不等式的性质3
- 格式:doc
- 大小:86.00 KB
- 文档页数:3
不等式的性质和解法一、不等式的性质1.不等式的定义:表示两个数之间的大小关系,用“>”、“<”、“≥”、“≤”等符号表示。
2.不等式的基本性质:(1)传递性:如果a>b且b>c,那么a>c。
(2)同向相加:如果a>b且c>d,那么a+c>b+d。
(3)同向相减:如果a>b,那么a-c>b-c。
(4)乘除性质:如果a>b且c>0,那么ac>bc;如果a>b且c<0,那么ac<bc。
二、不等式的解法1.解不等式的基本步骤:(1)去分母:将不等式两边同乘以分母的最小正整数,使分母消失。
(2)去括号:将不等式两边同乘以括号内的正数,或者将不等式两边同除以括号内的负数,使括号内的符号改变。
(3)移项:将不等式中的常数项移到一边,将含有未知数的项移到另一边。
(4)合并同类项:将不等式两边同类项合并。
(5)化简:将不等式化简到最简形式。
2.解一元一次不等式:(1)ax+b>c(a≠0):移项得ax>c-b,再除以a得x>(c-b)/a。
(2)ax+b≤c(a≠0):移项得ax≤c-b,再除以a得x≤(c-b)/a。
3.解一元二次不等式:(1)ax2+bx+c>0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
(2)ax2+bx+c≤0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
4.不等式的组:(1)解不等式组的步骤:先解每个不等式,再根据不等式的解集确定不等式组的解集。
(2)不等式组解集的表示方法:用区间表示,例如:[x1, x2]。
三、不等式的应用1.实际问题中的不等式:例如,距离、温度、速度等问题。
2.不等式在生活中的应用:例如,购物、制定计划、比较大小等问题。
3.不等式在其他学科中的应用:例如,在物理学中描述物体的运动状态,在经济学中描述市场的供求关系等。
课 题:不等式的性质(3)教学目的:1. 熟练掌握定理1,2,3的应用;2. 掌握并会证明定理4及其推论1,2;3. 掌握反证法证明定理5教学重点:定理4,5的证明教学难点:定理4的应用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1.同向不等式:两个不等号方向相同的不等式,例如:a>b ,c>d ,是同向不等式 异向不等式:两个不等号方向相反的不等式例如:a>b ,c<d ,是异向不等式2.不等式的性质:定理1:如果a>b ,那么b<a ,如果b<a ,那么a>b .(对称性)即:a>b ⇒b<a ;b<a ⇒a>b定理2:如果a>b ,且b>c ,那么a>c .(传递性)即a>b ,b>c ⇒a>c定理3:如果a>b ,那么a+c>b+c .即a>b ⇒a+c>b+c推论:如果a>b ,且c>d ,那么a+c>b+d .(相加法则)即a>b , c>d ⇒a+c>b+d .二、讲解新课:定理4:如果a>b ,且c>0,那么ac>bc ;如果a>b ,且c<0,那么ac<bc .证明:∵ac-bc =(a-b)c∵a>b ∴a-b>0当c>0时,(a-b)c>0即ac>bc .当c<0时,(a-b)c <0即ac<bc .类比定理3推论,设想同向不等式相乘,不等号方向是否改变?即如果a>b ,c>d 是否一定能得出ac>bd ?(举例说明)能否加强条件得出ac>bd 呢?(引导学生探索,得出推论) .推论1 如果a>b >0,且c>d>0,那么ac>bd .(相乘法则)证明:,0a b c >> a c b c ∴>①又,0,c d b >> ∴bc bd > ②由①、②可得ac bd >说明:(1)上述证明是两次运用定理4,再用定理2证出的;(2)所有的字母都表示正数,如果仅有,a b c d >>,就推不出ac bd >的结论(3)这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向推论2 若0,(1)n n a b a b n N n >>>∈>则且说明:(1)推论2是推论1的特殊情形;(2)应强调学生注意n ∈N 1n >且的条件如果a>b >0,那么a n >b n (n ∈N ,且n>1)定理5若0,1)a b n N n >>>∈>且点拨:遇到困难时,可从问题的反面入手,即所谓的“正难则反” .我们用反证法来证明定理5<=<,就“归谬”了事,而必须进行“穷举” 证明:假定n a 不大于n b<n n b a = 由推论2和定理1,<有a b <;当n n b a =时,显然有b a = 这些都同已知条件0a b >>矛盾>点评:反证法证题思路是:反设结论→找出矛盾→肯定结论.