的设计是一个综合性的工程活动,需要综合考虑工艺、材料、结构、安全、环保和经济等多方面因素。
随着技术的发展和行业标准的更新,填料塔的设计标准和规范也在不断进步,以适应不断变化的工业需求。
6 填料塔的结构设计I. 塔径计算计算公式: D =① 塔填料选择须知:相对处理能力:拉西环<矩鞍<鲍尔环<阶梯环<环鞍(填料尺寸相同,压降相同)对于规整填料,分离能力:丝网类填料>板波纹类填料,板波纹填料较丝网类有较大的处理量和较小的压降。
250Y ——250指的是填料的比表面积,Y 指的是波纹倾角为45o ,X Y 指的是波纹倾角为30o填料选择的三步骤:选材质→选类型→选尺寸(径比应保持不低于某一下限值,以防止产生较大的壁效应,造成塔的分离效率下降。
)选尺寸说明:填料尺寸大,成本低,处理量大,但效率低。
一般大塔常使用50mm 的填料。
塔径/mm 填料尺寸/mm D<300 20~25 300<D<900 25~38D>90050~80② 计算方法泛点气速法 ----散堆填料(0.5~0.8) f u u =a. Eckert 关联图法20.50.2f u ()() Y=G G L V L LW X W g ρφϕρμρρ=由X 值和泛点压降线查取Y 值进而求得液泛气速 b. Bain-Hougen 泛点关联式20.20.250.125f 3u log[] 1.75()() G G L LL V LW A g W ρραμερρ=- 填料特性:比表面积、空隙率、泛点压降因子 ---规整填料a. Bain-Hougen 泛点关联式20.20.250.125f 3u log[] 1.75()() G G L L L V LW A g W ρραμερρ=- 250Y 金属板波纹填料:A=0.297,CY 型丝网填料:A=0.30 b. 泛点压降法Kister and Gill 等压降曲线(匡国柱.化工单元过程与设备课程设计.北京:化学工业出版社.2002,264-265)泛点压降与填料因子间的关系:0.7/40.9p Z Fp∆= Pa/m; Fp —填料因子等压降曲线: 0.50.50.50.05p u ()() Y=() F ()0.277G G L V L L G W X W ρρμρρρρ=- 气相负荷因子法——用于规整填料塔的计算0.5[/()]S G L G C u ρρρ=-max 0.8 S S C C =0.5max =f() ( )G L S G LW C W ρψψρ=填料手册中给出Csmax 与ψ(流动参数)的关系图。
第一章设计任务依据和要求一、设计任务及操作条件:1、混合气体(空气中含SO2气体的混合气)处理量为:106Kmol/h2、混合气组成:SO2含量为6.7% (mol% ),空气为:93.3 %(mol%)3、要求出塔净化气含SO2为:0.148 %(mol%),H2O为:1.172 kmol/h4、吸收剂为水,不含SO25、常压,气体入塔温度为25℃,水入塔温度为20℃。
二、设计内容:1、设计方案的确定。
2、填料吸收塔的塔径、填料层高度及填料层压降的计算。
3、填料塔附属结构的选型与设计。
4、填料塔工艺条件图。
三、H2O-SO2在常压20℃下的平衡数据X Y X Y0.00281 0.0776 0.000423 0.007630.001965 0.00513 0.000281 0.00420.001405 0.0342 0.0001405 0.001580.000845 0.0185 0.0000564 0.000660.000564 0.0112四、气体及液体的物性数据1、气体的物性:气体粘度()0.0652/G u kg m h =⋅气体扩散系数20.0393/G D m s = 气体密度31.383/G kg m ρ=2、液体的物性:液体粘度µL =3.6 kg /(m ·h); 液体扩散系数D L =5.3×10-6m 2/s; 密度ρL =998.2 kg /m 3;液体表面张力 4273/92.7110/L dyn cm kg h σ==× 五、 设计要求1、设计计算说明书一份2、填料塔图(2号图)一张第二章 SO 2净化技术和设备 一、SO 2的来源、性质及其危害二氧化硫的来源包括微生物活动,火山活动,森林火灾以及海水飞沫。
