(浙江专用)2020版高考数学三轮冲刺抢分练压轴大题突破练(一)三角函数与解三角形
- 格式:docx
- 大小:26.27 KB
- 文档页数:5
解答题增分练(一)1.(2019·温州模拟)如图,在单位圆上,∠AOB =α⎝ ⎛⎭⎪⎫π6<α<π2,∠BOC =π3,且△AOC 的面积等于237.(1)求sin α的值;(2)求2cos ⎝ ⎛⎭⎪⎫α2-π3sin ⎝ ⎛⎭⎪⎫α2+π6的值.解 (1)S △AOC =12×12×sin ⎝ ⎛⎭⎪⎫α+π3=237,∴sin ⎝ ⎛⎭⎪⎫α+π3=437,∵π6<α<π2,∴π2<α+π3<5π6,∴cos ⎝ ⎛⎭⎪⎫α+π3=-17,sin α=sin ⎝ ⎛⎭⎪⎫α+π3-π3=sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3 =437×12+17×32=5314.(2)2cos ⎝ ⎛⎭⎪⎫α2-π3sin ⎝ ⎛⎭⎪⎫α2+π6=2cos ⎝⎛⎭⎪⎫π3-α2sin ⎝ ⎛⎭⎪⎫α2+π6 =2cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6+α2sin ⎝ ⎛⎭⎪⎫α2+π6 =2sin 2⎝ ⎛⎭⎪⎫α2+π6=1-cos ⎝⎛⎭⎪⎫α+π3=87.2.如图,平面ABCD⊥平面ABE,其中ABCD为矩形,△ABE为直角三角形,∠AEB=90°,AB =2AD=2AE=2.(1)求证:平面ACE⊥平面BCE;(2)求直线CD与平面ACE所成角的正弦值.(1)证明∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,∴BC⊥AB,∵BC⊂平面ABCD,∴BC⊥平面ABE,又AE⊂平面ABE,∴BC⊥AE,又AE⊥BE,BC∩BE=B,BC,BE⊂平面BCE,∴AE⊥平面BCE,而AE⊂平面ACE,∴平面ACE⊥平面BCE.(2)解方法一∵AB∥CD,∴CD 与平面ACE 所成角的大小等于AB 与平面ACE 所成角的大小.过B 作BF ⊥CE 于F ,连接AF ,∵平面ACE ⊥平面BCE ,平面ACE ∩平面BCE =CE ,BF ⊂平面BCE ,∴BF ⊥平面ACE .∴∠BAF 即为AB 与平面ACE 所成的角.由BC =1,BE =3,得CE =2,BF =32,∴sin∠BAF =BF AB =34,∴直线CD 与平面ACE 所成角的正弦值为34.方法二 以E 为原点,EB ,EA 所在直线分别为x 轴、y 轴建立空间直角坐标系E -xyz ,则E (0,0,0),A (0,1,0),C (3,0,1),D (0,1,1),于是EA →=(0,1,0),EC →=(3,0,1),CD →=(-3,1,0),设n =(x ,y ,z )为平面ACE 的法向量,由⎩⎪⎨⎪⎧n ·EA →=0,n ·EC →=0,得⎩⎨⎧ y =0,3x +z =0,令x =1,则n =(1,0,-3),设CD →与n 的夹角为θ,所以|cos θ|=|CD →·n ||CD →||n |=34, 所以CD 与平面ACE 所成角的正弦值为34.3.(2019·台州模拟)设数列{a n }的前n 项和为S n ,已知S n =2a n -n ,n ∈N *.(1)求证数列{a n +1}为等比数列,并求通项公式a n ;(2)若对任意的n ∈N *都有λa n ≤S n +n -n 2,求实数λ的取值范围.解 (1)由S n =2a n -n ,当n ≥2时,S n -1=2a n -1-n +1.两式相减可得,a n =2a n -1+1,a n +1=2(a n -1+1),由S 1=2a 1-1,得a 1=1,所以{a n +1}是首项为2,公比为2的等比数列.所以a n +1=2n -1(a 1+1)=2n ,a n =2n-1.(2)由λa n ≤S n +n -n 2,得λ(2n -1)≤2n +1-2-n +n -n 2, 故λ≤2-n 22n -1,所以λ≤⎝ ⎛⎭⎪⎫2-n22n -1min .设f (n )=n 22n -1,f (n +1)-f (n )=(n +1)22n +1-1-n 22n -1=[-(n -1)2+2]·2n-(2n +1)(2n +1-1)(2n -1).当n =1时,f (2)-f (1)>0,n ≥2时,f (n +1)-f (n )<0,所以f (1)<f (2)>…>f (n )…,f (n )的最大值为f (2)=43,2-n 22n -1的最小值为23,所以λ的取值范围是⎝⎛⎦⎥⎤-∞,23. 4.(2019·余高等三校联考)已知抛物线y 2=2px (p >0)的焦点为F ,点M 与点F 关于原点对称.(1)过点M 作直线l 与抛物线相切,求直线l 的方程;(2)椭圆C 以MF 为长轴,离心率为22,点P 是椭圆C 上的一点,过点N (p ,0)的直线交抛物线于A ,B 两点,若|AB |≤26p ,求△ABP 面积的最大值.解 (1)显然,切线斜率一定存在.设切线方程为y =k ⎝ ⎛⎭⎪⎫x +p2,联立⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x +p 2,y 2=2px ,得k 2x 2+(k 2-2)px +p 2k 24=0,依题意知Δ=(k 2-2)2p 2-k 4p 2=0,得k 2=1,即k =±1,∴切线方程为x ±y +p2=0.(2)设直线AB :x =my +p ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧ x =my +p ,y 2=2px ,得y 2-2pmy -2p 2=0,∴Δ=4p 2(m 2+2)>0恒成立,|AB |=1+m 2|y 1-y 2|=2p (1+m 2)(m 2+2),由|AB |≤26p ⇒0≤m 2≤1,依题意知椭圆C :x 2p 24+y 2p 28=1,作直线平行于AB 且与椭圆相切,则当点P 为距直线AB 较远的切点时,△ABP 面积最大,设切线方程为x =my +t (t <0),则d P -直线AB =|p-t |1+m 2,∴S △ABP =12|AB |·d P -直线AB =p m 2+2|p -t |,联立⎩⎪⎨⎪⎧ x =my +t ,4x 2+8y 2=p 2, 得(8+4m 2)y 2+8tmy +4t 2-p 2=0,∴Δ=16(p 2m 2+2p 2-8t 2)=0,得m 2+2=8t 2p 2∈[2,3], ∴t ∈⎣⎢⎡⎦⎥⎤-6p 4,-p 2. ∴S △ABP =12|AB |·d P -直线AB =22|pt -t 2| =22(t 2-pt ),当t =-6p 4, 即m =±1时,△ABP 面积的最大值为32+434p 2. 5.(2019·绍兴模拟)已知函数f (x )=2ln(ax +b ),其中a ,b ∈R .(1)若直线y =x 是曲线y =f (x )的切线,求ab 的最大值;(2)设b =1,若关于x 的方程f (x )=a 2x 2+(a 2+2a )x +a +1有两个不相等的实根,求a 的最大整数值.⎝ ⎛⎭⎪⎫参考数据:ln 54≈0.223 解 (1)设直线y =x 与y =f (x )相切于点P (x 0,2ln(ax 0+b )). 因为f ′(x )=2a ax +b, 所以f ′(x 0)=2a ax 0+b =1, 所以ax 0+b =2a (a >0).又因为P 在切线y =x 上,所以2ln(ax 0+b )=x 0,所以x 0=2ln(ax 0+b )=2ln2a ,b =2a -ax 0=2a -2a ln2a ,因此ab =2a 2-2a 2ln2a (a >0).设g (a )=2a 2-2a 2ln2a (a >0),则由g ′(a )=2a -4a ln2a =2a (1-2ln2a )>0,解得0<a <e 2.由g ′(a )<0,解得a >e2.所以g (a )在⎝ ⎛⎭⎪⎫0,e 2上单调递增,在⎣⎢⎡⎭⎪⎫e2,+∞上单调递减,可知g (a )的最大值为g ⎝ ⎛⎭⎪⎫e 2=e4,所以ab 的最大值为e4.(2)方法一 原方程即为2ln(ax +1)=(ax +1)2+a (ax +1),设ax +1=t ,则上述方程等价于2ln t =t 2+at (t >0).设p (t )=2ln t -t 2-at (t >0),则函数p (t )需有两个不同的零点.因为p ′(t )=2t -2t -a 在(0,+∞)上单调递减,且p ′(t )=0在(0,+∞)上存在唯一实根t 0,即p ′(t 0)=0,即at 0=2-2t 20.所以当t ∈(0,t 0)时,p ′(t )>0;当t ∈(t 0,+∞)时,p ′(t )<0.因此p (t )在(0,t 0)上单调递增,在(t 0,+∞)上单调递减.若a >0,则t 0∈(0,1).p (t )≤p (t 0)=2ln t 0-t 20-at 0=2ln t 0-t 20-(2-2t 20)=2ln t 0+t 20-2<0,不合题意,舍去.若a <0,则t 0∈(1,+∞).当t ∈(0,1)时,则p (t )=2ln t -t 2-at <2ln t +|a |, 取t 1=e -|a |2,则p (t 1)<0;当t ∈(1,+∞)时,则p (t )=2ln t -t 2-at <2(t -1)-t 2-at <-t 2+(2-a )t , 取t 2=2+|a |,则p (t 2)<0.由此t 1<t 0<t 2,且p (t 1)<0,p (t 2)<0.要使函数p (t )=2ln t -t 2-at (t >0)有两个不同的零点.则只需p (t 0)=2ln t 0-t 20-at 0>0,所以只需p (t 0)=2ln t 0-t 20-(2-2t 20)=t 20+2ln t 0-2>0.因为p (t 0)=t 20+2ln t 0-2是关于t 0的增函数,且p (1)=-1<0,p ⎝ ⎛⎭⎪⎫54=2ln 54-716>0,所以存在m ∈⎝ ⎛⎭⎪⎫1,54使得p (m )=0,所以当t 0>m 时,p (t 0)>0,因为a =2t 0-2t 0是关于t 0的减函数,所以a =2t 0-2t 0<2m -2m ,又因为2m -2m ∈⎝ ⎛⎭⎪⎫-910,0,所以a 的最大整数值为-1.