RC一阶电路的响应测试
- 格式:doc
- 大小:149.50 KB
- 文档页数:4
RC一阶电路的响应测试实验报告实验报告:RC一阶电路的响应测试一、实验目的:1.掌握RC一阶电路的响应特性;2.了解RC一阶电路的时间常数对电路响应的影响;3.学会使用示波器观察电路的动态响应。
二、实验原理:由于充电或放电需要一定的时间,电路的响应是有延迟的。
根据电容充电时间常数τ的不同,可以将RC电路分为快速响应和慢速响应两种情况。
电容C的充电或放电方程为:i(t) = C * dV(t) / dt根据Ohm's Law,电路中的电流和电压之间的关系为:V(t) = VR(t) + VC(t) = i(t) * R + V0 * exp(-t/τ)其中,VR(t)是电阻R上的电压,VC(t)是电容C上的电压,V0是电路初始电压,τ=C*R是电路的时间常数。
当输入信号为直流电压时,电路将会处于稳态,电容将保持充电或放电状态,直到与电源电压相等。
当输入信号为瞬态电压时,电路将会发生响应,电容充放电的过程导致电压变化。
三、实验器材和仪器:1.RC电路板;2.直流电源;3.示波器;4.电阻和电容。
四、实验步骤:1.将示波器的地线和信号触发线接地。
2.按照实际电路中的元件数值,在RC电路板上连接电阻和电容。
3.将示波器的一个探头连接到电阻两端,另一个探头连接到电容的一端。
4.打开直流电源,设定合适的电压大小,使电路处于稳定状态。
5.调整示波器的触发模式和触发电平,保证波形稳定可观察。
6.增加或减小直流电压,观察电路响应,并记录波形。
7.改变电阻或电容的数值,重复步骤6,观察并记录不同响应特性。
8.关闭直流电源和示波器,取下电路连接。
五、实验数据及结果:实验中,我们首先建立了一个由1000Ω电阻和0.1μF电容串联组成的RC电路。
然后,我们分别给电路输入不同幅值和时间常数的矩形波信号,观察电路的响应。
1.输入直流电压的稳态响应:当输入直流电压时,电路处于稳态,电容已经充电到与电源电压相等的电压值。
一阶电路的响应测试实验报告一、实验目的本次实验的主要目的是深入理解一阶电路的响应特性,包括零输入响应、零状态响应和全响应,并通过实际测量和数据分析来验证相关理论知识。
二、实验原理一阶电路是指只含有一个储能元件(电感或电容)的线性电路。
在一阶电路中,根据电路的初始状态和外加激励的不同,可以产生不同的响应。
零输入响应是指在没有外加激励的情况下,仅由电路的初始储能所引起的响应。
对于由电阻和电容组成的一阶 RC 电路,当电容初始电压为\(U_0\),放电过程中电容电压\(u_C(t)\)随时间的变化规律为\(u_C(t) = U_0 e^{\frac{t}{RC}}\)。
零状态响应是指在电路初始储能为零的情况下,仅由外加激励所引起的响应。
对于一阶 RC 电路,在充电过程中,电容电压\(u_C(t)\)随时间的变化规律为\(u_C(t) = U(1 e^{\frac{t}{RC}})\),其中\(U\)为外加电源的电压。
全响应则是电路的初始储能和外加激励共同作用所产生的响应,可以看作零输入响应和零状态响应的叠加。
三、实验设备与器材1、示波器2、信号发生器3、电阻、电容4、实验面包板5、导线若干四、实验步骤1、按照实验电路图在面包板上搭建一阶 RC 电路,选择合适的电阻值\(R\)和电容值\(C\)。
2、首先进行零输入响应测试。
给电容充电至一定电压\(U_0\),然后断开电源,用示波器观察并记录电容电压\(u_C(t)\)随时间的变化曲线。
3、接着进行零状态响应测试。
将电容放电至零初始状态,然后接通电源,用示波器观察并记录电容电压\(u_C(t)\)随时间的上升曲线。
4、最后进行全响应测试。
给电容充电至某一初始电压,然后接通电源,观察并记录电容电压\(u_C(t)\)的变化曲线。
五、实验数据记录与处理1、零输入响应记录的电容电压下降曲线显示,在初始时刻电容电压为\(U_0 = 5V\),经过一段时间后,电压逐渐下降。
实验十 RC 一阶电路的响应测试一.实验目的1.研究RC 一阶电路的零输入响应、零状态响应和全响应的规律和特点。
2.学习一阶电路时间常数的测量方法,了解电路参数对时间常数的影响。