主要有自然来源和人为来源两大类:自然来源主要是火山活动,喷出的火山气体中含有大量的二氧化硫气体,地质深处的天然硫元素在火山喷发过程中燃烧氧化为二氧化硫,随火山灰一起喷射到大气中。
填料塔计算和设计文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)填料塔设计2012-11-20一、填料塔结构填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。
填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。
在填料的上方安装填料压板,以限制填料随上升气流的运动。
液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。
气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。
填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。
二、填料的类型及性能评价填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。
填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。
散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料;填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。
1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优;2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。
三、填料塔设计基本步骤1.根据给定的设计条件,合理地选择填料;2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸;3.计算填料层的压降;4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。
?四、填料塔设计1.填料的选择填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。
.-目录一.设计任务书 (2)1.设计目的 (2)2.设计任务 (2)3.设计内容和要求 (2)二.设计资料 (3)1.工艺流程 (3)2.进气参数 (3)3.吸收液参数 (3)4.操作条件 (3)5.填料性能 (4)三.设计计算书 (5)1.填料塔主体的计算 (5)1.1 吸收剂用量的计算51.2 塔径的计算61.3 填料层高度的计算81.4.填料塔压降的计算122.填料塔附属结构的类型与设计 (13)2.1 支承板132.2 填料压紧装置132.3 液体分布器装置132.4 除雾装置142.5 气体分布装置142.6 排液装置152.7 防腐蚀设计152.8 气体进料管152.9 液体进料管:162.10 封头的选择162.11 总塔高计算163.填料塔设计参数汇总 (18)四.填料塔装配图(见附录) (19)五.总结 (19)六.参考文献 (19)附录 (20).-前言世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。
”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。
工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。
因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。
一.设计任务书1.设计目的通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。
培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。
