高考物理真题同步分类解析专题12动量(含解析)
- 格式:doc
- 大小:124.00 KB
- 文档页数:5
高考物理最新力学知识点之动量全集汇编含答案解析一、选择题1.物体在恒定的合外力作用下做直线运动,在时间△t 1内动能由0增大到E 0,在时间∆t 2内动能由E 0增大到2E 0.设合外力在△t 1内做的功是W 1、冲量是I 1,在∆t 2内做的功是W 2、冲量是I 2,那么( ) A .I 1<I 2 W 1=W 2B .I 1>I 2 W 1=W 2C .I 1<I 2 W 1<W 2D .I 1=I 2 W 1<W 22.自然界中某个量D 的变化量D ∆,与发生这个变化所用时间t ∆的比值Dt∆∆,叫做这个量D 的变化率.下列说法正确的是 A .若D 表示某质点做平抛运动的速度,则Dt∆∆是恒定不变的 B .若D 表示某质点做匀速圆周运动的动量,则Dt∆∆是恒定不变的 C .若D 表示某质点做竖直上抛运动离抛出点的高度,则Dt∆∆一定变大. D .若D 表示某质点的动能,则Dt∆∆越大,质点所受外力做的总功就越多 3.一弹丸在飞行到距离地面5 m 高时仅有水平速度 v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,取重力加速度 g =10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )A .B .C .D .4.质量为m 的质点作匀变速直线运动,取开始运动的方向为正方向,经时间t 速度由v 变为-v ,则在时间t 内 A .质点的加速度为2v tB .质点所受合力为2mvt-C .合力对质点做的功为2mvD .合力对质点的冲量为05.篮球运动深受同学们喜爱。
打篮球时,某同学伸出双手接传来的篮球,双手随篮球迅速收缩至胸前,如图所示。
他这样做的效果是( )A.减小篮球对手的冲击力B.减小篮球的动量变化量C.减小篮球的动能变化量D.减小篮球对手的冲量6.如图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆槽相切并从A点进入槽内,则下列说法正确的是()A.小球离开右侧槽口以后,将做竖直上抛运动B.小球在槽内运动的全过程中,只有重力对小球做功C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量守恒7.如图,半径为R、质量为m的半圆轨道小车静止在光滑的水平地面上,将质量也为m的小球从距A点正上方h高处由静止释放,小球自由落体后由A点经过半圆轨道后从B冲出,在空中能上升的最大高度为34h,则A.小球和小车组成的系统动量守恒B.小车向左运动的最大距离为1 2 RC.小球离开小车后做斜上抛运动D.小球第二次能上升的最大高度12h<h<34h8.如图所示,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始自由下滑,则()A .小球到达弧形槽底部时速度小于2ghB .小球到达弧形槽底部时速度等于2ghC .小球在下滑过程中,小球和槽组成的系统总动量守恒D .小球自由下滑过程中机械能守恒9.我国的传统文化和科技是中华民族的宝贵精神财富,四大发明促进了科学的发展和技术的进步,对现代仍具有重大影响,下列说法正确的是( ) A .春节有放鞭炮的习俗,鞭炮炸响的瞬间,动量守恒但能量不守恒B .火箭是我国的重大发明,现代火箭发射时,火箭对喷出气体的作用力大于气体对火箭的作用力C .装在炮弹中的火药燃烧爆炸时,化学能全部转化为弹片的动能D .指南针的发明促进了航海和航空,静止时指南针的N 极指向北方10.质量为m 1=1kg 和m 2(未知的两个物体在光滑的水平面上正碰,碰撞时间极短,其x-t 图象如图所示,则A .被碰物体质量为5kgB .此碰撞一定为弹性碰撞C .碰后两物体速度相同D .此过程有机械能损失11.质量是60kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,使他悬挂起来.已知安全带的缓冲时间是1.2s ,安全带长5m ,取210 /g m s ,则安全带所受的平均冲力的大小为( ) A .1100NB .600NC .500ND .100N12.如图所示,静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,则下列说法不正确的是( )A .α粒子与反冲粒子的动量大小相等,方向相反B .原来放射性元素的原子核电荷数为90C .反冲核的核电荷数为88D.α粒子和反冲粒子的速度之比为1:8813.如图所示是一种弹射装置,弹丸质量为m,底座质量为3m,开始时均处于静止状态,当弹簧释放将弹丸以相对地面v的速度发射出去后,底座的反冲速度大小是()A.3v/4B.v/4C.v/3D.014.我国女子短道速滑队在2013年世锦赛上实现女子3000m接力三连冠.观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则()A.甲对乙的冲量一定等于乙对甲的冲量B.甲、乙的动量变化一定大小相等方向相反C.甲的动能增加量一定等于乙的动能减少量D.甲对乙做多少负功,乙对甲就一定做多少正功15.我国2019年年底将发射“嫦娥五号”,实现区域软着陆及采样返回,探月工程将实现“绕、落、回”三步走目标。
高考物理专题力学知识点之动量难题汇编含答案解析一、选择题1.将一个质量为m 的小球,以一定的初速度0v 斜向上抛出,小球在空中运动t 时间内的动量改变量大小为(不计空气阻力,重力加速度为g )( )A .0mvB .02mvC .mgtD .0mgt mv +2.质量为1.0kg 的小球从高20m 处自由下落到软垫上,反弹后上升的最大高度为5.0m .小球与软垫接触的时间为1.0s ,在接触时间内小球受到合力的冲量大小为(空气阻力不计,g 取10m/s 2)A .10N·s B .20N·s C .30N·s D .40N·s 3.一弹丸在飞行到距离地面5 m 高时仅有水平速度 v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,取重力加速度 g =10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )A .B .C .D .4.如图所示,A 、B 是位于水平桌面上两个质量相等的小滑块,离墙壁的距离分别为L 和2L ,与桌面之间的动摩擦因数分别为A μ和B μ,现给滑块A 某一初速度,使之从桌面右端开始向左滑动,设AB 之间、B 与墙壁之间的碰撞时间都很短,且碰撞中没有能量损失,若要使滑块A 最终不从桌面上掉下来,滑块A 的初速度的最大值为( )A ()AB gL μμ+B ()2A B gL μμ+C .()2A B gL μμ+D ()12A B gL μμ+5.质量为m 的质点作匀变速直线运动,取开始运动的方向为正方向,经时间t 速度由v 变为-v ,则在时间t 内A.质点的加速度为2v tB.质点所受合力为2mvt -C.合力对质点做的功为2mvD.