方法二 原方程即为2ln(ax +1)=(ax +1)2+a (ax +1),设ax +1=t ,则原方程等价于关于t 的方程2ln t -t 2-at =0(t >0)有两个不同的解.即关于t 的方程a =2ln t -t2t (t >0)有两个不同的解.设h (t )=2ln t -t2t ,则h ′(t )=2-t 2-2ln tt 2.设m (t )=2-t 2-2ln t ,由t >0知m ′(t )=-2t -2t <0,所以m (t )=2-t 2-2ln t 在区间(0,+∞)上单调递减,又m (1)=1>0,m ⎝ ⎛⎭⎪⎫54=716-2ln 54<0,所以存在t 0∈⎝ ⎛⎭⎪⎫1,54使得m (t 0)=0.当t ∈(0,t 0)时,m (t )>0,h ′(t )>0;当t ∈(t 0,+∞)时,m (t )<0,h ′(t )<0.所以h (t )在(0,t 0)上单调递增,在(t 0,+∞)上单调递减,所以h (t 0)=2ln t 0-t 20t 0=2-2t 20t 0=2t 0-2t 0∈⎝ ⎛⎭⎪⎫-910,0.要使得关于t 的方程a =2ln t -t2t (t >0)有两个不同的解,则a <h (t 0).当a =-1时,设p (t )=2ln t -t 2+t , 则p ′(t )=2t -2t +1,可知p (t )在⎝ ⎛⎭⎪⎫0,1+174上单调递增,在⎝ ⎛⎭⎪⎫1+174,+∞上单调递减.又p (1)=0,p ⎝ ⎛⎭⎪⎫1+174>0,p (e)=2-e 2+e<0,p (t )有两个不同的零点,符合题意. 所以a 的最大整数值为-1.。
(一)三角函数与解三角形1.(2019·余高、缙中、长中模拟)已知函数f (x )=cos x (sin x +cos x )-12.(1)求函数f (x )的单调增区间; (2)若f (α)=26,α∈⎝ ⎛⎭⎪⎫π8,3π8,求cos2α的值.解 (1)f (x )=12sin2x +1+cos2x 2-12=22sin ⎝⎛⎭⎪⎫2x +π4,由-π2+2k π≤2x +π4≤π2+2k π,k ∈Z ,得函数f (x )的单调增区间是⎣⎢⎡⎦⎥⎤-38π+k π,π8+k π,k ∈Z .(2)由f (α)=26得sin ⎝⎛⎭⎪⎫2α+π4=13,因为α∈⎝ ⎛⎭⎪⎫π8,3π8,所以2α+π4∈⎝ ⎛⎭⎪⎫π2,π, 所以cos ⎝⎛⎭⎪⎫2α+π4=-223, 所以cos2α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α+π4-π4=2-46.2.(2019·某某二中高考热身考)已知函数f (x )=sin 2π4x -3sin π4x cos π4x . (1)求f (x )的最大值及此时x 的值; (2)求f (1)+f (2)+…+f (2019)的值. 解 (1)f (x )=12-12cos π2x -32sin π2x=12-sin ⎝ ⎛⎭⎪⎫π2x +π6, 令π2x +π6=-π2+2k π,k ∈Z , 得x =4k -43,k ∈Z ,∴当x =4k -43(k ∈Z )时,f (x )max =32.(2)由(1)知函数的周期T =4,f (1)=12-32,f (2)=12+12,f (3)=12+32,f (4)=12-12, ∴f (4k +1)=12-32,f (4k +2)=12+12,f (4k +3)=12+32,f (4k +4)=12-12, ∴f (4k +1)+f (4k +2)+f (4k +3)+f (4k +4)=2, ∴f (1)+f (2)+…+f (2019) =504×2+f (1)+f (2)+f (3)=1010.3.(2019·余高等三校联考)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b sin A -3a cos B =0. (1)求角B 的大小;(2)若a +c =3,求AC 边上中线长的最小值. 解 (1)由正弦定理得,sin B sin A -3sin A cos B =0, ∵sin A ≠0, ∴tan B =3, ∵B 是三角形的内角, ∴B =60°.(2)方法一 设AC 边上的中点为E ,在△BAE 中,由余弦定理得,BE 2=c 2+⎝ ⎛⎭⎪⎫b 22-2c ·b2·cos A ,又cos A =b 2+c 2-a 22bc,a 2+c 2-b 2=2·cos60°ac ,∴BE 2=c 2+b 24-b 2+c 2-a 22=2a 2+2c 2-b 24=a 2+c 2+ac 4=(a +c )2-ac 4=9-ac 4≥9-⎝⎛⎭⎪⎫a +c 224=2716, 当且仅当a =c 时取到“=”, ∴AC 边上中线长的最小值为334. 方法二 设AC 边上的中点为E , BE →=12(BA →+BC →),|BE →|2=14|BA →+BC →|2=c 2+a 2+ac 4,以下同方法一.4.(2019·浙大附中考试)已知f (x )=2cos x ·sin ⎝⎛⎭⎪⎫x +π6+3sin x ·cos x -sin 2x .(1)求函数y =f (x )(0<x <π)的单调递增区间;(2)设△ABC 的内角A 满足f (A )=2,而AB →·AC →=3,求BC 边上的高AD 长的最大值. 解 (1)f (x )=2cos x ·sin ⎝ ⎛⎭⎪⎫x +π6+2sin x ·cos ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝ ⎛⎭⎪⎫2x +π6.由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得k π-π3≤x ≤k π+π6,k ∈Z .∴当0<x <π时,函数y =f (x )的单调递增区间是⎝ ⎛⎦⎥⎤0,π6和⎣⎢⎡⎭⎪⎫2π3,π.(2)∵f (A )=2,∴2sin ⎝ ⎛⎭⎪⎫2A +π6=2,∴A =π6,∵AB →·AC →=3,∴bc ·cos A =3,∴bc =2, ∴S △ABC =12bc sin A =12,而a =b 2+c 2-3bc ≥(2-3)bc =3-1(当且仅当b =c 时等号成立), ∴所求BC 边上的高AD ≤3+12, 即AD 的最大值为3+12. 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +sin B =3sin C . (1)若cos 2A =sin 2B +cos 2C +sin A sin B ,求sin A +sin B 的值; (2)若c =2,求△ABC 面积的最大值. 解 (1)∵cos 2A =sin 2B +cos 2C +sin A sin B , ∴1-sin 2A =sin 2B +1-sin 2C +sin A sin B , ∴sin 2A +sin 2B -sin 2C =-sin A sin B , ∴由正弦定理,得a 2+b 2-c 2=-ab ,∴由余弦定理,得cos C =a 2+b 2-c 22ab =-12,又0<C <π,∴C =2π3,∴sin A +sin B =3sin C =3sin 2π3=32.(2)若c =2,则a +b =3c =23,∴cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =4ab-1,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫4ab-12=-⎝ ⎛⎭⎪⎫4ab 2+8ab, ∴S =12ab sin C =12ab-⎝ ⎛⎭⎪⎫4ab 2+8ab=12-16+8ab . ∵a +b =23≥2ab ,即0<ab ≤3,当且仅当a =b =3时等号成立, ∴S =12-16+8ab ≤12-16+8×3=2,∴△ABC 面积的最大值为 2.6.已知m =(3sin ωx ,cos ωx ),n =(cos ωx ,-cos ωx )(ω>0,x ∈R ),f (x )=m·n -12且f (x )的图象上相邻两条对称轴之间的距离为π2.(1)求函数f (x )的单调递增区间;(2)若△ABC 中内角A ,B ,C 的对边分别为a ,b ,c 且b =7,f (B )=0,sin A =3sin C ,求a ,c 的值及△ABC 的面积.解 (1)f (x )=m·n -12=3sin ωx cos ωx -cos 2ωx -12=32sin2ωx -12cos2ωx -1 =sin ⎝⎛⎭⎪⎫2ωx -π6-1.∵f (x )的图象上相邻两条对称轴之间的距离为π2,∴T =2π2ω=π,∴ω=1,∴f (x )=sin ⎝⎛⎭⎪⎫2x -π6-1,令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,则k π-π6≤x ≤k π+π3,k ∈Z ,∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3,k ∈Z .(2)由(1)知,f (B )=sin ⎝ ⎛⎭⎪⎫2B -π6-1=0,∵0<B <π,∴-π6<2B -π6<11π6,∴2B -π6=π2,∴B =π3,由sin A =3sin C 及正弦定理,得a =3c , 在△ABC 中,由余弦定理,可得cos B =a 2+c 2-b 22ac =9c 2+c 2-76c 2=10c 2-76c 2=12, ∴c =1,a =3,∴S △ABC =12ac sin B =12×3×1×32=334.。