2.设计任务试设计一个填料塔,常压,逆流操作,操作温度为 25℃,以清水为吸收剂,3吸收脱除混合气体中的 NH3,气体处理量为 1500m/h ,其中含氨 1.9%(体积分数),要求吸收率达到 99%,相平衡常数 m=0.95。
填料塔设计1000字填料塔(也称为吸附塔、萃取塔、蒸馏塔等)是化工工业中常见的塔式设备,用于分离和提取混合物中的组分。
填料塔设计的目标是实现有效的传质和反应,同时最小化能量消耗和成本开销。
本文将介绍填料塔设计的基本流程和注意事项。
一、设计流程1. 确定塔的物理性质和流量任何填料塔的设计首先需要确认其物理性质和流量。
这将决定了塔的大小、填料类型、流体速度等各种参数。
物理性质包括塔的直径、高度、壁厚等。
流量包括进料量、空气量、气体流量、液体流量等。
2. 选择填料填料是填料塔的核心组件,它可以有效增加反应表面积和物质传递速率。
填料的种类很多,包括塑料、金属、陶瓷、玻璃等材料。
常见的填料包括环形塔填料、球形塔填料、骨架填料等。
我们需要根据所需要处理的物质和填料性能来选取填料。
3. 确定反应机理填料塔的工作原理基于物质分离和反应过程。
在设计塔之前,需要加深对所需处理的物质的反应机理的了解,包括化学反应、传质、相变等。
这将有助于确定合适的填料、塔高度等参数。
4. 计算填料密度填料密度是液相和气相之间传质的决定性因素。
在设计填料塔时,我们需要对填料的密度进行计算。
这可以帮助我们确定塔的高度、填料体积等参数。
5. 选择塔板塔板是塔式设备中流体分离和传质的重要组成部分。
常用的塔板有单孔板、多孔板和节流板等。
选定塔板的种类和数量取决于所需处理的物质和塔的物理尺寸。
6. 确定工艺流程填料塔的设计需要确定完整的工艺流程。
我们需要确认现有流程的适用性,并着手设计流程概要、工艺流程图等。
7. 设计并检验填料塔完成上述步骤后,我们需要开始具体的设计工作。
填料塔设计需要考虑许多因素,包括结构强度、塔的散热、氢气脆化等。
我们需要对设计方案进行校验,以确保它符合现行规定和安全标准。
二、设计注意事项1. 确定填料尺寸填料尺寸直接影响到塔体积,进而影响到设备成本和能量消耗。
因此,我们需要选用最小的填料尺寸,以减小设备尺寸和成本。
2. 考虑气液流量比填料塔中的气液流量比会直接影响反应效率和传质速率。
由该点的纵坐标得为计算方便,采用与液体喷淋密度无关的泛点填料因子平均值,查表(散装交,由该点的纵坐标得(Dg38)k G a=0.0367×(2900×1.178)0.72×4699.60.38=319.3kmol/(m3·h.Pa) k L a=0.027×4699.60.78=19.75 h -1选择塔径为700mm的数据。
4.除雾沫器选择折流板式除雾器,它是利用惯性原理设计的最简单的除雾装置。
除雾板由50mm ×50mm ×3mm 的角钢组成.板间横向距离为25mm ,如图所示。
除雾器的结构简单、有效,常和塔器构成一个整体,阻力小,不易堵塞,能除去50μm 以下的雾滴,压力降一般为50~I00Pa 。
5.管口结构一般管道为圆形,d 为内径,水流速0.5~1.5m/s,常压下气体流速则气体进口管直径 d 1=u V 4π=1836004.1329004×××=0.239m 气体出口管直径 d 2=0.239m查国家标准规格,圆整直径为273×6u=π23V 4d =s /m 06.153600261.0900242=×××π 吸收剂进口直径 d 3=u V 4π=.503600.29984.13699.644××××=0.0577m8.液体进口管液体的进口管直接通向喷淋装置,若喷淋装置进塔处为直管,其结构和有关尺寸见图和表,若喷淋器为其他结构,则管门结构需根据具体情况而定。
液体进口管选择尺寸76×4,见上表。
9.液体的出口装置液体出口装置的设计应便于塔内液体的排放,防止破碎的瓷环堵塞出口,并且要保证塔内有一定的液封高度,防止气体短路。
常见的液体出口结构如图所示。
10.接管长度填料塔上各股物料的进出门管留在设备外边的长度h,可参照下表确定。
填料塔的设计范文
填料塔是一种常用的化工设备,主要用于气体的物质转移和反应过程中的质量传递。