合力对质点的冲量为06.如图,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M,顶端高度为h,今有一质量为m的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是()A.mhM m+B.MhM m+C.cotmhM mα+D.cotMhM mα+7.如图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆槽相切并从A点进入槽内,则下列说法正确的是()A.小球离开右侧槽口以后,将做竖直上抛运动B.小球在槽内运动的全过程中,只有重力对小球做功C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量守恒8.如图,半径为R、质量为m的半圆轨道小车静止在光滑的水平地面上,将质量也为m的小球从距A点正上方h高处由静止释放,小球自由落体后由A点经过半圆轨道后从B冲出,在空中能上升的最大高度为34h,则A.小球和小车组成的系统动量守恒B.小车向左运动的最大距离为1 2 RC.小球离开小车后做斜上抛运动D.小球第二次能上升的最大高度12h<h<34h9.运动员向静止的球踢了一脚(如图),踢球时的力F=100 N,球在地面上滚动了t=10 s 停下来,则运动员对球的冲量为()A.1000 N•sB.500 N•sC.0 N•sD.无法确定10.质量为m1=1kg和m2(未知的两个物体在光滑的水平面上正碰,碰撞时间极短,其x-t 图象如图所示,则A.被碰物体质量为5kgB.此碰撞一定为弹性碰撞C.碰后两物体速度相同D.此过程有机械能损失11.“轨道电子俘获”是放射性同位素衰变的一种形式,它是指原子核(称为母核)俘获一个核外电子,其内部一个质子转变为中子,从而变成一个新核(称为子核),并且放出一个中微子的过程。
高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律3.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:①物块A相对B静止后的速度大小;②木板B至少多长.【答案】①0.25v0.②216v Lgμ=【解析】试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,mv0=2mv1,① (2分)2mv1=4mv2② (2分)联立①②得,v2=0.25v0.(1分)(2)当A在木板B上滑动时,系统的动能转化为摩擦热,设木板B的长度为L,假设A刚好滑到B的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A相对B静止后的速度大小;对子弹和A共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)22+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
高考物理新力学知识点之动量真题汇编含答案解析(3)一、选择题1.人的质量m=60kg,船的质量M=240kg,若船用缆绳固定,船离岸1.5m时,人可以跃上岸.若撤去缆绳,如图所示,人要安全跃上岸,船离岸至多为(不计水的阻力,两次人消耗的能量相等,两次从离开船到跃上岸所用的时间相等)()A.1.5m B.1.2m C.1.34m D.1.1m2.如图所示,光滑绝缘水平轨道上带正电的甲球,以某一水平速度射向静止在轨道上带正电的乙球,当它们相距最近时,甲球的速度变为原来的15.已知两球始终未接触,则甲、乙两球的质量之比是A.1:1B.1:2C.1:3D.1:43.如图所示,质量m1=10kg的木箱,放在光滑水平面上,木箱中有一个质量为m2=10kg 的铁块,木箱与铁块用一水平轻质弹簧固定连接,木箱与铁块一起以v0=6m/s的速度向左运动,与静止在水平面上质量M=40kg的铁箱发生正碰,碰后铁箱的速度为v=2m/s,忽略一切摩擦阻力,碰撞时间极短,弹簧始终在弹性限度内,则A.木箱与铁箱碰撞后瞬间木箱的速度大小为4m/sB.当弹簧被压缩到最短时木箱的速度大小为4m/sC.从碰后瞬间到弹簧被压缩至最短的过程中,弹簧弹力对木箱的冲量大小为20N·s D.从碰后瞬间到弹簧被压缩至最短的过程中,弹簧弹性势能的最大值为160J4.有人设想在遥远的宇宙探测时,给探测器安上反射率极高(可认为100%)的薄膜,并让它正对太阳,用光压为动力推动探测器加速。
已知某探测器在轨道上运行,阳光恰好垂直照射在薄膜上,若膜面积为S,每秒每平方米面积获得的太阳光能为E,探测器总质量为M,光速为c,则探测器获得的加速度大小的表达式是(光子动量为hpλ=)()A.2EScMB.22ESc MC.EScMD.2EScMh5.如图,光滑水平面上有两辆小车,用细线相连,中间有一个被压缩的轻弹簧,小车处于静止状态。
烧断细线后,由于弹力的作用两小车分别向左、右运动。
高考物理动量定理试题(有答案和解析)含解析一、高考物理精讲专题动量定理1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2C v N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
一个质量为60kg 的运动员,从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0m 高处。
已知运动员与网接触的时间为1.2s ,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小和方向。
高考物理力学知识点之动量全集汇编及答案解析(1)一、选择题1.一种未知粒子跟静止的氢原子核正碰,测出碰撞后氢原子核的速度是7v。
该未知粒子(速度不变)跟静止的氮原子核正碰时,测出碰撞后氮原子核的速度是v。
已知氢原子核的质量是m H,氮原子核的质量是14m H,上述碰撞都是弹性碰撞,则下列说法正确的是A.碰撞前后未知粒子的机械能不变B.未知粒子在两次碰撞前后的方向均相反C.未知粒子的质量为76H mD.未知粒子可能是α粒子2.一弹丸在飞行到距离地面5 m高时仅有水平速度 v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,取重力加速度 g=10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )A.B.C.D.3.“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变4.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则()A.小木块和木箱最终都将静止B.小木块最终将相对木箱静止,二者一起向右运动C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动5.如图所示,一个质量为M的滑块放置在光滑水平面上,滑块的一侧是一个四分之一圆弧EF,圆弧半径为R=1m.E点切线水平.另有一个质量为m的小球以初速度v0从E点冲上滑块,若小球刚好没跃出圆弧的上端,已知M=4m,g取10m/s2,不计摩擦.则小球的初速度v0的大小为()A.v0=4m/s B.v0=6m/s C.v0=5m/s D.v0=7m/s6.有人设想在遥远的宇宙探测时,给探测器安上反射率极高(可认为100%)的薄膜,并让它正对太阳,用光压为动力推动探测器加速。