三、讲解范例:例1 已知0>>b a 且d c <<0,求证:db c a > (相除法则) 证:∵0>>c d ∴⇒⎪⎭⎪⎬⎫>>>>0011b a d c d b c a > 例2 已知a>b>0,c<0,求证:bc a c >证明:∵0,a b >>两边同乘以正数得,1ab 11,b a> 即 b a 11< ,又 c<0 ∴ b c a c > 例3 已知a ,b ,x ,y 是正数,且b a 11>,x>y .求证:by y a x x +>+ 证:∵ba 11>>0 ∴b>a>0, 又x>y>0 ∴xb>ay ∴xy+xb>xy+ay 即 x(y+b)>y(x+a) ∵a ,b ,x ,y 是正数,∴y+b>0,x+a>0∴by y a x x +>+ 例4 已知函数2()f x ax c =-, -4≤(1)f ≤-1, -1≤f (2)≤5, 求(3)f 的取值范围分析: 利用(1)f 与(2)f 设法表示a 、c, 然后再代入(3)f 的表达式中,从而用(1)f 与(2)f 来表示(3)f , 最后运用已知条件确定(3)f 的取值范围解: ∵ ⎩⎨⎧=+=-)2(4)1(f c a f c a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=)1(34)2(31)]1()2([31f f c f f a ∴ )1(35)2(389)3(f f c a f -=-= ∵ -4≤f (1)≤1, 故 )35)(4()1()35()35)(1(--≤-≤--f (1) 又 -1≤f (2)≤5, 故 340)2(3838≤≤-f (2) 把(1)和(2)的各边分别相加,得:-1≤)1(35)2(38f f -≤20 所以,-1≤f (3)≤20点评:应当注意,下面的解法是错误的:依题意,得:⎩⎨⎧≤+≤--≤-≤-(2)541(1) 14c a c a 由(1)(2)利用不等式的性质进行加减消元,得0≤a ≤3, 1≤c ≤7 (3)所以,由c a f -=9)3(可得,-7≤f (3)≤27以上解法其错因在于,由(1)(2)得到不等式(3)是利用了不等式性质中的加法法则,而此性质是单向的,不具有可逆性,从而使得a 、c 的范围扩大,这样f (3)的范围也就随之扩大了四、课堂练习:1.已知0>>b a ,0<<d c ,0<e ,求证:db ec a e ->- 证:⇒⎪⎭⎪⎬⎫<-<-⇒>->-⇒⎭⎬⎫<<>>011000e d b c a d b c a d c b a d b e c a e ->- 6.如果0,0<<>>d c b a 求证:db c a ->-ππααsin sin log log 证:∵1sin 0<<α π>1 ∴0log sin <πα又∵0,0>->->>d c b a ∴d b c a ->- ∴d b c a -<-11 ∴db c a ->-ππααsin sin log log 五、小结 :通过本节学习,大家要掌握不等式性质的应用及反证法证明思路,为以后不等式的证明打下一定的基础六、课后作业:一选择题:1. 如果a>b>0,c>d>0,则下列不等式中不正确的是 [ C ]A .a-d>b-cB .cb d a > C .a+d>b+c D .ac>bd 2 如果a 、b 为非0实数,则不等式b a 11>成立的充要条件是 [ D ]A .a>b 且ab<0B .a<b 且ab>0C .a>b,ab<0或ab<0D .a 2b-ab 2<0 3 当a>b>c 时,下列不等式恒成立的是 [ B ]A .ab>acB .(a-b)∣c-b ∣>0C .a ∣c ∣>b ∣c ∣D .∣ab ∣>∣bc| 4已知a 、b 为实数,则“a+b>2”是“a 、b 中至少有一个大于1”的 [ A ] A 充分不必要条件 B 必要不充分条件 C 充要条件 D 不充分也不必要条件5.log m 2> log n 2的充要条件是 [ C ]A .n>m>1或1>m>n>0B .1>m>n>0C .n>m>1或1>n>m>0D .m>n>1 二填空题: 6.若-1<x<y<0,则x 1,y1,2x ,2y 的大小关系为___2x >2y >x 1y 1 7.设角α、β满足22πβαπ<<<-,则α-β的取值范围为-π<α-β<0 8.若实数a>b, 则a 2-ab > ba-b 2填上不等号)9.