设计一个填料塔需要考虑到塔的结构设计、填料的选择和布置、气液分布的优化以及安全性等因素。
首先,填料塔的结构设计是一个关键的环节。
塔的高度和直径直接影响着塔的流体力学性能和传质传热效果。
对于普通的填料塔来说,一般采用塔径比为3-6,高径比为10-20的设计参数。
此外,填料塔还应设计合理的进出料口,以便更好地控制进出料的速度和流量。
其次,填料的选择和布置也是填料塔设计的重要一环。
不同的物质需要选择不同的填料来达到预期的传质和传热效果。
常用的填料有旋流板、环状填料、网格填料、管状填料等。
填料的布置应考虑到填料与气相和液相之间的接触面积和流动的通路。
通常,填料的布置越密集,接触面积越大,传质传热效果越好。
气液分布的优化也是设计填料塔的一个关键问题。
不同物质的分布方式也会影响填料塔的传质效果。
常用的气液分布方式有平板液面、喷洒液面、液滴液面等。
优化气液分布的方式可以使得液相和气相更加均匀地流过填料床,提高传质传热效果。
填料塔的设计还需要考虑到其安全性能。
安全是设计的首要考虑因素之一、必须保证填料塔的结构稳定,能够承受内部和外部的力。
此外,还需要设置相应的安全装置,如压力传感器、温度传感器、液位控制器等,以及紧急停机装置,以保障塔的安全运行。
总之,填料塔的设计需要综合考虑结构设计、填料选择和布置、气液分布的优化以及安全性等因素。
通过合理的设计和优化,填料塔可以实现更好的传质和传热效果,提高化工生产的效率和质量。
填料塔课程设计总结一、教学目标本课程的教学目标是让学生掌握填料塔的基本原理、结构和设计方法。
通过本课程的学习,学生将能够:1.描述填料塔的定义、分类和应用范围;2.解释填料塔的工作原理和传质过程;3.分析填料塔的设计参数和计算方法;4.运用填料塔原理解决实际工程问题。
二、教学内容教学内容将围绕填料塔的基本概念、结构、设计和应用展开,具体包括以下几个方面:1.填料塔的定义、分类和应用范围;2.填料塔的工作原理和传质过程;3.填料塔的设计参数和计算方法;4.填料塔在化工、环保等领域的应用案例。
三、教学方法为了提高学生的学习兴趣和主动性,将采用多种教学方法进行授课,包括:1.讲授法:讲解填料塔的基本概念、原理和设计方法;2.案例分析法:分析填料塔在实际工程中的应用案例;3.实验法:学生进行填料塔的实验操作,加深对理论知识的理解;4.讨论法:鼓励学生积极参与课堂讨论,提高解决问题的能力。
四、教学资源为了支持教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的学习资料;2.参考书:推荐学生阅读相关参考书籍,丰富知识体系;3.多媒体资料:制作课件、视频等多媒体资料,提高课堂教学效果;4.实验设备:准备填料塔实验所需的设备,为学生提供实践操作机会。
通过以上教学设计,相信学生能够系统地掌握填料塔的知识,为今后的工程实践打下坚实基础。
五、教学评估本课程的评估方式将包括平时表现、作业、考试等多个方面,以全面客观地评价学生的学习成果。
具体评估方式如下:1.平时表现:通过课堂参与、提问、讨论等环节,评估学生的学习态度和积极性;2.作业:布置适量作业,评估学生对知识点的理解和运用能力;3.考试:设置期中、期末考试,全面测试学生的知识掌握和应用能力。
六、教学安排教学进度将根据课程内容和教学目标合理安排,确保在有限的时间内完成教学任务。
具体教学安排如下:1.教学时间:根据学生的作息时间,合理安排上课时间,确保学生有充足的精力参与学习;2.教学地点:选择适合的教学场所,如教室、实验室等,为学生提供良好的学习环境;3.教学进度:按照教学大纲,有序进行教学,确保每个知识点得到充分讲解和实践。