高考物理新力学知识点之动量分类汇编及答案解析一、选择题1.运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是( )A.燃料燃烧推动空气,空气反作用力推动火箭B.火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭C.火箭发动机用力将燃料燃烧产生的气体向后推出,气体的反作用力推动火箭D.火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭2.“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变3.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则()A.小木块和木箱最终都将静止B.小木块最终将相对木箱静止,二者一起向右运动C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动4.如图所示,一个质量为M的滑块放置在光滑水平面上,滑块的一侧是一个四分之一圆弧EF,圆弧半径为R=1m.E点切线水平.另有一个质量为m的小球以初速度v0从E点冲上滑块,若小球刚好没跃出圆弧的上端,已知M=4m,g取10m/s2,不计摩擦.则小球的初速度v0的大小为()A.v0=4m/s B.v0=6m/s C.v0=5m/s D.v0=7m/s5.如图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆槽相切并从A点进入槽内,则下列说法正确的是()A.小球离开右侧槽口以后,将做竖直上抛运动B.小球在槽内运动的全过程中,只有重力对小球做功C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量守恒6.如图,光滑水平面上有两辆小车,用细线相连,中间有一个被压缩的轻弹簧,小车处于静止状态。
高考物理新力学知识点之动量真题汇编含答案解析(5)一、选择题1.一个不稳定的原子核质量为M,处于静止状态.放出一个质量为m的粒子后反冲,已知放出的粒子的动能为E0,则原子核反冲的动能为A.E0B.mME0C.mM m-E0D.MmM m-E02.半径相等的两个小球甲和乙,在光滑的水平面上沿同一直线相向运动,若甲球质量大于乙球质量,发生碰撞前,两球的动能相等,则碰撞后两球的状态可能是()A.两球的速度方向均与原方向相反,但它们动能仍相等B.两球的速度方向相同,而且它们动能仍相等C.甲、乙两球的动量相同D.甲球的动量不为零,乙球的动量为零3.如图所示,光滑的四分之一圆弧轨道M静止在光滑水平面上,一个物块m在水平地面上以大小为v0的初速度向右运动并无能量损失地滑上圆弧轨道,当物块运动到圆弧轨道上某一位置时,物块向上的速度为零,此时物块与圆弧轨道的动能之比为1:2,则此时物块的动能与重力势能之比为(以地面为零势能面)A.1:2B.1:3C.1:6D.1:94.质量为1.0kg的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为5.0m.小球与软垫接触的时间为1.0s,在接触时间内小球受到合力的冲量大小为(空气阻力不计,g取10m/s2)A.10N·s B.20N·s C.30N·s D.40N·s5.下列说法正确的是( )A.速度大的物体,它的动量一定也大B.动量大的物体,它的速度一定也大C.只要物体的运动速度大小不变,物体的动量就保持不变D.物体的动量变化越大则该物体的速度变化一定越大6.质量为m的子弹以某一初速度v击中静止在粗糙水平地面上质量为M的木块,并陷入木块一定深度后与木块相对静止,甲、乙两图表示这一过程开始和结束时子弹和木块可能的相对位置,设地面粗糙程度均匀,木块对子弹的阻力大小恒定,下列说法正确的是()A.若M较大,可能是甲图所示情形:若M较小,可能是乙图所示情形B.若0v较小,可能是甲图所示情形:若0v较大,可能是乙图所示情形C.地面较光滑,可能是甲图所示情形:地面较粗糙,可能是乙图所示情形D.无论m、M、0v的大小和地面粗糙程度如何,都只可能是甲图所示的情形7.质量为m的质点作匀变速直线运动,取开始运动的方向为正方向,经时间t速度由v变为-v,则在时间t内A.质点的加速度为2v tB.质点所受合力为2mvt -C.合力对质点做的功为2mvD.合力对质点的冲量为08.将充足气后质量为0.5kg的篮球从1.6m高处自由落下,篮球接触地面的时间为0.5s,竖直弹起的最大高度为0.9m。
高考物理力学知识点之动量解析含答案(1)一、选择题1.一物体在合外力F 的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示,物体在0t 和02t 时刻,物体的动能分别为1k E 、2k E ,物块的动量分别为1p 、2p ,则A .218k k E E =,214p p =B .213k k E E =,213p p =C .219k k E E =,213p p =D .213k kE E =,212p p =2.下列说法正确的是( ) A .速度大的物体,它的动量一定也大 B .动量大的物体,它的速度一定也大C .只要物体的运动速度大小不变,物体的动量就保持不变D .物体的动量变化越大则该物体的速度变化一定越大3.质量为m 的子弹以某一初速度0v 击中静止在粗糙水平地面上质量为M 的木块,并陷入木块一定深度后与木块相对静止,甲、乙两图表示这一过程开始和结束时子弹和木块可能的相对位置,设地面粗糙程度均匀,木块对子弹的阻力大小恒定,下列说法正确的是( )A .若M 较大,可能是甲图所示情形:若M 较小,可能是乙图所示情形B .若0v 较小,可能是甲图所示情形:若0v 较大,可能是乙图所示情形C .地面较光滑,可能是甲图所示情形:地面较粗糙,可能是乙图所示情形D .无论m 、M 、0v 的大小和地面粗糙程度如何,都只可能是甲图所示的情形4.如图所示,光滑绝缘水平轨道上带正电的甲球,以某一水平速度射向静止在轨道上带正电的乙球,当它们相距最近时,甲球的速度变为原来的15.已知两球始终未接触,则甲、乙两球的质量之比是A .1:1B .1:2C .1:3D .1:45.如图所示,两个相同的木块A 、B 静止在水平面上,它们之间的距离为L ,今有一颗子弹以较大的速度依次射穿了A 、B ,在子弹射出A 时,A 的速度为v A ,子弹穿出B 时,B 的速度为v B ,A 、B 停止时,它们之间的距离为s ,整个过程A 、B 没有相碰,则( )A .s =L ,v A =v BB .s >L ,v A <v BC .s <L ,v A >v BD .s <L ,v A <v B6.如图,光滑水平面上有两辆小车,用细线相连,中间有一个被压缩的轻弹簧,小车处于静止状态。