3.掌握微分电路和积分电路的基本概念。
二.原理说明1.RC 一阶电路的零状态响应RC 一阶电路如图12-1所示,开关S 在…1‟的位置,uC =0,处于零状态,当开关S 合向…2‟的位置时,电源通过R 向电容C 充电,uC (t)称为零状态响应,τtU U u -S S c e -=变化曲线如图12-2所示,当uC 上升到S 632.0U 所需要的时间称为时间常数τ,RC τ=。
2.RC一阶电路的零输入响应在图12-1中,开关S 在…2‟的位置电路稳定后,再合向…1‟的位置时,电容C 通过R 放电,uC (t)称为零输入响应,τtU u -S c e =变化曲线如图12-3所示,当uC 下降到S 368.0U 所需要的时间称为时间常数τ,RC τ=。
3.测量RC一阶电路时间常数τ图12-1电路的上述暂态过程很难观察,为了用普通示波器观察电路的暂态过程,需采用图12-4所示的周期性方波uS 作为电路的激励信号,方波信号的周期为T ,只要满足τ52≥T,便可在示波器的荧光屏上形成稳定的响应波形。
电阻R 、电容C 串联与方波发生器的输出端连接,用双踪示波器观察电容电压uC ,便可观察到稳定的指数曲线,如图12-5所示,在荧光屏上测得电容电压最大值(cm)a Cm =U ,S U c u 图 12-1S U U 632 . 0 图 12-2S U U 368 . 0 图12-3S U T2图 12-4图 12-5a)(T2SU Su 0R uC u 图 12-6b)(取 (c m )0.632a b =,与指数曲线交点对应时间t轴的x点,则根据时间t轴比例尺(扫描时间cm t ),该电路的时间常数cm(cm)x t ⨯=τ。
实验四RC一阶电路的响应测试RC一阶电路的响应测试★实验一.实验目的1.测定RC一阶电路的零输入响应,零状态响应及完全响应2.学习电路时间常数的测量方法3.掌握有关微分电路和积分电路的概念二.原理说明1.动态网络的过渡过程是十分短暂的单次变化过程,对时间常数较大的电路,可用慢扫描长余辉示波器观察光点移动的轨迹。
然而能用一般的双踪示波器观察过渡过程和测量有关的参数,必须使这种单次变化的过程重复出现,为次,我们利用信号发生器输出的方波来模拟阶跃激励信号,即令方波输出的上升沿作为零状态响应的正阶跃激励信号;方波下降沿作为零输入响应的负阶跃激励信号,只要选择方波的重复周期远大于电路的时间常数。
电路在这样的方波序列脉冲信号的激励下,它的影响和直流接通与断开的过渡过程是基本相同的。
2.RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数。
3.时间常数的测量方法:用示波器测得零输入响应的波形如图4-1(a)所示:根据一阶微分方程的求解得知U0 Ee t/Rc Ee t/当t= 时,U0 0.368E,此时所对应的时间就等于也可用零状态响应波形增长到0.368E所对应的时间测得,如图3-1(c)所示。
若将图4-2(a)中的R与C位置调换一下,即由C端作为响应输出,且当电路参数的选择满足=RC〉〉T/2条件时,如图4-2(b)所示即称为积分电路,因为此时电路的输出信号电压与输入信号电压的积分成正比。
三.实验设备1.双踪示波器2.信号源(下组件)3.相应组件四.实验内容及步骤实验线路板的结构如图3-2所示,首先看懂线路板的走线,认清激励与响应端口所在的位置;认清R、C元件的布局及其标称值;各开关的通断位置等。
(1)选择动态电路板上的R、C元件,令R=10K ,C=3300pF组成如图4-1(b)所示的RC充放电电路,E为脉冲信号发生器输出VP P 2V,f=1KHz的方波电压信号,并通过示波器探头将激励源E和响应Uc的信号分别连至示波器的两个输入口Ya 和Yb,这时可在示波器的屏幕上观察到激励与响应的变化规律,来测时间常数,并用方格纸1:1的比例描绘波形。
广东第二师范学院学生实验报告
图3-19 响应u c的变化规律图3-20 激励源u i的变化规律
图3-21 C=0.01μF时响应u c的变化规律图3-22 C=1000pF时响应u c的变化规律
.微分电路的测量