填料塔的设计本章符号说明英文字母a——填料的有效比表面积,m2/m3a t——填料的总比表面积,m2/m3a W——填料的润湿比表面积,m2/m3A T——塔截面积,m2;C——计算u max时的负荷系数,m/s;C s——气相负荷因子,m/s;d——填料直径,m;D——塔径,m;DL——液体扩散系数,m2/s;Dv——气体扩散系数,m2/s ;ev——液沫夹带量,kg(液)/kg(气);E——液流收缩系数,无因次;E T——总板效率,无因次;g——重力加速度,9.81 m/s2;h——填料层分段高度,m;HETP关联式常数;h max——允许的最大填料层高度,m;H B——塔底空间高度,m;H D——塔顶空间高度,m;H oG——气相总传质单元高度,m;H1——封头高度,m;H2——裙座高度,m;HETP——等板高度,m;k G——气膜吸收系数,kmol/(m2·s·kPa);k L——液膜吸收系数,m/s;K G——气相总吸收系数,kmol/(m2·s·kPa);l W——堰长,m;L b——液体体积流量,m3/h;L S——液体体积流量,m3/s;L W——润湿速率,m3/(m·s);m——相平衡常数,无因次;n——筛孔数目;N OG——气相总传质单元数;P——操作压力,Pa;△P——压力降,Pa;u——空塔气速,m/s;u F——泛点气速,m/su0.min——漏液点气速,m/s;u′0——液体通过降液管底隙的速度,m/s;U——液体喷淋密度,m3/(m2·h)U L——液体质量通量,kg/(m2·h)U min——最小液体喷淋密度,m3/(m2·h)U v——气体质量通量,kg/(m2·h)V h——气体体积流量,m3/h;V S——气体体积流量,kg/s;w L——液体质量流量,kg/s;w V——气体质量流量,kg/s;x——液相摩尔分数;X——液相摩尔比Zy——气相摩尔分数;Y——气相摩尔比;Z——板式塔的有效高度,m;填料层高度,m。
1.1填料塔设计1.1.1概述石化行业是国民经济中能耗较高的产业部门,其能耗占工业能耗接近1/5,占全国总能耗的14%左右。
在目前占有工业能耗接近五分之一的石化行业中,较大的能耗主要来源于化学原料及化学制品制造业能耗、石油天然气开采业能耗、石油加工、炼焦及核燃料加工业能耗、橡胶制品业能耗。
而在化工生产中,分离的能耗占主要部分,其中尤以精馏塔在分离设备中占有最大比例,因此,塔设计的好快与否,对于整个工厂的经济效益有着很重要的作用。
塔设备的投资费用占整个工艺设备费用的四分之一左右,塔设备所耗用的钢材料重量在各类工艺设备中所占的比例也较多,例如在年产250万吨常压减压炼油装置中耗用的钢材重量占62.4%,在年产60-120万吨催化裂化装置中占48.9%。
因此,塔设备的设计和研究,是我们工作的重点。
在本化工厂设计中,塔设备汇总如表所示:表8-1 塔设备汇总表塔设备编号塔设备名称T0101裂解油预分塔T0102隔壁塔T0103抽提塔T0104溶剂回收塔T0201甲苯塔T0202二甲苯塔(续表)T0401歧化反应产物分离隔壁塔T0501抽取液塔T0502抽余液塔1.1.2设计依据《压力容器》GB 150-2011《钢制塔式容器》JB 4710-2005《钢制压力容器用封头标准》JB/T 4746-2002《碳钢、低合金钢制填料塔式压力容器技术要求》QSY-GDJ-JS121-008-2010《碳素钢、低合金钢人孔与手孔类型与技术条件》HG 21514-95《中国地震动参数区划图》GB 18306-2001《建筑结构荷载规范》GB 50009-20121.1.3塔型的选择原则精馏塔主要有板式塔和填料塔两种,它们都可以用作蒸馏和吸收等气液传质过程,但两者各有优缺点,要根据具体情况选择。
1.1.3.1填料塔与板式塔的比较表8-2 精馏塔的主要类型及特点结构特点每层板上装配有不同型式的气液接触元件或特殊结构,如筛板、泡罩、浮阀等;塔内设置有多层塔板,进行气液接触塔内设置有多层整砌或乱堆的填料,如拉西环、鲍尔环、鞍型填料等散装填料,格栅、波纹板、脉冲等规整填料;填料为气液接触的基本元件操作特点气液逆流逐级接触微分式接触,可采用逆流操作,也可采用并流操作设备性能空塔速度(亦即生产能力)高,效率高且稳定;压降大,液气比的适应范围大,持液量大,操作弹性小大尺寸空塔气速较大,小尺寸空塔气速较小;低压时分离效率高,高压时分离效率低,传统填料效率较低,新型乱堆及规整填料效率较高;大尺寸压力降小,小尺寸压力降大;要求液相喷淋量较大,持液量小,操作弹性大(续表)装困难,安装程序较简单,检修清理容易,金属材料耗量大修清理困难,可采用非金属材料制造,但安装过程较为困难适用场合处理量大,操作弹性大,带有污垢的物料处理强腐蚀性,液气比大,真空操作要求压力降小的物料1.1.3.2板式塔塔型选择一般原则:选择时应考虑的因素有:物料性质、操作条件、塔设备性能及塔的制造、安装、运转、维修等。