高考物理最新力学知识点之动量全集汇编及答案解析一、选择题1.一热气球在地面附近匀速上升,某时刻从热气球上掉下一沙袋,不计空气阻力。
则此后( )A.沙袋重力的功率逐渐增大B.沙袋的机械能先减小后增大C.在相等时间内沙袋动量的变化相等D.在相等时间内沙袋动能的变化相等2.如图所示,光滑绝缘水平轨道上带正电的甲球,以某一水平速度射向静止在轨道上带正电的乙球,当它们相距最近时,甲球的速度变为原来的15.已知两球始终未接触,则甲、乙两球的质量之比是A.1:1B.1:2C.1:3D.1:43.如图所示,一个质量为M的滑块放置在光滑水平面上,滑块的一侧是一个四分之一圆弧EF,圆弧半径为R=1m.E点切线水平.另有一个质量为m的小球以初速度v0从E点冲上滑块,若小球刚好没跃出圆弧的上端,已知M=4m,g取10m/s2,不计摩擦.则小球的初速度v0的大小为()A.v0=4m/s B.v0=6m/s C.v0=5m/s D.v0=7m/s4.将充足气后质量为0.5kg的篮球从1.6m高处自由落下,篮球接触地面的时间为0.5s,竖直弹起的最大高度为0.9m。
不计空气阻力,重力加速度大小为g=9.8m/s2。
则触地过程中篮球地面的平均作用力大小为A.4.9NB.8.9NC.9.8ND.14.7N5.有人设想在遥远的宇宙探测时,给探测器安上反射率极高(可认为100%)的薄膜,并让它正对太阳,用光压为动力推动探测器加速。
已知某探测器在轨道上运行,阳光恰好垂直照射在薄膜上,若膜面积为S,每秒每平方米面积获得的太阳光能为E,探测器总质量为M,光速为c,则探测器获得的加速度大小的表达式是(光子动量为hpλ=)()A.2EScMB.22ESc MC.EScMD.2EScMh6.如图,光滑水平面上有两辆小车,用细线相连,中间有一个被压缩的轻弹簧,小车处于静止状态。
烧断细线后,由于弹力的作用两小车分别向左、右运动。
已知两小车质量之比m1:m2=2:1,下列说法正确的是A.弹簧弹开后两车速度大小之比为1:2B.弹簧弹开后两车动量大小之比为1:2C.弹簧弹开过程m1、m2受到的冲量大小之比为2:1D.弹簧弹开过程弹力对m1、m2做功之比为1:47.20世纪人类最伟大的创举之一是开拓了太空的全新领域.现有一艘远离星球在太空中直线飞行的宇宙飞船,为了测量自身质量,启动推进器,测出飞船在短时间Δt内速度的改变为Δv,和飞船受到的推力F(其它星球对它的引力可忽略).飞船在某次航行中,当它飞近一个孤立的星球时,飞船能以速度v,在离星球的较高轨道上绕星球做周期为T的匀速圆周运动.已知星球的半径为R,引力常量用G表示.则宇宙飞船和星球的质量分别是()A.F vt,2v RGB.F vt,32v TGπC.F tv,2v RGD.F tv,32v TGπ8.“轨道电子俘获”是放射性同位素衰变的一种形式,它是指原子核(称为母核)俘获一个核外电子,其内部一个质子转变为中子,从而变成一个新核(称为子核),并且放出一个中微子的过程。
高考物理最新力学知识点之动量真题汇编附答案解析(3)一、选择题1.马路”低头族”已经成为交通安全的一个大问题,一个小朋友手拿手机正在过马路,突然一阵急促鸣笛,手机掉在地上,还好有惊无险,小朋友没事,手机虽然戴着有很好缓冲作用的保护套,可是屏还是摔碎了。
如果手机质量为180克,从静止开始下落,开始离地高度为0. 8米,与地面的撞击时间为0. 04秒,且落地后不再反弹,重力加速度g 取210m/s ,那么手机在与地面作用的过程中,地面对手机作用力的大小为 ( ) A .19. 8NB .18. 0NC .16. 2ND .18. 18N2.半径相等的两个小球甲和乙,在光滑的水平面上沿同一直线相向运动,若甲球质量大于乙球质量,发生碰撞前,两球的动能相等,则碰撞后两球的状态可能是( )A .两球的速度方向均与原方向相反,但它们动能仍相等B .两球的速度方向相同,而且它们动能仍相等C .甲、乙两球的动量相同D .甲球的动量不为零,乙球的动量为零3.自然界中某个量D 的变化量D ∆,与发生这个变化所用时间t ∆的比值Dt∆∆,叫做这个量D 的变化率.下列说法正确的是 A .若D 表示某质点做平抛运动的速度,则Dt∆∆是恒定不变的 B .若D 表示某质点做匀速圆周运动的动量,则Dt∆∆是恒定不变的 C .若D 表示某质点做竖直上抛运动离抛出点的高度,则Dt∆∆一定变大. D .若D 表示某质点的动能,则Dt∆∆越大,质点所受外力做的总功就越多 4.下列说法正确的是( ) A .速度大的物体,它的动量一定也大 B .动量大的物体,它的速度一定也大C .只要物体的运动速度大小不变,物体的动量就保持不变D .物体的动量变化越大则该物体的速度变化一定越大5.如图所示,一个质量为M 的滑块放置在光滑水平面上,滑块的一侧是一个四分之一圆弧EF ,圆弧半径为R =1m .E 点切线水平.另有一个质量为m 的小球以初速度v 0从E 点冲上滑块,若小球刚好没跃出圆弧的上端,已知M =4m ,g 取10m/s 2,不计摩擦.则小球的初速度v 0的大小为( )A.v0=4m/s B.v0=6m/s C.v0=5m/s D.v0=7m/s6.篮球运动深受同学们喜爱。
高考物理最新力学知识点之动量分类汇编及答案解析一、选择题1.下列说法正确的是( )A .若一个物体的动量发生变化,则动能一定变化B .若一个物体的动能发生变化,则动量一定变化C .匀速圆周运动的物体,其动量保持不变D .一个力对物体有冲量,则该力一定会对物体做功2.如图所示,在光滑水平面上,有质量分别为2m 和m 的A B 、两滑块,它们中间夹着一根处于压缩状态的轻质弹簧(弹簧与A B 、不拴连),由于被一根细绳拉着而处于静止状态.当剪断细绳,在两滑块脱离弹簧之后,下述说法正确的是( )A .两滑块的动量大小之比:2:1AB p p =B .两滑块的速度大小之比A B v v :2:1=C .两滑块的动能之比12::kA kB E E =D .弹簧对两滑块做功之比:1:1A B W W =3.如图所示,光滑的四分之一圆弧轨道M 静止在光滑水平面上,一个物块m 在水平地面上以大小为v 0的初速度向右运动并无能量损失地滑上圆弧轨道,当物块运动到圆弧轨道上某一位置时,物块向上的速度为零,此时物块与圆弧轨道的动能之比为1:2,则此时物块的动能与重力势能之比为(以地面为零势能面)A .1:2B .1:3C .1:6D .1:94.一弹丸在飞行到距离地面5 m 高时仅有水平速度 v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,取重力加速度 g =10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )A .B .C.D.5.“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变6.