已知a>b>c ,且a+b+c=0,则b 2 – 4ac 的值的符号为 正数三解答题: 10.已知x 、y 均为正数,设M=y x 11+, N=y x +4, 试比较M 和N 的大小证明:2114()0()x y M N x y x y xy x y ⎛⎫--=+-=≥ ⎪++⎝⎭M N ⇒≥ 11.设函数f(x)的图象为一条开口向上的抛物线, 已知x 、y 均为正数,p>0,q>0且p+q=1,求证f (px+qy)<pf (x)+qf (y)证明:设2()f x ax bx c =++ (0)a >,由p>0,q>0且p+q=1,则2()()()f px qy a px qy b px qy c +=++++=2()p ax bx c +++2()q ay by c +++2apqxy所以pf (x)+qf (y) -f (px+qy)=-2apqxy >0所以f (px+qy)<pf (x)+qf (y) 七、板书设计(略)八、课后记:。
(1)一元一次不等式:只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。
(2)一元一次不等式的解法:求接方法与解一元一次方程类似,根据不等式性质将不等式变形,从而等到解集.(3)一般步骤:一、去分母;二、去括号;三、移项;四、合并,化成b ax >或b ax <的形式(其中0≠a );五、两边都除以未知数的系数,得到不等式的解集。
热身练习1、判断下列各题是否正确?正确的打“√”,错误的打“×”。
(1) 不等式两边同时乘以一个整数,不等号方向不变.( × ) (2) 如果a >b ,那么3-2a >3-2b.( × ) (3) 如果a <b ,那么a 2<b 2.( × ) (4) 如果a 为有理数,则a >-a.( × ) (5) 如果a >b ,那么ac 2>bc 2.( × ) (6) 如果-x >8,那么x >-8.( × ) (7) 若a <b ,则a +c <b +c.( √ )2、若x >y,则ax >ay ,那么a 一定为( A )。
[来源A 、a >0B 、a<0C 、a≥0D 、a ≤03、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( C )。
A 、小于或等于3的有理数 B 、小于3的有理数 C 、小于或等于-3的有理数 D 、小于-3的有理数4、若b a <,则下列各式中一定成立的是( B ) A 、0>-b a B 、0<-b a C 、0>ab D 、0<ab5、如果t>0,那么a+t 与a 的大小关系是 ( A ).A 、a+t>aB 、a+t<aC 、a+t ≥aD 、不能确定 6、同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 ( B ). A 、1,2,3 B 、0,1,2,3 C 、1,2,3,4 D 、0,1,2,3,47、若三个连续正奇数的和不大于27,则这样的奇数组有( B )A .3组B .4组C .5组D .6组 8、若a <0,则-2b a +__<__-2b[来源:学.科.网] 11.设a <b ,用“>”或“<”填空:[来源:Z*xx*ka -1__<__b -1, a +3__<__b +3, -2a__>__-2b ,3a __<__3b12.实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b__<__0, a +b__<__0,ab __>__0,a 2__>__b 2,a 1__>__b1,︱a ︱__>__︱b ︱ 13.若a <b <0,则21(b -a )_>___0 14、不等式2(x + 1) - 12732-≤-x x 的解集为_____1314≥x ________。
名师精编优秀教案
不等式的三条基本性质
不等式基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变(即原来较大的一边仍然较大,原来较小的一边仍然较小).不等式基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变(即原来较大的一边仍然较大,原来较小的一边仍然较小).不等式基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变(即原来较大的一边反而较小,原来较小的一边反而较大).。
● 教学目标
1. 熟练掌握定理1,2,3的应用;
2. 掌握并会证明定理4及其推论1,2;
3. 掌握反证法证明定理5.