填料塔设计1.填料塔的一般构造填料塔可用于气体吸收等。
填料塔主要构件为:流体分布器、填料压板或床层限制板、填料、填料支撑、液体收集器,液体再分布器等。
2.填料塔的设计步骤(1)确定气、液负荷,气、液物性参数及特性气体出口从工艺需求确定以上参数(2)选择填料填料的正确选择,对塔的经济效果有重要的影响。
对于给定的设计条件,常有多种填料可供选择。
故对各类的填料作一综合比较,床层限制以便选择较理想的填料(3)计算塔径根据填料特性数据、系统物性参数及液气比等计算液泛气速,乘以适当的系数作液体收集器为设计的空塔气速,用以计算塔径;或者直接采用由经验得出的气体动能因子设计值来计算塔径。
(4)计算填料高度应用传质单元高度法或等板高度法计算填料层的总高度。
(5)计算填料层压降如果压力降超过限定值,需调整填料的类型、尺寸或降低操作气速后重复计算,直至满足条件为止。
(6)填料塔其他内构件(分布器、填料支承、再分布器、填料限制板等)的设计正确的结构是保证填料塔达到预期性能的必要条件。
结构设计包括塔体设计及塔的内构件设计两部分。
填料塔的内构件包括:液体分布装置、液体再分布装置、填料支撑装置、填料压板或床层限制板等。
这些内构件设计得是否合理是保证正常操作和达料预期性能的重要条件。
昆山源和环保科技有限公司致力于工业空气污染治理服务,为客户提供设计-设备制造-安装-售后服务的一条龙废气处理制造企业。
公司现有员工80余人,其中专业设计人员15人,年产废气处理成套设备500余套。
主导产品:废气洗涤设备、集尘设备脉冲式滤袋集尘机、废气(NOX、SO2酸、碱、VOC、PECVD硅烷等废气)、静电油烟机、浓缩转轮、ROT (储热式热力焚化炉)、NMP回收装置, FRP、PP风机、风管配制(FRP、PP、PVC、铁件)等环保相关产品。
产品广泛应用于太阳能、PCB、橡胶、半导体、电子、电镀、化工、计算机、机械、卫浴、涂料、树脂、铸造、DOP、VOC废气,抛光打磨等行业。
填料塔的设计本章符号说明英文字母a——填料的有效比表面积,m2/m3a t——填料的总比表面积,m2/m3a W——填料的润湿比表面积,m2/m3A T——塔截面积,m2;C——计算u max时的负荷系数,m/s;C s——气相负荷因子,m/s;d——填料直径,m;D——塔径,m;DL——液体扩散系数,m2/s;Dv——气体扩散系数,m2/s ;ev——液沫夹带量,kg(液)/kg(气);E——液流收缩系数,无因次;E T——总板效率,无因次;g——重力加速度,9.81 m/s2;h——填料层分段高度,m;HETP关联式常数;h max——允许的最大填料层高度,m;H B——塔底空间高度,m;H D——塔顶空间高度,m;H oG——气相总传质单元高度,m;H1——封头高度,m;H2——裙座高度,m;HETP——等板高度,m;k G——气膜吸收系数,kmol/(m2·s·kPa);k L——液膜吸收系数,m/s;K G——气相总吸收系数,kmol/(m2·s·kPa);l W——堰长,m;L b——液体体积流量,m3/h;L S——液体体积流量,m3/s;L W——润湿速率,m3/(m·s);m——相平衡常数,无因次;n——筛孔数目;N OG——气相总传质单元数;P——操作压力,Pa;△P——压力降,Pa;u——空塔气速,m/s;u F——泛点气速,m/su0.min——漏液点气速,m/s;u′0——液体通过降液管底隙的速度,m/s;U——液体喷淋密度,m3/(m2·h)U L——液体质量通量,kg/(m2·h)U min——最小液体喷淋密度,m3/(m2·h)U v——气体质量通量,kg/(m2·h)V h——气体体积流量,m3/h;V S——气体体积流量,kg/s;w L——液体质量流量,kg/s;w V——气体质量流量,kg/s;x——液相摩尔分数;X——液相摩尔比Zy——气相摩尔分数;Y——气相摩尔比;Z——板式塔的有效高度,m;填料层高度,m。
希腊字母β——充气系数,无因次;δ——筛板厚度,mε——空隙率,无因次;θ——液体在降液管内停留时间,s;μ——粘度,Pa·s;ρ——密度,kg/m3;σ——表面张力,N/m;φ——开孔率或孔流系数,无因次;Φ——填料因子,l/m;ψ——液体密度校正系数,无因次。