如图所示,光滑绝缘水平轨道上带正电的甲球,以某一水平速度射向静止在轨道上带正电的乙球,当它们相距最近时,甲球的速度变为原来的15.已知两球始终未接触,则甲、乙两球的质量之比是A.1:1B.1:2C.1:3D.1:47.如图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆槽相切并从A点进入槽内,则下列说法正确的是()A.小球离开右侧槽口以后,将做竖直上抛运动B.小球在槽内运动的全过程中,只有重力对小球做功C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量守恒8.20世纪人类最伟大的创举之一是开拓了太空的全新领域.现有一艘远离星球在太空中直线飞行的宇宙飞船,为了测量自身质量,启动推进器,测出飞船在短时间Δt内速度的改变为Δv,和飞船受到的推力F(其它星球对它的引力可忽略).飞船在某次航行中,当它飞近一个孤立的星球时,飞船能以速度v,在离星球的较高轨道上绕星球做周期为T的匀速圆周运动.已知星球的半径为R,引力常量用G表示.则宇宙飞船和星球的质量分别是()A.F vt,2v RGB.F vt,32v TGπC.F tv,2v RGD.F tv,32v TGπ9.如图所示,在冰壶世锦赛上中国队以8:6战胜瑞典队,收获了第一个世锦赛冠军,队长王冰玉在最后一投中,将质量为19kg的冰壶推出,运动一段时间后以0.4m/s的速度正碰静止的瑞典冰壶,然后中国队冰壶以0.1m/s的速度继续向前滑向大本营中心.若两冰壶质量相等,则下列判断正确的是()A.瑞典队冰壶的速度为0.3m/s,两冰壶之间的碰撞是弹性碰撞B.瑞典队冰壶的速度为0.3m/s,两冰壶之间的碰撞是非弹性碰撞C.瑞典队冰壶的速度为0.5m/s,两冰壶之间的碰撞是弹性碰撞D.瑞典队冰壶的速度为0.5m/s,两冰壶之间的碰撞是非弹性碰撞10.如图所示,撑杆跳尚是运动会中的一个重要比赛项目。
高考试题精编版分项解析专题07 动量1.高空坠物极易对行人造成伤害。
若一个50 g的鸡蛋从一居民楼的25层坠下,与地面的撞击时间约为2 ms,则该鸡蛋对地面产生的冲击力约为()A. 10 NB. 102 NC. 103 ND. 104 N【来源】2018年普通高等学校招生全国统一考试物理(全国II卷)【答案】 C由动量定理可知:,解得:,根据牛顿第三定律可知鸡蛋对地面产生的冲击力约为103 N,故C正确故选C点睛:利用动能定理求出落地时的速度,然后借助于动量定理求出地面的接触力2.高铁列车在启动阶段的运动可看作初速度为零的均加速直线运动,在启动阶段列车的动能()A. 与它所经历的时间成正比B. 与它的位移成正比C. 与它的速度成正比D. 与它的动量成正比【来源】2018年全国普通高等学校招生统一考试物理(新课标I卷)【答案】 B【解析】本题考查匀变速直线运动规律、动能、动量及其相关的知识点。
根据初速度为零匀变速直线运动规律可知,在启动阶段,列车的速度与时间成正比,即v=at,由动能公式E k=mv2,可知列车动能与速度的二次方成正比,与时间的二次方成正比,选项AC错误;由v2=2ax,可知列车动能与位移x成正比,选项B正确;由动量公式p=mv,可知列车动能E k=mv2=,即与列车的动量二次方成正比,选项D错误。
3.(多选)如图,一平行板电容器连接在直流电源上,电容器的极板水平,两微粒a、b所带电荷量大小相等、符号相反,使它们分别静止于电容器的上、下极板附近,与极板距离相等。
现同时释放a、b,它们由静止开始运动,在随后的某时刻t,a、b经过电容器两极板间下半区域的同一水平面,a、b间的相互作用和重力可忽略。
下列说法正确的是A. a的质量比b的大B. 在t时刻,a的动能比b的大C. 在t时刻,a和b的电势能相等D. 在t时刻,a和b的动量大小相等【来源】2018年全国普通高等学校招生统一考试物理(全国III卷)【答案】 BD在t时刻,a的动能比b大,选项B正确;由于在t时刻两微粒经过同一水平面,电势相等,电荷量大小相等,符号相反,所以在t时刻,a和b的电势能不等,选项C错误;由于a微粒受到的电场力(合外力)等于b微粒受到的电场力(合外力),根据动量定理,在t时刻,a微粒的动量等于b微粒,选项D正确。
F 单元 动量F1 动量 冲量 动量定理9. (1)F1 [2012·天津卷] 质量为0.2 kg 的小球竖直向下以6 m/s 的速度落至水平地面,再以 4 m/s 的速度反向弹回,取竖直向上为正方向,则小球与地面碰撞前后的动量变化为________kg·m/s.若小球与地面的作用时间为0.2 s ,则小球受到地面的平均作用力大小为________N(取g =10 m/s 2).9.(1)[答案] 2 12[解析] 取竖直向上为正方向,小球的初动量p 1=m v 1=0.2×(-6) kg·m/s =-1.2 kg·m/s ,小球的末动量p 2=m v 2=0.2×4 kg·m/s =0.8 kg·m/s ,故动量的变化量Δp = p 2-p 1=2 kg·m/s.由动量定理得,F -mg =Δp Δt,代入数据,有F =12 N.F2 动量守恒定律23.F2 [2012·重庆卷] 图所示为一种摆式摩擦因数测量仪,可测量轮胎与地面间动摩擦因数,其主要部件有:底部固定有轮胎橡胶片的摆锤和连接摆锤的轻质细杆.摆锤的质量为m ,细杆可绕轴O 在竖直平面内自由转动,摆锤重心到O 点距离为L .测量时,测量仪固定于水平地面,将摆锤从与O 等高的位置处静止释放.摆锤到最低点附近时,橡胶片紧压地面擦过一小段距离s (s <L ),之后继续摆至与竖直方向成θ角的最高位置.若摆锤对地面的压力可视为大小为F 的恒力,重力加速度为g ,求:(1)(2)在上述过程中摩擦力对摆锤所做的功;(3)橡胶片与地面之间的动摩擦因数.[答案](1)损失的机械能ΔE =mgL cos θ (2)摩擦力做功W f =-mgL cos θ(3)动摩擦因数μ=mgL cos θFs17.F2 [2012·重庆卷] 质量为m 的人站在质量为2m 的平板小车上,以共同的速度在水平地面上沿直线前行,车所受地面阻力的大小与车对地面压力的大小成正比.当车速为v 0时,人从车上以相对于地面大小为v 0的速度水平向后跳下.跳离瞬间地面阻力的冲量忽略不计,则能正确表示车运动的v -t 图象为( )A B 17.B [解析] 人跳车前,人和车以大于v 0的初速度做匀减速直线运动,加速度大小为a =μ×3mg 3m=μg ;人跳车瞬间,人和车组成的系统动量守恒,规定初速度方向为正方向,则3m v 0=-m v 0+2m v ,得v =2v 0,此后车做减速运动的加速度a ′=μ×2mg 2m =μg =a ,B 项正确.38.F2(2)[2012·山东卷] 光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.38.(2)[解析] 设A 与B 碰撞后,A 的速度为v A ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B ①对B 、C 木块:m B v B =(m B +m C )v ②由A 与B 间的距离保持不变可知v A =v ③联立①②③式,代入数据得v B =65v 029.