选择实验箱上R、C元件,组成如图所示微分电路,令R=1kΩ,C=0.01μF。
在同样的方波激励信号(U m=3V,f=1KHz)作用下,观测并描绘激励与响应的波形。
图3-23为R=1kΩ
应波形图。
图3-23 R=1kΩ时的响应波形
图3-25 R=1M Ω时的响应波形
整理测试结果,得到各种情况下的波形图,并分析其原因。
C=0.01μF 时及C=1000pF 时响应u c 的变化规律
=RC»
2
T
的条件时,则为积分电路。
此电路电容器充放电进行得很慢,电路上的电压近似等于输入电压。
输出电压与输入电压近似地成积分关系。
此时,电路由方波转变
R=1k Ω时及R=100Ω时的响应波形。
rc一阶电路的响应测试实验报告实验目的,通过实验,了解RC一阶电路对直流电压和交流电压的响应特性,掌握RC一阶电路的响应测试方法及实验步骤。
实验仪器与设备,示波器、信号发生器、电阻箱、电容器、万用表、直流稳压电源、导线等。
实验原理,RC一阶电路是由电阻和电容串联而成的电路。
在实验中,我们将通过对RC电路施加不同的输入信号,观察电路的响应情况,了解电路的频率特性和相位特性。
实验步骤:1. 搭建RC一阶电路。
将电阻和电容串联连接,接入示波器和信号发生器。
调节信号发生器的频率和幅值,使其输出正弦波信号。
2. 测量直流电压响应。
将信号发生器输出直流电压信号,通过示波器观察电路的响应情况。
记录电路的电压响应曲线,并测量电路的时间常数。
3. 测量交流电压响应。
将信号发生器输出交流电压信号,通过示波器观察电路的响应情况。
记录电路的电压响应曲线,并测量电路的频率特性和相位特性。
实验数据与分析:1. 直流电压响应曲线如图所示。
根据实验数据,我们可以得到电路的时间常数τ=RC,其中R为电阻值,C为电容值。
时间常数τ描述了电路对直流信号的响应速度,τ越小,电路的响应速度越快。
2. 交流电压响应曲线如图所示。
根据实验数据,我们可以得到电路的频率特性和相位特性。
当输入信号的频率接近电路的截止频率时,电路的响应幅值将下降,相位延迟将增加。
这表明电路对高频信号的响应能力较弱。
实验结论,通过本次实验,我们深入了解了RC一阶电路对直流电压和交流电压的响应特性。
我们掌握了RC一阶电路的响应测试方法,并通过实验数据分析了电路的时间常数、频率特性和相位特性。
这些知识对于我们理解电路的响应特性,设计滤波器和信号处理器等具有重要的意义。
实验注意事项:1. 在搭建电路时,务必注意电路连接的正确性,避免出现短路或断路等情况。
2. 在测量电路响应时,要注意调节信号发生器的频率和幅值,确保输出信号符合实验要求。
3. 实验过程中要注意安全,避免触电和短路等危险情况的发生。
实验七 RC 一阶电路的响应测试一、实验目的1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。
2. 学习电路时间常数的测量方法。
3. 掌握有关微分电路和积分电路的概念。
4. 进一步学会用示波器观测波形。
二、原理说明1. 动态网络的过渡过程是十分短暂的单次变化过程。
要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。
为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。
只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。
2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。
3. 时间常数τ的测定方法:用示波器测量零输入响应的波形如图7-1(a)所示。
根据一阶微分方程的求解得知u c =U m e-t/RC=U m e-t/τ。
当t =τ时,Uc(τ)=0.368U m 。
此时所对应的时间就等于τ。
亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图13-1(c)所示。
a) 零输入响应(b) RC 一阶电路 (c) 零状态响应图 7-14. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。