§5.1 任意角、弧度制及任意角的三角函数最新考纲考情考向分析1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2.理解正弦函数、余弦函数、正切函数的定义.以理解任意角三角函数的概念、能进行弧度与角度的互化和扇形弧长、面积的计算为主,常与向量、三角恒等变换相结合,考查三角函数定义的应用及三角函数的化简与求值,考查分类讨论思想和数形结合思想的应用意识.题型以选择题为主,低档难度.1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=πrad,1°=π180rad ,1rad =⎝ ⎛⎭⎪⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx(x ≠0). 三个三角函数的初步性质如下表:三角函数 定义域 第一象限符号第二象限符号 第三象限符号第四象限符号 sin α R + + - - cos α R + - - + tan α 错误!+-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律. 提示 一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示 设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=y x(x ≠0).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ ) (3)不相等的角终边一定不相同.( × )(4)若α为第一象限角,则sin α+cos α>1.( √ ) 题组二 教材改编2.[P10A 组T7]角-225°=______弧度,这个角在第______象限. 答案 -5π4二3.[P15T2]若角α的终边经过点Q ⎝ ⎛⎭⎪⎫-22,22,则sin α=____,cos α=________. 答案22 -224.[P10A 组T6]一条弦的长等于半径,这条弦所对的圆心角大小为____弧度. 答案π3题组三 易错自纠5.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1 (n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.6.已知点P ⎝ ⎛⎭⎪⎫32,-12在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.5π6B.2π3 C.11π6 D.5π3答案 C解析 因为点P ⎝⎛⎭⎪⎫32,-12在第四象限,所以根据三角函数的定义可知tan θ=-1232=-33,又θ∈⎝⎛⎭⎪⎫3π2,2π,所以θ=11π6.7.在0到2π范围内,与角-4π3终边相同的角是________.答案2π3解析 与角-4π3终边相同的角是2k π+⎝ ⎛⎭⎪⎫-4π3(k ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3. 8.函数y =2cos x -1的定义域为__________________. 答案 ⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ).题型一 角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是 ( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C解析 与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2·180°+45°,k ∈Z,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k 4·180°+45°,k ∈Z,那么( ) A .M =N B .M ⊆N C .N ⊆M D .M ∩N =∅ 答案 B解析 由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为______________________.答案 ⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π解析 如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π.4.若角α是第二象限角,则α2是第________象限角.答案 一或三解析 ∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角. (2)确定kα,αk(k ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置. 题型二 弧度制及其应用例1已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10cm ,求扇形的面积.解 由已知得α=π3,R =10cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积. 解 l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2). 2.若例题条件改为:“若扇形周长为20cm”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解 由已知得,l +2R =20,则l =20-2R (0<R <10). 所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5cm 时,S 取得最大值25cm 2,此时l =10cm ,α=2rad. 思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1(1)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数的绝对值为( )A.π6B.π3C .3D. 3 答案 D解析 如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt△AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r ,∴l =3r , ∴|α|=l r=3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为________. 答案518解析 设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α, 由扇形面积等于圆面积的527,可得12α⎝ ⎛⎭⎪⎫2r 32πr 2=527,解得α=5π6. 所以扇形的弧长与圆周长之比为5π6·2r32πr =518.题型三 三角函数的概念命题点1 三角函数定义的应用例2(1)已知角α的终边与单位圆的交点为P ⎝ ⎛⎭⎪⎫-12,y ,则sin α·tan α等于( )A .-33B .±33C .-32D .±32答案 C解析 由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3, 此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3, 此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案 B解析 由θ是第三象限角知,θ2为第二或第四象限角, ∵⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0,综上可知,θ2为第二象限角. 命题点2 三角函数线例3(1)满足cos α≤-12的角的集合是________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z解析 作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z. (2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是________.答案 sin α<cos α<tan α解析 如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围. 跟踪训练2(1)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0.则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3) D .[-2,3]答案 A解析 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是( ) A.⎝⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π,5π4B.⎝ ⎛⎭⎪⎫π4,πC.⎝⎛⎭⎪⎫π4,5π4D.⎝ ⎛⎭⎪⎫π4,π∪⎝ ⎛⎭⎪⎫5π4,3π2答案 C解析 当x ∈⎣⎢⎡⎭⎪⎫π2,π时,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ∈⎝⎛⎦⎥⎤0,π4时,如图,OA为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当x ∈⎝⎛⎭⎪⎫π4,π2时,如图,OB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈⎣⎢⎡⎭⎪⎫π,5π4时,sin x >cos x ;当x ∈⎣⎢⎡⎭⎪⎫5π4,2π时,sin x ≤cos x ,故选C.1.下列说法中正确的是( ) A .第一象限角一定不是负角 B .不相等的角,它们的终边必不相同 C .钝角一定是第二象限角D .终边与始边均相同的两个角一定相等 答案 C解析 因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误. 2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( )A .1B .4C .1或4D .2或4 答案 C解析 设扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.3.若角θ终边过点P (4,m ),且sin θ=35,则m 等于( )A .-3B .3C.163D .±3答案 B 解析 sin θ=m16+m 2=35,且m >0,解得m =3. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12 答案 A解析 点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32. 5.已知点P (cos α,tan α)在第二象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 C解析 因为点P (cos α,tan α)在第二象限,所以⎩⎪⎨⎪⎧cos α<0,tan α>0,所以角α的终边在第三象限,故选C.6.(2018·嘉兴模拟)sin2·cos3·tan4的值( ) A .小于0B .大于0C .等于0D .不存在答案 A解析 ∵sin2>0,cos3<0,tan4>0, ∴sin2·cos3·tan4<0.7.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .-32C.12D.32答案 C解析 由题意得点P (-8m ,-3),r =64m 2+9, 所以cos α=-8m64m 2+9=-45,解得m =±12, 又cos α=-45<0,所以-8m <0,即m >0,所以m =12.8.下列命题中正确命题的个数是( ) ①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. A .1B .2C .3D .4 答案 A解析 举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________. 答案2解析 设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n =________. 答案 2解析 由已知tan α=3,∴n =3m , 又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为________. 答案11π6解析 由题意知,点P ⎝ ⎛⎭⎪⎫32,-12,r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6. 12.函数y =sin x -32的定义域为__________________. 答案 ⎣⎢⎡⎦⎥⎤2k π+π3,2k π+23π,k ∈Z 解析 利用三角函数线(如图),由sin x ≥32,可知 2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为________________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π4<α<2k π+56π,k ∈Z解析 ∵在[0,2π)内,终边落在阴影部分角的集合为⎝ ⎛⎭⎪⎫π4,56π,∴所求角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π4<α<2k π+56π,k ∈Z . 14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点⎝ ⎛⎭⎪⎫12,m ,且sin α·cos β<0,则cos α·sin β=________. 答案 ±34解析 由角β的终边与单位圆交于点⎝ ⎛⎭⎪⎫12,m ,得cos β=12,又由sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点⎝ ⎛⎭⎪⎫12,m 在单位圆上,所以⎝ ⎛⎭⎪⎫122+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是________平方米.(结果保留整数,3≈1.73)答案 5解析 如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt△AOD 中,∠AOD =π3,∠DAO =π6,OD=12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×⎝ ⎛⎭⎪⎫33×32+94=943+98≈5(平方米).16.如图,在平面直角坐标系xOy 中,角α的始边与x 轴的非负半轴重合且与单位圆相交于A 点,它的终边与单位圆相交于B 点,始边不动,终边运动.(1)若点B 的横坐标为-45,求tan α的值;(2)若△AOB 为等边三角形,写出与角α终边相同的角β的集合;(3)若α∈⎝⎛⎦⎥⎤0,2π3,请写出弓形AB 的面积S 与α的函数关系式.解 (1)根据题意可得B ⎝ ⎛⎭⎪⎫-45,±35,∴tan α=±34.(2)若△AOB 为等边三角形, 则B ⎝ ⎛⎭⎪⎫12,32或B ⎝ ⎛⎭⎪⎫12,-32,当B ⎝ ⎛⎭⎪⎫12,32时,α=π3;当B ⎝ ⎛⎭⎪⎫12,-32时,α=-π3.∴与角α终边相同的角β的集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪β=π3+2k π或β=-π3+2k π,k ∈Z. (3)若α∈⎝⎛⎦⎥⎤0,2π3,则S 扇形=12αr 2=12α,而S △AOB =12×1×1×sin α=12sin α,故弓形AB 的面积S =12α-12sin α,α∈⎝ ⎛⎦⎥⎤0,2π3.。
单元检测五 三角函数、解三角形(时间:120分钟 满分:150分)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中正确的是( )A .终边在x 轴正半轴上的角是零角B .三角形的内角必是第一、二象限内的角C .不相等的角的终边一定不相同D .若β=α+k ·360°(k ∈Z ),则角α与β的终边相同答案 D解析 对于A ,因为终边在x 轴正半轴上的角可以表示为α=2k π(k ∈Z ),A 错误;对于B ,直角也可为三角形的内角,但不在第一、二象限内,B 错误;对于C ,例如30°≠-330°,但其终边相同,C 错误,故选D.2.已知角θ的终边经过点,则sin 2的值为( )(-35,45)θ2A.B. C. D.1101545910答案 C解析 因为点在角θ的终边上,(-35,45)所以cos θ=-,则sin 2==,故选C.35θ21-cos θ2453.已知sin=,则sin 等于( )(π3-α)13(π6-2α)A.B .-C .±D .-79797929答案 B 解析 ∵sin =cos =cos =,(π3-α)[π2-(π3-α)](π6+α)13∴sin=cos (π6-2α)[π2-(π6-2α)]=cos =2cos2-1[2(π6+α)](π6+α)=2×-1=-.19794.设a =tan35°,b =cos55°,c =sin23°,则( )A .a >b >c B .b >c >a C .c >b >a D .c >a >b答案 A解析 由题可知b =cos55°=sin35°,因为sin35°>sin23°,所以b >c ,利用三角函数线比较tan35°和sin35°,易知tan35°>sin35°,所以a >b .综上,a >b >c ,故选A.5.若函数f (x )=sin(2x +θ)+cos(2x +θ)是偶函数,则θ的最小正实数值是( )3A. B. C. D.π6π32π35π6答案 B解析 f (x )=sin(2x +θ)+cos(2x +θ)=2·sin .因为f (x )为偶函数,所以3(2x +θ+π6)当x =0时,2x +θ+=θ+=k π+(k ∈Z ),解得θ=k π+(k ∈Z ).当k =0时,θπ6π6π2π3取得最小正实数值,故选B.π36.若函数f (x )=A sin(ωx +φ)的部分图象如图所示,则(A >0,ω>0,0<|φ|<π2)f (x )等于( )A.sinB.sin 12(14x +π8)12(4x -π8)C.sin D.sin 12(14x -π8)12(4x +π8)答案 C解析 由题图知,函数f (x )的最小正周期T =2=8π,A =,所以ω==,(9π2-π2)122π8π14f (x )=sin ,由点在函数f (x )的图象上,可知sin =0,又0<|φ|<,12(14x +φ)(π2,0)(π8+φ)π2所以φ=-,所以f (x )=sin .π812(14x -π8)7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,2b sin B =(2a +c )sin A +(2c +a )sin C .则角B 的大小为( )A.B. C. D.π6π32π35π6答案 C解析 由正弦定理得2b 2=(2a +c )a +(2c +a )c ,化简得a 2+c 2-b 2+ac =0,所以cos B ===-,又B ∈(0,π),解得B =,故选C.a 2+c 2-b 22ac -ac 2ac 122π38.已知函数f (x )=sin2x -2cos 2x ,将f (x )的图象上的所有点的横坐标缩短到原来的,313纵坐标不变,再把所得图象向上平移1个单位长度,得到函数g (x )的图象,若g (x 1)·g (x 2)=-4,则|x 1-x 2|的值可能为( )A. B. C.D .ππ3π4π2答案 C解析 由题意得f (x )=sin2x -cos2x -13=2sin -1,则g (x )=2sin ,故函数g (x )的最小正周期T ==.由(2x -π6)(6x -π6)2π6π3g (x 1)·g (x 2)=-4,知g (x 1)与g (x 2)的值一个为2,另一个为-2,故|x 1-x 2|==|T2+kT |(k ∈Z ).当k =1时,|x 1-x 2|=,故选C.|π6+k π3|π29.在△ABC 中,角A ,B ,C ,所对的边分别为a ,b ,c ,c 2sin A cos A +a 2sin C cos C =4sin B ,cos B =,已知D 是AC 上一点,且S △BCD =,则等于( )7423ADAC A. B. C. D.59492313答案 A 解析 设===k ,asin Absin Bcsin C则由c 2sin A ·cos A +a 2sin C cos C =4sin B ,得k 2sin A sin C (sin C ·cos A +sin A cos C )=4sin B ,即k 2sin A sin C sin(C +A )=4sin B ,所以k 2sin A sin C =4,即ac =4.