(2)F2[2012·福建卷] 如图,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为__________.(填选项前的字母)A .v 0+m M vB .v 0-m Mv C. v 0+m M (v 0+v ) D .v 0+m M(v 0-v ) 29.(2)C [解析] 以船原来的运动方向为正方向,根据动量守恒定律有:(M +m )v 0=M v M-m v ,解得v M =v 0+m M(v +v 0),C 正确.24.B5 F2 E2 E3[2012·安徽卷] 如图19所示,装置的左边是足够长的光滑水平台面,一轻质弹簧左端固定,右端连接着质量M =2 kg 的小物块A .装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接.传送带始终以u =2 m/s 的速率逆时针转动.装置的右边是一光滑曲面,质量m =1 kg 的小物块B 从其上距水平台面高h =1.0 m 处由静止释放.已知物块B 与传送带之间的动摩擦因数μ=0.2,l =1.0 m .设物块A 、B 间发生的是对心弹性碰撞,第一次碰撞前物块A 静止且处于平衡状态.取g =10 m/s 2.(1)求物块B 与物块A 第一次碰撞前的速度大小;(2)通过计算说明物块B 与物块A 第一次碰撞后能否运动到右边的曲面上;(3)如果物块A 、B 每次碰撞后,物块A 再回到平衡位置时都会立即被锁定,而当它们再次碰撞前锁定被解除,试求出物块B 第n 次碰撞后的运动速度大小.24.[解析] (1)设物块B 沿光滑曲面下滑到水平位置时的速度大小为v 0.由机械能守恒知mgh =12m v 20得v 0=2gh设物块B 在传送带上滑动过程中因受摩擦力所产生的加速度大小为a ,则μmg =ma设物块B 通过传送带后运动速度大小为v ,有v 2-v 20=-2al联立解得v =4 m/s由于v >u =2 m/s ,所以v =4 m/s 即为物块B 与物块A 第一次碰撞前的速度大小.(2)设物块A 、B 第一次碰撞后的速度分别为V 、v 1,取向右为正方向,由弹性碰撞知 -m v =m v 1+MV12m v 2=12m v 21+12MV 2 解得v 1=13v =43m/s 即碰撞后物块B 沿水平台面向右匀速运动.设物块B 在传送带上向右运动的最大位移为l ′,则0-v 21=-2al ′得l ′=49m<1 m 所以物块B 不能通过传送带运动到右边的曲面上.(3)当物块B 在传送带上向右运动的速度为零后,将会沿传送带向左加速.可以判断,物块B 运动到左边台面时的速度大小为v 1,继而与物块A 发生第二次碰撞.设第二次碰撞后物块B 速度大小为v 2,同上计算可知v 2=13v 1=⎝⎛⎭⎫132v 物块B 与物块A 第三次碰撞、第四次碰撞……,碰撞后物块B 的速度大小依次为v 3=13v 2=⎝⎛⎭⎫133v v 4=13v 3=⎝⎛⎭⎫134v ……则第n 次碰撞后物块B 的速度大小为v n =(13)n v .F321.F3[2012·全国卷] 如图,大小相同的摆球a 和b 的质量分别为m 和3m ,摆长相同,并排悬挂,平衡时两球刚好接触.现摆球a 向左拉开一小角度后释放.若两球的碰撞是弹性的,下列判断正确的是( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置21.AD [解析] 设摆球a 到达最低点恰未发生碰撞时的速度为v 0,碰撞过程动量守恒且动能守恒,碰后速度v ′1=m 1-m 2m 1+m 2v 0=-12v 0;v ′2=2m 1m 1+m 2v 0=12v 0,所以A 正确,B 错误;第一次碰撞后的瞬间,两球的速度v 大小相等,摆起的高度h 满足v 2=2gh ,所以两球上升的高度相同,故两球的最大摆角相同,C 错误;两摆摆长相等,由周期公式T =2πl g可知周期相等,D 正确.35.(2)F3[2012·课标全国卷]如图,小球a 、b 用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求:(ⅰ)两球a 、b 的质量之比;(ⅱ)两球在碰撞过程中损失的机械能与球b 在碰前的最大动能之比.35.(2)[解析] (ⅰ)设球b 的质量为m 2,细线长为L ,球b 下落至最低点、但未与球a 相碰时的速率为v ,由机械能守恒定律得m 2gL =12m 2v 2① 式中g 是重力加速度的大小.设球a 的质量为m 1;在两球碰后的瞬间,两球共同速度为v ′,以向左为正.由动量守恒定律得m 2v =(m 1+m 2)v ′②设两球共同向左运动到最高处时,细线与竖直方向的夹角为θ,由机械能守恒定律得 12(m 1+m 2)v ′2=(m 1+m 2)gL (1-cos θ)③ 联立①②③式得m 1m 2=11-cos θ-1④ 代入题给数据得m 1m 2=2-1⑤ (ⅱ)两球在碰撞过程中的机械能损失是Q =m 2gL -(m 1+m 2)gL (1-cos θ)⑥联立①⑥式,Q 与碰前球b 的最大动能E k (E k =12m 2v 2)之比为 Q E k =1-m 1+m 2m 2(1-cos θ)⑦联立⑤⑦式,并代入题给数据得QE k=1-2 2⑧25.F3[2012·四川卷] 如图所示,水平虚线X下方区域分布着方向水平、垂直纸面向里、磁感应强度为B的匀强磁场,整个空间存在匀强电场(图中未画出).质量为m、电荷量为+q的小球P静止于虚线X上方A点,在某一瞬间受到方向竖直向下、大小为I的冲量作用而做匀速直线运动.在A点右下方的磁场中有定点O,长为l的绝缘轻绳一端固定于O点,另一端连接不带电的质量同为m 的小球O,自然下垂.保持轻绳伸直,向右拉起Q,直到绳与竖直方向有一小于5°的夹角,在P开始运动的同时自由释放Q,Q到达O点正下方W点时速率为v0.P、Q两小球在W点发生正碰,碰后电场、磁场消失,两小球粘在一起运动.P、Q两小球均视为质点,P小球的电荷量保持不变,绳不可伸长,不计空气阻力,重力加速度为g.(1)求匀强电场场强E的大小和P进入磁场时的速率v;(2)若绳能承受的最大拉力为F,要使绳不断,F至少为多大?(3)求A点距虚线X的距离s.25.[解析] (1)设小球P所受电场力为F1,则F1=qE在整个空间重力和电场力平衡,有F1=mg联立相关方程得E=mg q设小球P受到冲量后获得速度为v,由动量定理得I=m v故v=I m(2)设P、Q同向相碰后在W点的最大速度为v m,由动量守恒定律得m v+m v0=(m+m)v m此刻轻绳的张力也为最大,由牛顿运动定律得F-(m+m)g=(m+m)lv2m联立相关方程,得F=(I+m v0)22ml+2mg(3)设P 在X 上方做匀速直线运动的时间为t P 1,则t P 1=s v设P 在X 下方做匀速圆周运动的时间为t P 2,则t P 2=πm 2Bq设小球Q 从开始运动到与P 球反向相碰的运动时间为t Q ,由单摆周期性,有t Q =(n +14)2πl g 由题意,有t Q =t P 1+t P 2联立相关方程,得s =(n +14)2πI m l g -πI 2Bq[n 为大于(m 4Bq g l -14)的整数]设小球Q 从开始运动到与P 球同向相碰的运动时间为t Q ,由单摆周期性,有t Q =(n +34)2πl g同理可得s =(n +34)2πI m l g -πI 2Bq[n 为大于(m 4Bq l g -34)的整数]F4 力学观点的综合应用10.F4 [2012·天津卷] 如图所示,水平地面上固定有高为 h 的平台,台面上有固定的光滑坡道,坡道顶端距台面也为h ,坡道底端与台面相切.