一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<<2T时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。
因为此时电路的输出信号电压与输入信号电压的微分成正比。
如图0.368tttt0.6320000c uuU m c uc uuU m U m U m7-2(a)所示。
利用微分电路可以将方波转变成尖脉冲。
电路原理实验RC一阶电路的响应测试RC一阶电路是由电阻R和电容C组成的电路。
它是一种常见的滤波电路,可以用于对信号进行滤波和延时等处理。
本实验将对RC一阶电路的响应进行测试,包括频率响应和时间响应两个方面。
一、频率响应测试频率响应测试可以了解RC一阶电路对不同频率信号的响应情况,即电路的频率特性。
我们可以通过改变输入信号的频率,测量输出信号的幅值和相位,从而绘制出RC电路的幅频特性曲线和相频特性曲线。
实验步骤如下:1.搭建RC一阶电路实验电路。
将电容C和电阻R按照串联的方式连接,接入信号发生器的输出端,然后将电路的输出端连接到示波器上。
确保电路接线正确,电容C和电阻R的数值符合实验要求。
2.打开信号发生器和示波器,将信号发生器的频率调节到最低,幅值调节到合适的范围内。
3.逐步增加信号发生器的频率,同时观察示波器上输出信号的幅值和相位。
记录下不同频率下的输出幅值和相位数据。
4.根据记录的数据,绘制RC电路的幅频特性曲线和相频特性曲线。
可以选择使用半对数坐标系或对数坐标系进行绘制,以更清晰地展示电路的频率特性。
二、时间响应测试时间响应测试可以了解RC一阶电路对输入信号的响应速度和衰减情况。
我们可以通过输入一个脉冲信号或方波信号,观察输出信号的波形,从而了解RC电路的时间特性。
实验步骤如下:1.搭建RC一阶电路实验电路。
将电容C和电阻R按照串联的方式连接,接入信号发生器的输出端,然后将电路的输出端连接到示波器上。
确保电路接线正确,电容C和电阻R的数值符合实验要求。
2.打开信号发生器和示波器,将信号发生器的频率调节到适当的范围内,幅值调节到合适的范围内。
3.输入一个脉冲信号或方波信号,观察示波器上输出信号的波形。
记录下输出信号的上升时间、下降时间和衰减时间等数据。
4.根据记录的数据,分析RC电路的时间特性。
可以计算RC电路的时间常数,即RC的乘积,进一步了解电路的响应速度和衰减情况。
总结:通过频率响应测试和时间响应测试,我们可以全面了解RC一阶电路的响应特性。
RC一阶电路的响应测试实验报告
实验目的:
1.掌握RC一阶电路的基本原理;
2.理解RC一阶电路的响应特性。
实验器材:
1.功能发生器;
2.电阻箱;
3.电容;
4.资料线;
5.示波器。
实验原理:
RC一阶电路是由电阻和电容组成的基本电路。
该电路的响应特性与输入信号频率有关。
当输入信号频率较低时,电容接近于开路,所以输入信号几乎全部通过电阻。
当输入信号频率较高时,电容接近于短路,所以输入信号几乎没有通过电阻。
所以,RC电路对不同频率的输入信号具有不同的响应特性。
实验步骤:
1.将RC电路连接好,如图所示。
2.将功能发生器的信号输入端和示波器的输入端分别接到RC电路的输入端和输出端。
3.打开功能发生器和示波器,设置功能发生器的输出信号为正弦波,
并确定频率为50Hz。
4.调节功能发生器的幅度和偏置,使得示波器上显示的波形适当且稳定。
5.记录下示波器上显示的波形图,并将其保存。
实验结果分析:
根据实验步骤中设置的频率为50Hz,我们可以观察到示波器上显示
的波形图。
根据波形图的形状和振幅大小,我们可以判断RC电路对50Hz
频率的输入信号的响应特性。
实验结论:
通过实验,我们可以得到RC电路对50Hz频率的输入信号的响应特性。
进一步实验可以得到RC电路对不同频率的输入信号的响应特性,并绘制
成频率-响应图。
rc一阶电路的响应测试实验总结以RC一阶电路的响应测试实验总结RC一阶电路是电子工程中常见的电路之一,它由一个电阻和一个电容组成。
在实际应用中,RC电路常用于信号滤波、信号放大、信号整形等方面。