● 教学重点
定理4,5的证明.
● 教学难点
定理4的应用.
●教学方法
引导式
● 教具准备
幻灯片
● 教学过程
Ⅰ.复习回顾
师:上一节课,我们一起学习了不等式的三个性质,即定理1,2,3,并初步认识了证明不等式的逻辑推理方法,首先,让我们来回顾一下三个定理的基本内容.
生:(回答略)
师:好,我们这一节课将继续推论定理4、5及其推论,并进一步熟悉不等式性质的应用.
Ⅱ.讲授新课
定理4:若;,0bc ac c b a 则且
若bc ac c b a 则且,0
证明:c b a bc ac )(-=-
0 b a b
a -∴
根据同号相乘得正,异号相乘得负,得
当即时,0)(,0 c b a c -
bc
ac c b a c bc ac 即时当,0)(,0;
-
说明:(1)证明过程中的关键步骤是根据“同号相乘得正,异号相乘得负”来完成的;
(2)定理4证明在一个不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变.
推论1:若bd ac d c b a 则且,0,0
证明:0, c b a
bc ac ∴ ①
又,0, b d c
∴bd bc ②
由①、②可得bd ac .
说明:(1)上述证明是两次运用定理4,再用定理2证出的;
(2)所有的字母都表示正数,如果仅有d c b a ,,就推不出bd ac 的结论.
(3)这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.
推论2:若)1(,0 n N n b a b a n n 且则∈
说明:(1)推论2是推论1的特殊情形;
(2)应强调学生注意n ∈N 1 n 且的条件.
定理5:若)1(,0 n N n b a b a n n 且则∈
师:我们用反证法来证明定理5,因为反面有两种情形,即n n n n b a b a =和 ,所以不能仅仅否定了n n b a ,就“归谬”了事,而必须进行“穷举”. 说明:假定n a 不大于n b ,这有两种情况:或者n n b a ,或者n n b a =.
由推论2和定理1,当n n b a 时,有b a ; 当n n b a =时,显然有b a =
这些都同已知条件0 b a 矛盾 所以n n b a .
师:接下来,我们通过具体的例题来熟悉不等式性质的应用.
例2 已知.:,,d b c a d c b a -- 求证
证明:由0,0 c d d c b a b a --和由知
d
b c a c d b a d b c a --∴-+-=--- 0)()()
(
例3 已知.,0,0b c a c c b a 求证
证明:∵,0 b a 两边同乘以正数得,1ab
b
c a c c b a a
b 0
.11,11又即
说明:通过例3,例4的学习,使学生初步接触不等式的证明,为以后学习不等式的证明打下基础.在应用定理4时,应注意题目条件,即在一个等式两端乘以同一个数时,其正负将影响结论.接下来,我们通过练习来进一步熟悉不等式性质的应用.
Ⅲ.课堂练习
课本P 7练习1,2,3.
● 课堂小结
师:通过本节学习,大家要掌握不等式性质的应用及反证法证明思路,为以后不等式的证明打下一定的基础.
● 课后作业
课本习题6.1 4,5.
●板书设计
§6.1.3 不等式的性质
定理4 推论1 定理5 例3 学生
内容 内容
证明 推论2 证明 例4 练习
● 教学后记。