又cos B =,所以sin B =,7434所以S △ABC =ac sin B =,1232所以==1-=,故选A.AD AC S△ABD S△ABC S △BCD S△ABC 5910.已知f (x )=2sin ωx cos 2-sin 2ωx (ω>0)在区间上是增函数,且(ωx 2-π4)[-2π3,5π6]在区间[0,π]上恰好取得一次最大值,则ω的取值范围是( )A. B.(0,35][12,35]C. D.(12,35](12,+∞)答案 B解析 f (x )=sin ωx (1+sin ωx )-sin 2ωx =sin ωx ,所以是含原点的单调递增[-π2ω,π2ω]区间,因为函数f (x )在区间上是增函数,所以⊆,所以Error![-2π3,5π6][-2π3,5π6][-π2ω,π2ω]解得ω≤.又ω>0,所以0<ω≤.因为函数f (x )在区间[0,π]上恰好取得一次最大值,所3535以≤π<,解得≤ω<.综上ω的取值范围为,故选B.π2ω5π2ω1252[12,35]第Ⅱ卷(非选择题 共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.把答案填在题中横线上)11.工艺扇面是中国书画的一种常见表现形式.高一某班级想用布料制作一面如图所示的扇面,参加元旦晚会.已知此扇面的中心角为,外圆半径为60cm ,内圆半径为30cm ,则制作π3这样一面扇面需要的布料为________cm 2.答案 450π解析 由扇形的面积公式,知制作这样一面扇面需要的布料为××60×60-×12π312π3×30×30=450π(cm 2).12.(2018·浙江省名校协作体考试)已知tan =3,则tan α=________,cos2α=(π4+α)________.答案 1235解析 由tan==3,(π4+α)1+tan α1-tan α解得tan α=,12所以cos2α===.cos 2α-sin 2αcos 2α+sin 2α1-tan 2α1+tan 2α3513.(2019·衢州模拟)设函数f (x )=2sin ,则函数f (x )的最小正周期为__________,(2x +π4)单调递增区间为________________________.答案 π ,k ∈Z [-3π8+k π,π8+k π]解析 函数f (x )的最小正周期为=π,2π2由2x +∈,k ∈Z 得π4[-π2+2k π,π2+2k π]x ∈,k ∈Z ,[-3π8+k π,π8+k π]即单调递增区间为,k ∈Z .[-3π8+k π,π8+k π]14.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若2cos A (b cos C +c cos B )=a =,△ABC 13的面积为3,则A =________,b +c =________.3答案 7π3解析 方法一 由正弦定理得,2cos A (sin B cos C +sin C cos B )=sin A ,所以2cos A sin(B +C )=sin A ,在△ABC 中,B +C =π-A ,所以sin(B +C )=sin A >0,所以cos A =,12又A ∈(0,π),所以A =.π3因为S △ABC =bc sin A =bc =3,所以bc =12,12343由a 2=b 2+c 2-2bc cos A =b 2+c 2-bc =(b +c )2-3bc ,所以13=(b +c )2-36,即(b +c )2=49,故b +c =7.方法二 过A 作AD ⊥BC 于D ,在Rt△ADB 中,BD =c cos B ,在Rt△ADC 中,DC =b cos C ,所以BD +DC =c cos B +b cos C =a ,代入2cos A (b cos C +c cos B )=a ,化简得cos A =,12又A ∈(0,π),所以A =.π3因为S △ABC =bc sin A =bc =3,所以bc =12,12343由a 2=b 2+c 2-2bc cos A =b 2+c 2-bc =(b +c )2-3bc ,所以13=(b +c )2-36,即(b +c )2=49,故b +c =7.15.我国古代数学家秦九韶在《数学九章》系统地总结和发展了高次方程数值解法和一次同余组解法,提出了相当完备的“正负开方术”和“大衍求一术”,代表了当时世界数学的最高水平.其中他还创造使用了“三斜求积术”(给出了三角形三边求三角形面积公式S =),这种方法对现在还具有很大的意义和作用.在△ABC 中,AB =13,BC =14[c 2a 2-(c 2+a 2-b 22)2]14,AC =15,D 在AC 上,且BD 平分∠ABC ,则△ABC 面积是________;BD =________.答案 84 28139解析 方法一 将已知数据代入公式,得S △ABC =84.∵BD 平分∠ABC ,∴==,AB BC AD CD 1314=+=+=+(-)BD → BA → AD → BA → 1327AC → BA → 1327BC → BA → =+,cos∠ABC ==,1427BA → 1327BC → 132+142-1522×13×14513∴2=2=+=,BD → (1427BA → +1327BC → )132×142×22722×142×13×527213×142×36272∴BD =.28139方法二 ∵cos∠ABC ==,132+142-1522×13×14513cos∠BAC ==,132+152-1422×13×153365cos∠ABD =cos ==,(12∠ABC )1+5132913∴sin∠ABC =,sin∠BAC =,sin∠ABD =,12135665413∴S △ABC =AB ·BC sin∠ABC =84,12BD ==AB sin ∠BAC sin ∠BDA AB sin ∠BAC sin (∠BAC +∠ABD )=AB sin ∠BACsin ∠BAC cos ∠ABD +sin ∠ABD cos ∠BAC==.13×56655665913+33654132813916.函数y =sin(πx +φ)(φ>0)的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,记∠APB =θ,则sin2θ=________.答案 1665解析 由题意知函数y =sin(πx +φ)的最小正周期为T ==2,过点P 作PQ 垂直x 轴于2ππ点Q (图略),则tan∠APQ ==,tan∠BPQ ==,T411234T132tan θ=tan(∠APQ +∠BPQ )=8,故sin2θ=2sin θcos θ===.2sin θcos θsin 2θ+cos 2θ2tan θtan 2θ+1166517.已知函数f (x )=sin -cos ,若存在x 1,x 2,…,x n 满足32(x +π6)12(x +π6)0≤x 1<x 2<…<x n ≤6π,且|f (x 1)-f (x 2)|+|f (x 2)-f (x 3)|+…+|f (x n -1)-f (x n )|=12(n ≥2,n ∈N *),则n 的最小值为________.答案 8解析 f (x )=sin -cos =sin =sin x .由y =sin x 的图象知,32(x +π6)12(x +π6)(x +π6-π6)对x i ,x i +1(i =1,2,3,…,n )有|f (x i )-f (x i +1)|max =f (x )max -f (x )min =2,则要使n 取得最小值,应尽可能多的使x i (i =1,2,3,…,n )取得极值点,所以在区间[0,6π]上,当x i 的值分别为x 1=0,x 2=,x 3=,x 4=,x 5=,x 6=,x 7=,x 8=6ππ23π25π27π29π211π2时,n 取得最小值8.三、解答题(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤)18.(14分)已知cos α=,cos(α-β)=,且0<β<α<.171314π2(1)求tan2α的值;(2)求β.解 (1)由cos α=,0<α<,17π2得sin α===,1-cos 2α1-(17)2437∴tan α==×=4,sin αcos α437713∴tan2α===-.2tan α1-tan 2α2×431-(43)28347(2)由0<β<α<,得0<α-β<,π2π2又cos(α-β)=,1314∴sin(α-β)===.1-cos 2(α-β)1-(1314)23314由β=α-(α-β),得cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×=,∴β=.171314437331412π319.(15分)已知函数f (x )=sin +sin 2x .22(2x +π4)(1)求函数f (x )的最小正周期;(2)若对任意x ∈R ,有g (x )=f ,求函数g (x )在上的值域.(x +π6)[-π6,π2]解 (1)f (x )=sin +sin 2x 22(2x +π4)=+sin 2x 22(22sin2x +22cos2x )=sin2x +cos2x +sin 2x 1212=sin2x +cos 2x -+sin 2x 1212=sin2x +1-=sin2x +,12121212故函数f (x )的最小正周期T ==π.2π2(2)由(1)知f (x )=sin2x +.1212∵对任意x ∈R ,有g (x )=f ,(x +π6)∴g (x )=sin2+=sin +,12(x +π6)1212(2x +π3)12当x ∈时,2x +∈,[-π6,π2]π3[0,4π3]则-≤sin ≤1,32(2x +π3)∴-×+≤g (x )≤+,即≤g (x )≤1.32121212122-34故函数g (x )在上的值域为.[-π6,π2][2-34,1]20.(15分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos2A -cos2B =2cos (π6-A )cos .