在RC电路中,电容器的充放电过程是一个重要的研究对象,因为它决定了电路的响应特性。
本文将介绍RC一阶电路的响应测试实验,并对实验结果进行分析和总结。
实验原理RC一阶电路的响应特性可以通过测试电路的阶跃响应来研究。
阶跃响应是指当输入信号为一个单位阶跃函数时,电路的输出响应。
在RC电路中,当输入信号为一个单位阶跃函数时,电容器开始充电,电路的输出电压也随之变化。
当电容器充电到一定程度时,电路的输出电压达到稳态,此时电路的响应特性就可以通过测量输出电压的变化来研究。
实验步骤1. 搭建RC一阶电路。
将一个电阻和一个电容器串联,接入电源,形成RC电路。
2. 连接测试仪器。
将信号发生器连接到电路的输入端,将示波器连接到电路的输出端。
3. 设置信号发生器。
将信号发生器的输出信号设置为一个单位阶跃函数。
4. 测量输出电压。
在示波器上观察电路的输出电压变化,并记录下电压随时间的变化曲线。
5. 分析实验结果。
根据测量结果,分析电路的响应特性,并绘制出电压随时间的变化曲线图。
实验结果分析通过实验测量,我们可以得到RC一阶电路的阶跃响应曲线。
根据实验结果,我们可以分析电路的响应特性,包括电路的时间常数、电路的稳态响应等。
时间常数是指电容器充电到63.2%所需的时间。
在RC电路中,时间常数可以通过以下公式计算:τ = RC其中,τ为时间常数,R为电阻值,C为电容值。
根据实验结果,我们可以计算出电路的时间常数,并据此分析电路的响应特性。
稳态响应是指电路的输出电压达到稳定状态时的电压值。
在RC电路中,稳态响应可以通过以下公式计算:V = V0(1-e^(-t/τ))其中,V为稳态响应电压,V0为电路的最大输出电压,t为时间,τ为时间常数。
R C一阶电路的响应测试实验内容集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#实验五 RC一阶电路的响应测试一、实验目的1. 测定RC一阶电路的零输入响应、零状态响应及全响应。
2. 掌握有关微分电路和积分电路的概念。
3. 学会时间常数τ的测定方法。
4. 进一步学会用示波器观测波形。
二、原理说明图所示的矩形脉冲电压波u i可以看成是按照一定规律定时接通和关断的直流电压源U。
若将此电压u i加在RC串联电路上(见图),则会产生一系列的电容连续充电和放电的动态过程,在u i的上升沿为电容的充电过程,而在u i的下降沿为电容的放电过程。
它们与矩形脉冲电压u i的脉冲宽度t w及RC串联电路的时间常数τ有十分密切的关系。
当t w不变时,适当选取不同的参数,改变时间常数τ,会使电路特性发生质的变化。
图矩形脉冲电压波形图 RC串联电路图1. RC一阶电路的零状态响应所有储能元件初始值为0的电路对于激励的响应称为零状态响应。
电路的微分方程+u C=U m,其解为u C(t)=U m(1−e−tτ) (t≥0),式中,τ=RC为该电路的为:RC du Cdt时间常数。
2. RC一阶电路的零输入响应电路在无激励情况下,由储能元件的初始状态引起的响应称为零输入响应。
电路达到稳态后,电容器经R放电,此时的电路响应为零输入响应。
电路的微分方程为:RC du C+u C=0,其解为u C(t)=U m e−tτ。
dtRC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长(如图所示),其变化的快慢决定于电路的时间常数τ。
3. 时间常数τ的测定方法方法一:在已知电路参数的条件下,时间常数可以直接由公式计算得出,τ=RC。
方法二:对充电曲线(零状态响应),电容的端电压达到最大值的1−1e(约)倍时所需要的时间即是时间常数τ。
如图(a)所示,用示波器观测响应波形,取上升曲线中波形幅值的倍处所对应的时间轴的刻度,计算出电路的时间常数:τ=扫描时间×OP其中,扫描时间是示波器上X轴扫描速度开关“t/div”的大小。
3、时间常数τ的测定方法:用示波器测量零输入响应的波形如图9-1(a)所示。
根据一阶微分方程的求解得知。
当t=τ时,UC (τ)=0.368Um。
此时所对应的时间就等于τ。
亦可用零状态响应波形增加到0.632Um所对应的时间测得,如图9-1(c)所示。