小球A 从坡道顶端由静止开始滑下,到达水平光滑的台面后与静止在台面上的小球B 发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半.两球均可视为质点,忽略空气阻力,重力加速度为g .求:(1)小球A 刚滑至水平台面的速度v A ; m A ∶m B .10.[解析] (1)小球从坡道顶端滑至水平台面的过程中,由机械能守恒定律得m A gh =12m A v 2A 解得v A =2gh(2)设两球碰撞后共同的速度为v ,由动量守恒定律得m A v A =(m A +m B )v粘在一起的两球飞出台面后做平抛运动,设运动时间为t ,由运动学公式,在竖直方向上有h =12gt 2 在水平方向上有h 2=v t 联立上述各式得m A ∶m B =1∶336.F4[2012·广东卷] 图10(a)所示的装置中,小物块A 、B 质量均为m ,水平面上PQ 段长为l ,与物块间的动摩擦因数为μ,其余段光滑.初始时,挡板上的轻质弹簧处于原长;长为r 的连杆位于图中虚线位置;A 紧靠滑杆(A 、B 间距大于2r ).随后,连杆以角速度ω匀速转动,带动滑杆做水平运动,滑杆的速度-时间图象如图18(b)所示.A 在滑杆推动下运动,并在脱离滑杆后与静止的B 发生完全非弹性碰撞.(1)求A 脱离滑杆时的速度v 0,及A 与B 碰撞过程的机械能损失ΔE .(2)如果AB 不能与弹簧相碰,设AB 从P 点到运动停止所用的时间为t 1,求ω的取值范围,及t 1与ω的关系式.(3)如果AB 能与弹簧相碰,但不能返回到P 点左侧,设每次压缩弹簧过程中弹簧的最大弹性势能为E p ,求ω的取值范围,及E 与ω的关系式(弹簧始终在弹性限度内).(b)图1036.(1)滑杆达到最大速度时A 与其脱离.由题意,得v 0=ωr ①设A 、B 碰撞后的共同速度为v 1,由动量守恒定律,有m v 0=2m v 1②碰撞过程中的机械能损失为ΔE =12m v 20-12(2m )v 21③ ΔE =14mω2r 2④ (2)若AB 不与弹簧相碰,P 到Q 过程,由动能定理,得μ(2m )gl =12(2m )v 21⑤ 联立①②⑤,得对应AB 运动到Q 点的连杆角速度ω1ω1=22μgl r⑥ ω的取值范围:0<ω≤22μgl r⑦ 设AB 在PQ 段加速度大小为a ,由运动学规律,得 v 1=at 1⑧μ(2m )g =2ma ⑨联立①②⑧⑨,得t 1=ωr 2μg ,(0<ω≤22μgl r)○10 (3)若AB 压缩弹簧后反弹,由动能定理,得μ(2m )g (l +l )=12(2m )v 21⑪ 联立①②⑪,得对应AB 刚好反弹回P 点的连杆角速度ω2ω2=4μgl r⑫ ω的取值范围:22μgl r <ω≤4μgl r⑬ 由功能关系E p =12(2m )v 21-μ(2m )gl ⑭ E p =14mω2r 2-2μmgl ,(22μgl r <ω≤4μgl r)⑮F5 实验:验证碰撞中的动量守恒。
高考物理动量守恒定律试题经典含解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.如图,质量分别为m 1=1.0kg 和m 2=2.0kg 的弹性小球a 、b ,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t =5.0s 后,测得两球相距s =4.5m ,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题3.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.4.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。
动量【原卷】1.如图1所示,一根长为L =1m 的空心铝管竖直放置,把一枚m =20g 的小圆柱形永磁体从铝管上端管口放入管中由静止释放,圆柱形永磁体直径略小于铝管的内径。
永磁体在管内运动时,不与铝管内壁发生摩擦且无翻转,不计空气阻力。
若永磁体下落过程中在铝管内受到的阻力f 与永磁体下落的速度大小v 成正比,且满足f =0.1v (N ),永磁体运动的v-t 图像如图2所示,永磁体在0t 时刻离开铝管下端时阻力恰好等于重力,重力加速度g 取210m /s 。
关于永磁体在铝管内运动的过程,下列说法正确的是( )A .永磁体离开铝管下端时的速度大小为2m/sB .永磁体穿过铝管的时间为0.5sC .永磁体穿过铝管的过程中重力的冲量大小为0.14N s ⋅D .永磁体穿过铝管的过程中阻力的冲量大小为0.10N s ⋅2.如图所示,在光滑的水平面上放有两个小球A 和B ,其质量1kg A m =、4kg B m =,B 球上固定一轻质弹簧。
若A 球以速率4m/s v =向右运动去碰撞静止的B 球,下列说法正确的是( )A.当A球速率为零时,B球速率最大B.弹簧最大的弹性势能为6.4JC.碰撞结束时,小球A将向左运动D.碰撞结束时,B球速度大小为1.6m/s3.物块a、b中间用一根轻质弹簧相连,放在光滑水平面上,物体a的质量为1.2kg,如图甲所示。
开始时两物块均静止,弹簧处于原长,t=0时对物块a施加水平向右的恒力F,t=1s时撤去,在0~1s内两物体的加速度随时间变化的情况如图乙所专示。
弹簧始终处于弹性限度内,整个运动过程中以下分析正确的是()A.t=1s时a的速度大小为0.8m/sB.t=1s时弹簧伸长量最大C.b物体的质量为0.8kgD.弹簧伸长量最大时,a的速度大小为0.6m/s4.如图所示,三个小球静止在足够长的光滑水平面,BC两个小球之间用弹簧连接起来,A球紧靠B球,m A=m B=1kg,m C=2kg。
高考物理新力学知识点之动量全集汇编含答案解析(3)一、选择题1.运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是( )A.燃料燃烧推动空气,空气反作用力推动火箭B.火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭C.火箭发动机用力将燃料燃烧产生的气体向后推出,气体的反作用力推动火箭D.火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭2.半径相等的两个小球甲和乙,在光滑的水平面上沿同一直线相向运动,若甲球质量大于乙球质量,发生碰撞前,两球的动能相等,则碰撞后两球的状态可能是()A.两球的速度方向均与原方向相反,但它们动能仍相等B.两球的速度方向相同,而且它们动能仍相等C.甲、乙两球的动量相同D.甲球的动量不为零,乙球的动量为零3.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则()A.小木块和木箱最终都将静止B.小木块最终将相对木箱静止,二者一起向右运动C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动4.将充足气后质量为0.5kg的篮球从1.6m高处自由落下,篮球接触地面的时间为0.5s,竖直弹起的最大高度为0.9m。