(π6+A )(1)求角B 的值;(2)若b =,且b ≤a ,求a -的取值范围.3c2解 (1)由cos2A -cos2B =2cos cos ,得2sin 2B -2sin 2A =2,(π6-A )(π6+A )(34cos 2A -14sin 2A )则sin B =,32因为0<B <π,所以B =或.π32π3(2)因为b ≤a ,所以B =,π3由正弦定理====2,asin Acsin Cbsin B332得a =2sin A ,c =2sin C .所以a -=2sin A -sin C =2sin A -sin c 2(2π3-A)=sin A -cos A =sin .32323(A -π6)又b ≤a ,所以≤A <,则≤A -<,π32π3π6π6π2所以≤sin <,323(A -π6)3所以a -∈.c 2[32,3)21.(15分)已知在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a 2+b 2=6ab cos C ,且sin 2C =2sin A sin B .3(1)求角C 的值;(2)设函数f (x )=sin +cos ωx (ω>0),且f (x )的图象上两相邻的最高点之间的距(ωx +π6)离为π,求f (A )的取值范围.解 (1)因为a 2+b 2=6ab cos C ,由余弦定理知a 2+b 2=c 2+2ab cos C ,所以cos C =.c 24ab又sin 2C =2sin A sin B ,由正弦定理得c 2=2ab ,33所以cos C ===,c 24ab 23ab 4ab32又C ∈(0,π),所以C =.π6(2)f (x )=sin +cos ωx =sin ,(ωx +π6)3(ωx +π3)则最小正周期T ==π,解得ω=2,2πω所以f (x )=sin .3(2x +π3)因为C =,B =-A ,π65π6则Error!解得<A <,π3π2所以π<2A +<,π34π3则-<f (A )<0.32所以f (A )的取值范围是.(-32,0)22.(15分)已知函数f (x )=sin +2sin 2x .(2x +π6)(1)求函数f (x )的最小正周期;11(2)确定函数f (x )在[0,π]上的单调性;(3)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若f =,b +c =7,△ABC 的面积(A 2)32为2,求边a 的长.3解 (1)f (x )=sin2x cos +cos2x sin +1-cos2x =sin +1,π6π6(2x -π6)∴f (x )的最小正周期T ==π.2π2(2)令2k π+≤2x -≤2k π+(k ∈Z ),π2π63π2解得k π+≤x ≤k π+(k ∈Z ),π35π6∴f (x )的单调递减区间是(k ∈Z ).[k π+π3,k π+5π6]同理f (x )的单调递增区间为,k ∈Z ,[k π-π6,k π+π3]故f (x )在上为减函数,[π3,5π6]在和上为增函数.[0,π3][5π6,π](3)∵f (x )=sin +1,f =,(2x -π6)(A 2)32∴sin =,又-<A -<,∴A =.(A -π6)12π6π65π6π3∵△ABC 的面积为2,∴bc sin =2,解得bc =8.312π33∵b +c =7,∴a 2=b 2+c 2-2bc cos =(b +c )2-3bc =25,π3∴a =5.。
(一)三角函数与解三角形1xfxxx.)+1.(2019·余高、缙中、长中模拟)已知函数(cos)=cos-(sin2xf求函数)(的单调增区间;(1)ππ32????f,,求cos2αα),=α∈(2)若的值.(??886x1+cos211xfx+=(1)解 sin2(-)222π2??x??+2 ,sin=??42πππkkxk∈2,π≤2Z+≤+2,得π由-+2423π??kk??kfxπ-π++π,.函数,(Z)的单调增区间是∈??88π21????f+α2 =由(2)sin(α),=得??463ππ3????,因为α∈,??88ππ????π,∈,所以2α+??24π22????+α2 所以cos=-,??43ππ42-??????+α2??-.所以cos2α=cos=??4??46πππ2xxxxf. )=sincos)已知函数(-3sin2.(2019·杭州二中高考热身考444xfx的值;求(1))(的最大值及此时fff (2019)++…+(2)的值.(2)求(1)ππ311xfxx (1)(sin)=-cos-解22222ππ1??x??+,-=sin??262πππkkx,Zπ,∈2=-令++2264kxk-Z4,,∈=得334xfxkk.时,)∈(4=∴当-Z(=)max23.31fT,,(1)=(2)由(1)知函数的周期-=422131111fff(4)=,-,(2)=+,=(3)+2222221131kfkf+2)∴=(4++1)=-,,(422221113kkff+3)=+(4,+4)=,-(42222kfkfkfkf,++2)+4)(4=+∴3)(4++1)+2(4(4fff(2019) ++…+∴(2)(1)fff1010.(3)(2)=504×2++(1)+=ACabcbABCAB sin,,且,,,3.(2019·余高等三校联考)设△所对边的长分别是的内角Ba0. cos3=-B (1)求角的大小;ACca=3(2)若,求+边上中线长的最小值.BBAA sincossin,=-3sin0解 (1)由正弦定理得,A∵sin≠0,B∴tan3,=B是三角形的内角,∵B=60°.∴bb??222??AccBAEACEBE+··cos-,在△中,由余弦定理得,2方法一(2) 设=边上的中点为,??22222acb-+222acbAac,+=2·cos60°-又cos,=bc2ca+??2??-92222222222??2acacacbccaabaaccb--+?-?2+2+-9++22cBE=+∴====≥=-442444427 ,16ca时取到“=”,当且仅当=33AC. 边上中线长的最小值为∴4ACE,设边上的中点为方法二1→→→BCBEBA+(,)=222acca++1→→→22BCBEBA ||=,=+||44.以下同方法一.π??2x??xxxfxx+.-·cos+已知3sin()=2cossin·sin4.(2019·浙大附中考试)??6xxyf的单调递增区间;(1)求函数<=π())(0<→→ADBCABAfAACABC满足边上的高()=2的内角,而,求·长的最大值.=(2)设△3πππ??????xxx??????xxxf++2+.+解 (1)2sin()=2cos=·sin·cos2sin??????666πππkkxkπ≤2∈+≤+2Z π,,由-+2226ππkxkk.≤∈π+π-≤,Z解得63ππ2????????xxyfπ0,,.∴当0<<π时,函数)=的单调递增区间是(和????36Af(2)(2)∵=,ππ??A??A+2 =,∴,∴2sin=2??66→→ACAB·=3∵,bcbcA=3,∴,=∴2·cos11AbcS sin∴,==ABC△2222cbcbbcbca=,当且仅当2≥?时等号成立-3?)=而3-=+1(-313+ADBC,∴所求≤边上的高213+AD. 即的最大值为2ABcCCABCABab. 3sin,,,已知的对边分别为sin,=,5.在△+中,角sin222BBBCAAA的值;+sinsin+,求sin(1)若cossin=sin+cos ABCc面积的最大值.2(2)若,求△=222BABCA,+解 (1)∵cossin=sin+cossin222BABAC sin+,+1-sinsin ∴1-sinsin=222BBACA sin∴sin+sinsin-,=-sin222abcba=--∴由正弦定理,得,+222cba1-+C==-cos,∴由余弦定理,得ab222πCC=,π0<又<,∴3.32πCAB.==3sin∴sin3sin+sin=23ccab=33(2)若2=,则=+,222222cbcababa4-?-++2-?C===-1∴cos,ababab224??22??CC1-=1-cos1∴sin-=ab??48??2??=,-+ab??ab4811??2??ababCS sin-=∴+=ab??ab221ab. -168=+2abba≥2,=2∵3+baab=≤3,当且仅当3时等号成立,即0<=11abS 2+8,≤-∴16=+8×3=-1622ABC2.∴△面积的最大值为1m·nfxx m xx n xx且(-,cos,-ω))(ω>0,=∈6.已知(=3sinωR,cos ω),)=(cosω2πxf.(的图象上相邻两条对称轴之间的距离为)2xf (的单调递增区间;)(1)求函数afBCAABCaABCbcb,,若△中内角)=,0,sin的对边分别为,,求,=且7=,3sin((2)ABCc的值及△的面积.1m·nfx-解) (1)=(212xxx-ω-cosωcosω=3sin231xx-1 cos2sin2ωω=-22π??x??-ω2-1.=sin??6πfx)的图象上相邻两条对称轴之间的距离为(,∵2π2π??x??xTf-2-1sin)1ωπ∴==,∴=,∴(=,??6ω2.πππkkkx,,≤2∈-≤2Zπ令2+π-262ππkkkx,∈≤Zπ+,则≤π-36xf )的单调递增区间为∴(ππ??kk??k+,ππ-.,Z∈??36π??B??Bf-2 知,0(,)=sin-1=(2)由(1)??6ππ11πBB <2,-∵0<<<π,∴-666πππBB,∴,∴2=-=326cACa=3sin3及正弦定理,得,由sin=ABC在△中,由余弦定理,可得222222cbaccc19710-+-7+-B,==cos ==22ccac2266ac,1,=∴3=31133BSac.=×3×1×==∴sin ABC△4222。