1、在一阶电路单元上选择R、C元件,令R1=10KΩ,C=3300PF,组成如图9-1(b)所示的RC充放电电路。
US为脉冲信号发生器输出的Um=3V,f=1KHz的方波电压信号,并通过两根同轴电缆线,将激励源US 和响应UC的信号分别连至示波器的两个输入口YA和YB,这时可在示波器的屏幕上观察到激励与响应的变化规律,测算出时间常数τ,并用方格纸按1:1的比例描绘波形。
少量改变电容值或电阻值,定性观察对响应的影响,记录观察到的现象。
2、令R=10KΩ,C=0.1µF,组成如图9-2(a)所示的微分电路。
在同样的方波激励信号(Um=3V,f=1KHz)作用下,观测并描绘激励与响应的波形。
4.微分电路和积分电路是RC过渡过程中较为典型的电路,它对电路元件的参数和输入信号的周期都有特定的要求。
对于一个简单的RC串联电路,在方波脉冲的重复激励下,当满足T=RC《T/2时(T为方波脉冲的重复周期),且由R两端的电压作为响应输出时,则该电路就是一个微分电路,因为此时电路的输出信号电压与输入信号电压的微分成正此,如图2(a)所示。
利用微分电路可以将方波变成尖脉冲。
图2微分电路及积分电路的实验电路在图2(a)中,根据基尔霍夫电压定律及元件特性,有u i=u c(t)+u R(t),而u R=Ri(t),i(t)= .如果电路元件R与C的参数选择满足关系u c(t)》u R(t),u i(t)≈u c(t)那么即输出电压u R(t)与输入电压u i(t)成近似微分关系。
若将图2(a)中的R与C位置调换,如图2(b)所示,由C两端的电压作为响应输出,且当电路的参数满足t=RC》T/2,则该RC电路称为积分电路,因为此时电路的输出信号电压与输入信号电压的积分成正比。
RC一阶电路响应测试_实验报告实验目的:掌握RC一阶电路的响应特性,验证一阶电路的高通和低通滤波特性,并测量其截止频率。
实验仪器:示波器、信号发生器、直流稳压电源、RC电路板。
实验原理:一阶RC电路由一个电阻R和一个电容C组成。
在该电路中,当输入信号变化时,电容器上的电压也随着变化。
因此,该电路的输出是一个对输入信号进行滤波的结果。
一阶RC高通滤波器:该电路通过传递频率高于截止频率的信号,将高频信号传递到输出端,因此该电路用于滤除低频噪声。
一阶RC低通滤波器:该电路通过传递频率低于截止频率的信号,将低频信号传递到输出端,因此该电路用于滤除高频噪声。
截止频率公式:Fc=1/(2πRC)实验步骤:1.将信号发生器的输出连接到RC电路板的输入端,并将示波器连接到RC电路板的输出端。
2.将信号发生器的正极连接到RC电路板的输入端,将示波器的探头连接到RC电路板的输出端。
3.调节信号发生器的频率,使得示波器显示出正弦波形,并记录下该频率。
4.在此基础上,逐渐降低频率,记录下示波器显示的波形变化和频率。
5.逐渐增加频率,重复步骤4。
6.根据所得的数据计算出截止频率,并与理论值进行对比。
实验结果:从实验中得到的数据可以得到RC低通、高通截止频率的计算结果。
得出的数据和计算过程如下:1.高通滤波:当输入频率很低时,输出电压几乎为0,随着输入频率的增加,输出电压逐渐增加。
当输入频率接近电路截止频率时,输出电压开始变化非常缓慢。
当输入频率超过电路截止频率时,输出电压趋于稳定。
例如,将电容C和电阻R的值设置为1μF和1kΩ,输入信号频率从100Hz逐渐增加到1kHz。
当输入频率低于100Hz时,输出电压几乎为0。
当输入频率接近100Hz时,输出电压逐渐增加。
当输入频率超过100Hz时,输出电压开始变化非常缓慢,直到输入信号的频率超过截止频率1.59kHz时,输出电压趋于稳定。
根据公式Fc=1/(2πRC),可得截止频率为1.591549 Hz。
实验三RC一阶电路的响应测试
一、实验目的
1. 测定RC一阶电路的零输入响应,零状态响应及完全响应。
2. 学习电路时间常数的测定方法。
3. 掌握有关微分电路和积分电路的概念。
4. 进一步学会用示波器测绘图形。
二、原理说明
1. 动态网络的过渡过程是十分短暂的单次变化过程,对时间常数τ较大的电路,可用慢扫描长余辉示波器观察光点移动的轨迹。