下标max——最大的;min——最小的;L——液相的;V——气相的。
在化学工业中,经常需将气体混合物中的各个组分加以分离。
气体的吸收是用适当的液体吸收剂与气体混合物接触,吸收气体混合物中一个或几个组分,使其中的各组分得以分离的一种操作。
在化工生产中它主要用于原料气的净化、有用组分的回收、制取气体的溶液作为成品以及废气的治理等方面,因此吸收操作是一种重要的分离方法,在化学工业中应用相当普遍。
可用作吸收的设备种类很多,如填料塔、板式塔、喷洒塔和鼓泡塔等,工业上较多地使用填料塔。
填料塔的类型很多,其设计的原则大体相同,一般来说,填料塔的设计步骤如下:①根据设计任务和工艺要求,确定设计方案;②根据设计任务和工艺要求,合理地选择填料;③确定塔径、填料层高度等工艺尺寸;④计算填料层的压降;⑤进行填料塔塔内件的设计与选型。
4.1 填料塔设计4.1.1 设计方案的确定4.1.1.1 填料精馏塔设计方案的确定填料精馏塔设计方案的确定包括装置流程的确定、操作压力的确定、进料热状况的选择、加热方式的选择及回流比的选择等,其确定原则与板式精馏塔基本相同,参见第三章。
4.1.1.2填料吸收塔设计方案的确定(1) 装置流程的确定吸收装置的流程主要有以下几种,图4-1~4-4列出了部分流程。
①逆流操作气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作。
逆流操作的特点是,传质平均推动力大,传质速率快,分高效率高,吸收剂利用率高。
工业生产中多采用逆流操作。
②并流操作气液两相均从塔顶流向塔底,此即并流操作。
并流操作的特点是,系统不受液流限制,可提高操作气速,以提高生产能力。
并流操作通常用于以下情况:当吸收过程的平衡曲线较平坦时,流向对推动力影响不大;易溶气体的吸收或处理的气体不需吸收很完全;吸收剂用量特别大,逆流操作易引起液泛。
③吸收剂部分再循环操作在逆流操作系统中,用泵将吸收塔排出液体的一部分冷却后与补充的新鲜吸收剂一同送回塔内,即为部分再循环操作。
通常用于以下情况:当吸收剂用量较小,为提高塔的液体喷淋密度;对于非等温吸收过程,为控制塔内的温升,需取出一部分热量。
该流程特别适宜于相平衡常数m值很小的情况,通过吸收液的部分再循环,提高吸收剂的使用效率。
应予指出,吸收剂部分再循环操作较逆流操作的平均推动力要低,且需设置循环泵,操作费用增加。
④多塔串联操作若设计的填料层高度过大,或由于所处理物料等原因需经常清理填料,为便于维修,可把填料层分装在几个串联的塔内,每个吸收塔通过的吸收剂和气体量都相等,即为多塔串联操作。
此种操作因塔内需留较大空间,输液、喷淋、支承板等辅助装置增加,使设备投资加大。
⑤串联-并联混合操作若吸收过程处理的液量很大,如果用通常的流程,则液体在塔内的喷淋密度过大,操作气速势必很小(否则易引起塔的液泛),塔的生产能力很低。
实际生产中可采用气相作串联、液相作并联的混合流程;若吸收过程处理的液量不大而气相流量很大时,可采用液相作串联、气相作并联的混合流程。
总之,在实际应用中,应根据生产任务、工艺特点,结合各种流程的优缺点选择适宜的流程布置。
图4-1 逆流吸收塔图4-2 串联逆流吸收塔流程1 吸收塔2 贮槽3 泵4 冷却器图4-3 吸收剂部分循环吸收塔图4-4 吸收剂部分循环的吸收解吸联合流程1 吸收塔 2泵 3 冷却器 1 吸收塔2 贮槽3 泵4 冷却器5 换热器6 解吸塔(2)吸收剂的选择吸收过程是依靠气体溶质在吸收剂中的溶解来实现的,因此,吸收剂性能的优劣,是决定吸收操作效果的关键之一,选择吸收剂时应着重考虑以下几方面。
①溶解度吸收剂对溶质组分的溶解度要大,以提高吸收速率并减少吸收剂的需用量。
②选择性吸收剂对溶质组分要有良好地吸收能力,而对混合气体中的其他组分不吸收或吸收甚微,否则不能直接实现有效的分离。
③挥发度要低操作温度下吸收剂的蒸气压要低,以减少吸收和再生过程中吸收剂的挥发损失。
④粘度吸收剂在操作温度下的粘度越低,其在塔内的流动性越好,有助于传质速率和传热速率的提高。
⑤其他所选用的吸收剂应尽可能满足无毒性、无腐蚀性、不易燃易爆、不发泡、冰点低、价廉易得以及化学性质稳定等要求。