第四章.三角函数与解三角形1.近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主.对三角恒等变换的独立考查,五年一考,对三角恒等变换与三角函数图象和性质的综合考查,五年五考,渐渐稳定为解答题,难度为中等.2.高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.对解三角形的考查,做到了五年五考,近三年为填空题,且设计两空.一.选择题1.(2020届浙江省宁波市慈溪市高三上期中)函数()2cos2f x x =的最小正周期是( ) A .4π B .2π C .πD .2π【答案】C 【解析】函数()2cos2f x x =的最小正周期是222T πππω===, 故选:C .2.(2020届浙江省杭州地区(含周边)重点中学高三上期中)若函数()sin f x x ω=的最小正周期为π,则正数ω的值是( )A .12B .1C .2D .4【答案】C 【解析】因为函数()sin f x x ω=的最小正周期为π所以222T ππωπ=== 故选:C3.(2020届浙江省台州五校高三上学期联考)为了得到函数的图象,可以将函数的图象 ( )A .向左平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向右平移个单位长度 【答案】C【解析】由题意,由于函数,观察发现可由函数向左平移个单位长度,可得到函数的图象,故选C.4.(2020届浙江省宁波市慈溪市高三上期中)已知3cos 25πα⎛⎫-= ⎪⎝⎭,则cos α=( ) A .35-B .45-C .45 D .45±【答案】D 【解析】Q 3cos()25πα-=,3sin 5α∴=,则24cos 15sin αα=±-±.故选:D .5.(2020届浙江省五校高三上学期联考)函数()()sin 22cos 0f x x x x π=+≤≤,则()f x ( ) A .在0,3π⎡⎤⎢⎥⎣⎦上递增 B .在06,π⎡⎤⎢⎥⎣⎦上递减C .在5,66ππ⎡⎤⎢⎥⎣⎦上递减 D .在2,63ππ⎡⎤⎢⎥⎣⎦上递增 【答案】C 【解析】()()()()22cos22sin 22sin sin 102sin 1sin 10f x x x x x x x '=-=-+->⇒-+<,故151sin 0,,266x x πππ⎛⎫⎛⎫-<<⇒∈ ⎪ ⎪⎝⎭⎝⎭U ,故()f x 在0,6x π⎛⎫∈ ⎪⎝⎭和5,6ππ⎛⎫ ⎪⎝⎭单调递增,即在5,66ππ⎡⎤⎢⎥⎣⎦上递减 答案选C6.(2020届浙江省宁波市慈溪市高三上期中)已知函数()2sin()(01,||)f x x ωϕωϕπ=+<<<,若5112,088f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则⋅=ωϕ( ) A .118π B .1118π-C .1172π-D .772π 【答案】A 【解析】函数()2sin()f x x ωϕ=+的最大值为2, 若511()2,()088f f ππ==, 则115(21)884k T ππ+-=,k ∈N ; 所以3221T k ππω==+,解得423k ω+=;又因为01ω<<,所以23ω=; 由252382n ππϕπ⨯+=+,n Z ∈; 所以212n πϕπ=+,n Z ∈;因为||ϕπ<,所以12πϕ=;所以231218ππωϕ⋅=⨯=.故选:A .7.(2020届浙江省杭州地区(含周边)重点中学高三上期中)若()sin cos f x x x =+在[,]a a -是增函数,则a 的最大值是( ) A .4πB .2π C .34π D .π【答案】A 【解析】函数()sin cos f x x x =+所以()4f x x π⎛⎫=+ ⎪⎝⎭由正弦函数的单调递增区间可知, ()4f x x π⎛⎫=+ ⎪⎝⎭的单调递增区间为22,422k x k k Z πππππ-+≤+≤+∈解得322,44k x k k Z ππππ-+≤≤+∈ 因为在[,]a a -是增函数所以a 的最大值是4π 故选:A8.(2020届浙江省五校高三上学期联考)在三角形ABC 中,已知sin cos 0sin A C B +=,tan 4A =,则tanB =( )A B .C .3D .2【答案】D 【解析】()sin cos 0sin cos sin sin 2tan tan 0sin AC A C B B C B C B+=⇒=-=+⇒+=,()tan tan 2tan tan tan 1tan tan 2A B B A B B A B +⇒=+=⇒=- 故选D .9.(2020届浙江省五校高三上学期联考)若不等式()sin 06x a b x ππ⎛⎫--+≤ ⎪⎝⎭对[]1,1x ∈-上恒成立,则a b +=( )A .23B .56C .1D .2【答案】B 【解析】法一:由题意可知:当15,66x ⎡⎤∈-⎢⎥⎣⎦,sin 06x ππ⎛⎫+≥ ⎪⎝⎭,当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦U ,sin 06x ππ⎛⎫+≤ ⎪⎝⎭,故当15,66x ⎡⎤∈-⎢⎥⎣⎦,0x a b --≤,当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦U ,0x a b --≥,即有510653161026a b a a b b a b ⎧⎧--==⎪⎪⎪⎪⇒⇒+=⎨⎨⎪⎪=---=⎪⎪⎩⎩,故选B ; 法二:由sin 6x ππ⎛⎫+ ⎪⎝⎭右图像可得:显然有510653161026a b a a b b a b ⎧⎧--==⎪⎪⎪⎪⇒⇒+=⎨⎨⎪⎪=---=⎪⎪⎩⎩,故选B10.(2020届浙江湖州、衢州、丽水三地市高三上期中)函数()(), ,00sin ),(xf x x xππ=∈-⋃的图象大致是( )A .B .C .D .【答案】A 【解析】由于πππ21π22sin2f ⎛⎫==>⎪⎝⎭,只有A 选项符合. 故选:A.11.(2020届浙江省宁波市镇海中学高三上期中)将函数()y f x =的图象向右平移6π个单位长度后,得到()26g x sin x π⎛⎫=+ ⎪⎝⎭,则()y f x =的函数解析式为( )A .()cos2f x x =-B .()sin 26f x x π⎛⎫=-⎪⎝⎭C .()cos2f x x =D .()cos 26f x x π⎛⎫=- ⎪⎝⎭【答案】C 【解析】把()26g x sin x π⎛⎫=+ ⎪⎝⎭的图像向左平移6π个单位可得()sin 2sin 2cos 2662f x x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:C12.(2020届浙江省宁波市镇海中学高三上期中)已知22ππαβ--<<,sin 2cos 1αβ-=,2cos sin αβ+=3sin πβ⎛⎫-= ⎪⎝⎭ ( )ABC.D.±【答案】B 【解析】将两个等式两边平方可得2222sin 4sin cos 4cos 1cos 4cos sin 4sin 2ααββααββ⎧-⋅+=⎨+⋅+=⎩,两式相加可得()54sin 3αβ--=,所以()1sin 2αβ-=, 22ππαβ-<-<Q ,6παβ∴-=,即6παβ=+,代入2cos sin αβ+=3sin 22ββ+=,所以sin 6πβ⎛⎫+= ⎪⎝⎭, 故选:B13.(浙江省宁波市宁波十校2020届高三11月联考)函数f (x )=sin (ωx +φ)(ω>0,22ϕππ-<<)满足f (4π)=f (2π)=﹣f (34π),且当x ∈[4π,2π]时恒有f (x )≥0,则( ) A .ω=2 B .ω=4C .ω=2或4D .ω不确定【答案】A 【解析】由题意,函数()()sin ωϕ=+f x x ,因为f (4π)=f (2π)=﹣f (34π),可得f (x )有一条对称轴为34228x πππ+==,对称点的横坐标为352428πππ+=, 又由x ∈[4π,2π]时恒有f (x )≥0,所以f (38π)=1,又f (58π)=0,53884πππ-=. 所以44T π=,344T π=, 可得当T =π,ω=2;当T 3π=时,ω=6,当x 34π=时,sin (6•34π+φ)=cosφ>0,不成立, 故选:A .14.(浙江省杭州市第二中学2020届高三上学期开学考)已知π2cos 63α⎛⎫-= ⎪⎝⎭,则5πcos 23α⎛⎫+ ⎪⎝⎭的值为( )A .59 B .19 C .19-D .59-【答案】C 【解析】5πcos 23α⎛⎫+ ⎪⎝⎭=cos 23πα⎛⎫- ⎪⎝⎭=21cos 22cos 1669ππαα⎡⎤⎛⎫⎛⎫-=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故选:C15.(浙江省杭州市第二中学2020届高三上学期开学考)已知()()sin f x x ωϕ=+,0>ω,2πϕ<,()f x 是奇函数,直线1y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减增 【答案】A 【解析】因为()f x 是奇函数,所以0,ϕ= 所以()sin f x x ω=; 又由已知得2,,22T πππω=∴=所以 4.ω=所以()sin 4.f x x =由函数的解析式可知()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减.故选A.16.(2020届浙江省高三上学期百校联考)已知ABC △内接于半径为2的O e ,内角A ,B ,C 的角平分线分别与O e 相交于D ,E ,F 三点,若coscos cos (sin sin sin )222A B CAD BE CF λA B C ⋅+⋅+⋅=++,则λ=( )A .1B .2C .3D .4【答案】D 【解析】连接BD ,在三角形ABD 中,由正弦定理得4sin 2ADA B =⎛⎫+ ⎪⎝⎭,故cos2A AD ⋅=4sin cos 22A A B ⎛⎫+ ⎪⎝⎭ππ4sin cos 222222B C B C ⎡⎤⎛⎫⎛⎫=+--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦4sin cos 2222B C B C ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭4sin cos cos sin cos cos sin sin 22222222B C B C B C B C ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭22222sin cos sin 2sin cos sin 2222C C B B B C ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()2sin sin B C =+.