不计空气阻力,重力加速度大小为g=9.8m/s2。
则触地过程中篮球地面的平均作用力大小为A.4.9NB.8.9NC.9.8ND.14.7N5.如图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆槽相切并从A点进入槽内,则下列说法正确的是()A.小球离开右侧槽口以后,将做竖直上抛运动B.小球在槽内运动的全过程中,只有重力对小球做功C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量守恒6.如图所示,在冰壶世锦赛上中国队以8:6战胜瑞典队,收获了第一个世锦赛冠军,队长王冰玉在最后一投中,将质量为19kg的冰壶推出,运动一段时间后以0.4m/s的速度正碰静止的瑞典冰壶,然后中国队冰壶以0.1m/s的速度继续向前滑向大本营中心.若两冰壶质量相等,则下列判断正确的是()A.瑞典队冰壶的速度为0.3m/s,两冰壶之间的碰撞是弹性碰撞B.瑞典队冰壶的速度为0.3m/s,两冰壶之间的碰撞是非弹性碰撞C.瑞典队冰壶的速度为0.5m/s,两冰壶之间的碰撞是弹性碰撞D.瑞典队冰壶的速度为0.5m/s,两冰壶之间的碰撞是非弹性碰撞7.如图所示,撑杆跳尚是运动会中的一个重要比赛项目。
高考物理真题同步分类解析专题12动量(含解析)
1. 2019全国2卷25.(20分)
一质量为m=2000 kg的汽车以某一速度在平直公路上匀速行驶。
行驶过程中,司机忽然发现前方100 m处有一警示牌。
立即刹车。
刹车过程中,汽车所受阻力大小随时间变化可简化为图(a)中的图线。
图(a)中,0~t1时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行驶),t1=0.8 s;t1~t2时间段为刹车系统的启动时间,t2=1.3 s;从t2时刻开始汽车的刹车系统稳定工作,直至汽车停止,已知从t2时刻开始,汽车第1 s内的位移为24 m,第4 s内的位移为1 m。
(1)在图(b)中定性画出从司机发现警示牌到刹车系统稳定工作后汽车运动的v-t图线;
(2)求t2时刻汽车的速度大小及此后的加速度大小;
(3)求刹车前汽车匀速行驶时的速度大小及t1~t2时间内汽车克服阻力做的功;司机发现警示牌到汽车停止,汽车行驶的距离约为多少(以t1~t2时间段始末速度的算术平均值替代这段时间内汽车的平均速度)?
【解析】(1)v-t图像如图所示。
(2)设刹车前汽车匀速行驶时的速度大小为v1,则t1时刻的速度也为v1,t2时刻的速度也为v2,在t2时刻
后汽车做匀减速运动,设其加速度大小为a ,取Δt =1s ,设汽车在t2+n-1Δt 内的位移为sn ,n=1,2,3,…。
若汽车在t 2+3Δt~t 2+4Δt 时间内未停止,设它在t 2+3Δt 时刻的速度为v 3,在t 2+4Δt 时刻的速度为v 4,由运动学有
①
②代入数据得24=v 2-a/2
424Δv v a t =-③
联立①②③式,代入已知数据解得
417m/s 6
v =-④ 这说明在t 2+4Δt 时刻前,汽车已经停止。
因此,①式不成立。
由于在t 2+3Δt~t 2+4Δt 内汽车停止,由运动学公式
323Δv v a t =-⑤
2432as v =⑥
联立②⑤⑥,代入已知数据解得
解得
28m/s a =,v 2=28 m/s ⑦ 或者2288m/s 25
a =,v 2=29.76 m/s (3)设汽车的刹车系统稳定工作时,汽车所受阻力的大小为f 1,由牛顿定律有
f 1=ma ⑧
在t 1~t 2时间内,阻力对汽车冲量的大小为
1211=()2
I f t t -⑨ 由动量定理有
12I mv m '=-I ’=mv 1-mv 2⑩
由动量定理,在t 1~t 2时间内,汽车克服阻力做的功为
⑪
联立⑦⑨⑩⑪式,代入已知数据解得
v 1=30 m/s ⑫
⑬
从司机发现警示牌到汽车停止,汽车行驶的距离s 约为
⑭
代入已知数据解得 s =87.5 m ⑮
2.北京卷24.(20分)
雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关。
雨滴间无相互作用且雨滴质量不变,重力加速度为g 。
(1)质量为m 的雨滴由静止开始,下落高度h 时速度为u ,求这一过程中克服空气阻力所做的功W 。
(2)将雨滴看作半径为r 的球体,设其竖直落向地面的过程中所受空气阻力f =kr 2v 2
,其中v 是雨滴的速度,k 是比例系数。
a .设雨滴的密度为ρ,推导雨滴下落趋近的最大速度v m 与半径r 的关系式;
b .示意图中画出了半径为r 1、r 2(r 1>r 2)的雨滴在空气中无初速下落的v –t 图线,其中_________对应半径为r 1的雨滴(选填①、②);若不计空气阻力,请在图中画出雨滴无初速下落的v –t 图线。
(3)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。
将雨滴简化为垂直于运动方向面积为S 的圆盘,证明:圆盘以速度v 下落时受到的空气阻力f ∝v 2(提示:设单位体积内空气分子数为n ,空气分子质量为m 0)。
【答案】24.(20分)
(1)根据动能定理
可得 (2)a .根据牛顿第二定律mg f ma -=
得
当加速度为零时,雨滴趋近于最大速度v m
雨滴质量34π3
m r ρ=
由a =0,可得,雨滴最大速度
b .①
如答图2
(3)根据题设条件:大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。
以下只考虑雨滴下落的定向运动。
简化的圆盘模型如答图3。
设空气分子与圆盘碰撞前后相对速度大小不变。
在∆t 时间内,与圆盘碰撞的空气分子质量为
以F 表示圆盘对气体分子的作用力,根据动量定理, 有
得20F nm Sv ∝
由牛顿第三定律,可知圆盘所受空气阻力
2f v ∝ 采用不同的碰撞模型,也可得到相同结论。
3.江苏卷12.[选修3–5](12分)
12.(1)质量为M 的小孩站在质量为m 的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v ,此时滑板的速度大小为 .
(A )m v M (B )M v m (C )m v m M + (D )M v m M
+ 【答案】12.(1)B
【解析】动量守恒'mv Mv +=0,得m
Mv v -=',大小为M v m ,B 正确。