一般说来,任何一种吸收剂都难以满足以上所有要求,选用时应针对具体情况和主要矛盾,既考虑工艺要求又兼顾到经济合理性。
工业上常用的吸收剂列于表4-1。
表4-1 工业常用吸收剂(3)操作温度与压力的确定①操作温度的确定由吸收过程的气液平衡关系可知,温度降低可增加溶质组分的溶解度,即低温有利于吸收,但操作温度的低限应由吸收系统的具体情况决定。
例如水吸收CO2的操作中用水量极大,吸收温度主要由水温决定,而水温又取决于大气温度,故应考虑夏季循环水温高时补充一定量地下水以维持适宜温度。
②操作压力的确定由吸收过程的气液平衡关系可知,压力升高可增加溶质组分的溶解度,即加压有利于吸收。
但随着操作压力的升高,对设备的加工制造要求提高,且能耗增加,因此需结合具体工艺条件综合考虑,以确定操作压力。
4.1.2 填料的类型与选择塔填料(简称为填料)是填料塔中气液接触的基本构件,其性能的优劣是决定填料塔操作性能的主要因素,因此,塔填料的选择是填料塔设计的重要环节。
4.1.2.1 填料的类型填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。
(1) 散装填料散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。
散装填料根据结构特点不同,又可分为环形填料、鞍形填料。
环鞍形填料及球形填料等。
现介绍几种较典型的散装填料。
①拉西环填料拉西环填料是最早提出的工业填料,其结构为外径与高度相等的圆环,可用陶瓷、塑料、金属等材质制造。
拉西环填料的气液分布较差,传质效率低,阻力大,通量小,目前工业上已很少应用。
②鲍尔环填料鲍尔环是在拉西环的基础上改进而得。
其结构为在拉西环的侧壁上开出两排长方形的窗孔,被切开的环壁的一侧仍与壁面相连,另一侧向环内弯曲,形成内伸的舌叶,诸舌叶的侧边在环中心相搭,可用陶瓷、塑料、金属等材质制造。
鲍尔环由于环壁开孔,大大提高了环内空间及环内表面的利用率,气流阻力小,液体分布均匀。
与拉西环相比,其通量可增加50%以上,传质效率提高30%左右。
鲍尔环是目前应用较广的填料之一。
③阶梯环填料阶梯环是对鲍尔环的改进。
与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。
由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。
锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。
阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。
④弧鞍填料弧鞍填料属鞍形填料的一种,其形状如同马鞍,一般采用瓷质材料制成。
弧鞍填料的特点是表面全部敞开,不分内外,液体在表面两侧均匀流动,表面利用率高,流道呈弧形,流动阻力小。
其缺点是易发生套叠,致使一部分填料表面被重合,使传质效率降低。
弧鞍填料强度较差,容易破碎,工业生产中应用不多。
⑤矩鞍填料将弧鞍填料两端的弧形面改为矩形面,且两面大小不等,即成为矩鞍填料。
矩鞍填料堆积时不会套叠,液体分布较均匀。
矩鞍填料一般采用瓷质材料制成,其性能优于拉西环。
目前,国内绝大多数应用瓷拉西环的场合,均已被瓷矩鞍填料所取代。
⑥环矩鞍填料环矩鞍填料(国外称为Intalox)是兼顾环形和鞍形结构特点而设计出的一种新型填料,该填料一般以金属材质制成,故又称为金属环矩鞍填料。
环矩鞍填料将环形填料和鞍形填料两者的优点集于一体,其综合性能优于鲍尔环和阶梯环,是工业应用最为普遍的一种金属散装填料。
工业上常用散装填料的特性参数列于附录五中,可供设计时参考。
(2) 规整填料规整填料是按一定的几何图形排列,整齐堆砌的填料。
规整填料种类很多,根据其几何结构可分为格栅填料、波纹填料、脉冲填料等,工业上应用的规整填料绝大部分为波纹填料。
波纹填料按结构分为网波纹填料和板波纹填料两大类,可用陶瓷、塑料、金属等材质制造。
加工中,波纹与塔轴的倾角有30°和45°两种,倾角为30°以代号BX(或X)表示,倾角为45°以代号CY(或Y)表示。