然而能用一般的双踪示波器观察过渡过程和测量有关的参数,必须使这种单次变化的过程重复出现。
为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即令方波输出的上升沿作为零状态响应的正阶跃激励信号;方波下降沿作为零输入响应的负阶跃激励信号,只要选择方波的重复周期远大于电路的时间常数τ,电路在这样的方波序列脉冲信号的激励下,它的影响和直流电源接通与断开的过渡过程是基本相同的。
2. RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。
3. 时间常数τ的测定方法
图3-1(a)所示电路
用示波器测得零输入响应的波形如图3-1(b)所示。
根据一阶微分方程的求解得知
u
=Ee-t/RC=Ee-t/τ
c
当t=τ时,Uc(τ)=0.368E
此时所对应的时间就等于τ
亦可用零状态响应波形增长到0.632E所对应的时间测得,如图3-1(c)所示。
(b) 零输入响应 (a) RC 一阶电路 (c) 零状态响应
图3-1 RC 一阶电路的响应电路及波形
4. 微分电路和积分电路是RC 一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。
一个简单的RC 串联电路,在方波序
列脉冲的重复激励下,当满足τ=RC «2
T
时(T 为方波脉冲的重复周期),且
由R 端作为响应输出,如图3-2(a)所示。
这就构成了一个微分电路,因为此时电路的输出信号电压与输入信号电压的微分成正比。
(a) 微分电路 (b) 积分电路
图3-2 微分电路和积分电路及波形
若将图3-2(a)中的R 与C 位置调换一下,即由 C 端作为响应输出,且当
电路参数的选择满足τ=RC »2
T
条件时,如图3-2(b)所示即构成积分电路,
因为此时电路的输出信号电压与输入信号电压的积分成正比。
从输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程中仔细观察与记录。
三、实验设备
四、实验内容
实验线路板的结构如图3-3所示,认清R、C元件的布局及其标称值,各开关的通断位置等等。
1. 选择动态线路板上R、C元件,令
(1) R=10KΩ,C=3300PF
组成如图3-1(a)所示的RC充放电电路,E为函数信号发生器输出,取U
m =3V,f=1KHz的方波电压信号,并通过两根同轴电缆线,将激励源u和响应
u c 的信号分别连至示波器的两个输入口Y
A
和Y
B
,这时可在示波器的屏幕上观察
到激励与响应的变化规律,求测时间常数τ,并描绘u及u
c
波形。
(2)改变电容值或电阻值,定性观察对响应的影响,记录观察到的现象。
2. 选择动态板上R、C元件,组成如图3-2(a)所示微分电路,令C=3300PF,R=30KΩ。
在同样的方波激励信号(U
m
=3V,f=1KHz)作用下,观测并描绘激励与响应的波形。
增减R之值,定性观察对响应的影响,并作记录。
当R增至∞时,输入输出波形有何本质上的区别?
五、实验注意事项
1.示波器的辉度不要过亮。
2.调节仪器旋钮时,动作不要过猛。
3.调节示波器时,要注意触发开关和电平调节旋钮的配合使用,以使显示的波形稳定。
4.作定量测定时,“t/div”和“v/div”的微调旋钮应旋至“校准”位置。
5.为防止外界干扰,函数信号发生器的接地端与示波器的接地端要连
接在一起(称共地)。
六、预习思考题
1. 什么样的电信号可作为RC一阶电路零输入响应、零状态响应和完全响应的激励信号?
2. 已知RC一阶电路R=10KΩ,C=0.1μf,试计算时间常数τ,并根据τ值的物理意义,拟定测定τ的方案。
3. 何谓积分电路和微分电路,它们必须具备什么条件?它们在方波序列脉冲的激励下,其输出信号波形的变化规律如何?这两种电路有何功用?
七、实验报告
的变化曲
1. 根据实验观测结果,在方格纸上绘出RC一阶电路充放电时u
c
线,由曲线测得τ值,并与参数值的计算结果作比较,分析误差原因。
2. 根据实验观测结果,归纳、总结积分电路和微分电路的形成条件,阐明波形变换的特征。
3. 心得体会及其他。