同理可得()cos2sin sin 2B BE A C ⋅=+、()cos 2sin sin 2CCF A B ⋅=+,故cos cos cos 4(sin sin sin )222A B CAD BE CF A B C ⋅+⋅+⋅=++,故4λ=.故选D.17.(浙江省杭州市第二中学2020届高三上学期开学考)设的内角所对的边分别为,且,已知的面积,,则的值为( ) A . B .C .D .【答案】D 【解析】,变形为:,又为三角形的内角,,,即,为三角形的内角,可得:,,,解得:.故选:D .18.(2019·9月浙江省丽水四校高三联考)已知函数()sin 3(0)f x x x ωωω=>的图像与x 轴的两个相邻交点的距离等于2π,若将函数()y f x =的图像向左平移6π个单位得到函数()y g x =的图像,则()y g x =是减函数的区间为( ).A .,03π⎛-⎫⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,44ππ⎛⎫-⎪⎝⎭D .,43ππ⎛⎫⎪⎝⎭【答案】D 【解析】f(x)=sin ωx 3cos ωx=2sin(ωx )3π-因为图象与x 轴的两个相邻交点的距离等于π22T = 所以T π=,ω=2 所以f(x)=2sin(2x )3π-所以πg(x)=2sin[2(x+)]2sin2x 63π-=由π3π+k π2x +k π22≤≤得()π3π+2x +4242k k k Z ππ≤≤∈所以y=g(x)是减函数的区间为()π3π+,+4242k k k Z ππ⎡⎤∈⎢⎥⎣⎦分析选项只有D 符合 故选:D .19.(2020届浙江学军中学高三上期中)若O 是ABC △垂心,6A π∠=且sin cos sin cos B C AB C BAC +u u u r u u u r 2sin sin m B C AO =u u u r,则m =( )A .12B C D .6【答案】D 【解析】在ABC ∆中,sin sin 0B C ≠,由sin cos sin cos B C AB C BAC +u u u r u u u r 2sin sin m B C AO =u u u r,得cos cos 2sin sin C B AB AC m AO C B+=⋅u u u r u u u r u u u r , 连接CO 并延长交AB 于D ,因为O 是ABC ∆的垂心,所以CD AB ⊥,AO AD DO =+u u u r u u u r u u u r,所以()cos cos 2sin sin C B AB AC m AD DO C B +=⋅+u u ur u u u r u u u r u u u r 同乘以AB u u u r得,()cos cos 2sin sin C B AB AB AC AB m AD DO AB C B⋅+⋅=⋅+⋅u u ur u u u r u u u r u u u r u u u r u u u r u u u r 2cos cos cos 22cos sin sin C Bc bc A m AD AB m b A c C B+=⋅⋅=⋅⋅u u u r u u u r因为6A π=,所以2cos cos sin sin 2C B c bc C B +=由正弦定理可得cos sin sin sin sin C C B C B C +=又sin 0C ≠,所以有cos sin 2C B B +=⋅, 而56C A B B ππ=--=-,所以51cos cos cos sin 622C B B B π⎛⎫=-=-+ ⎪⎝⎭,所以得到1sin sin 2B B =,而sin 0B ≠,所以得到m =,故选:D.二.填空题20.(2020届浙江省杭州地区(含周边)重点中学高三上期中)已知角α的终边经过点(1,3)P -,则tan α=_________,sin()cos()2ππαα+-=_________.【答案】3- 34-【解析】由任意角的三角函数的定义可知3tan 31α==-- sin()sin παα+=-,cos()cos ()cos()sin 222πππαααα⎡⎤-=--=-=⎢⎥⎣⎦所以()()222233sin()cos()sin 2413ππααα⎡⎤⎢⎥+-=-=-=-⎢⎥⎢⎥-+⎣⎦故答案为:3-;34-21.(2020届浙江省台州五校高三上学期联考)在中,角分别对应边,为的面积.已知,,,则_______,_______.【答案】 6..【解析】由正弦定理得,,由余弦定理得,,则,所以.22.(浙江省杭州市第二中学2020届高三上学期开学考)已知将函数()()sin 06,22f x x ππωϕωϕ⎛⎫=+<<-<< ⎪⎝⎭的图象向右平移3π个单位长度得到函数()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则⋅=ωϕ______.【答案】34π- 【解析】由题意知:()sin 33g x f x x ππωωϕ⎛⎫⎛⎫=-=-+ ⎪ ⎪⎝⎭⎝⎭()f x Q 和()g x 的图象都关于4x π=对称,42,432k k Z k k Z ππωϕππππωωϕπ''⎧+=+∈⎪⎪∴⎨⎪++=+∈⎪⎩,解得:()3k k ω'=-,,k k Z '∈ 06ω<<Q 3ω∴= ,4k k Z πϕπ∴=-+∈又22ππϕ-<< 4πϕ∴=- 34πωϕ∴⋅=- 本题正确结果:34π-23.(2020届浙江省杭州地区(含周边)重点中学高三上期中)如图,四边形ABCD 中,ABD ∆、BCD ∆分别是以AD 和BD 为底的等腰三角形,其中1AD =,4BC =,ADB CDB ∠=∠,则cos CDB ∠=__________,AC =____________.【答案】146【解析】由余弦定理可知:2222cos 288DC DB BC DB DBCDB DC DB DB +-∠===⋅ 2221cos 22AD DB AB ADB AD DB DB+-∠==⋅ 因为ADB CDB ∠=∠,所以182DB DB=,解得:2DB = 所以21cos 884DB CDB ∠=== 217cos cos 22cos 121168ADC CDB CDB ∠=∠=∠-=⨯-=-所以AC ===故答案为:14;24.(2020届浙江学军中学高三上期中中)在ABC △中,角,,A B C 所对的边分别为,,a b c ,已知sin cos c A C =,则C =__________,若c =ABC △的面积为2,则a b +=__________. 【答案】3π7 【解析】因为sin cos c A C =由正弦定理sin sin sin a b cA B C==可得,sin sin cos C A A C =而sin 0A ≠,所以tan C =()0,C π∈,所以3C π=.因为c =所以由余弦定理2222cos c a b ab C =+-可得2213122a b ab =+-⨯,即2231a b ab +-=因为ABC △,所以1sin 2ab C =所以6ab =,所以22249a b ab ++=, 所以7a b +=. 故答案为:3π;7. 25.(2020届浙江湖州、衢州、丽水三地市高三上期中)在锐角ABC △中,D 是线段BC 的中点,若2, 2,30AD BD BAD ==∠=︒,则角B =__________,AC =__________【答案】45o 823- 【解析】在三角形ABD 中,由正弦定理得sin sin AD BD B BAD=∠,解得2sin B =,由于三角形ABC 为锐角三角形,故45B =o .而30,45,75BAD B ADC ∠=∠=∠=o o o,在三角形ADC 中,由余弦定理得222cos75823AC AD DC AD DC =+-⋅⋅=-o .故答案为:(1)45o ;(2)823-.26.(2019·9月浙江省丽水四校高三联考)已知向量则=________、______,设函数,取得最大值时的x 的值是_______.【答案】【解析】由题设,即,故,由此可得;又,故当取最大值时,,即,所以应填,Z.27.(2020届浙江省宁波市慈溪市高三上期中)已知0,2πα⎛⎫∈ ⎪⎝⎭且4tan 23α=,则tan 4tan 4παπα⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭的值等于________. 【答案】9- 【解析】 由(0,)2πα∈,且4tan 23α=, 得22tan 413tan αα=-,解得tan 2α=-(舍),1tan 2α=. ∴22tan 11tan()1tan 11tan 42()()9tan 111tan tan()141tan 2απαααπαααα++++-==-=-=-----+. 故答案为:9-.28.(浙江省宁波市宁波十校2020届高三11月联考)已知θ∈(0,π),且sin (4π-θ)210=,则cos (θ4π+)=_____,sin 2θ=_____. 22425【解析】 由题意,因为sin (4π-θ)210=, 可得cos (θ4π+)=cos [2π-(4πθ-)]=sin (4π-θ)210=; 又由sin 2θ=cos (22πθ-)=cos 2(4πθ-)222241212(41025sin πθ⎛⎫=--=-⨯= ⎪⎝⎭. 2,2425.29.(2020届浙江省五校高三上学期联考)已知0,6a π⎛⎫∈ ⎪⎝⎭,若2sin sin 21a a +=,则tan a =______;sin 2a =______.【答案】1245【解析】22221sin sin 21sin cos sin 2cos tan 2a a a a a a a +==+⇒=⇒=; 22tan 14sin 211tan 514a a a ===++所以1tan 2a =,4sin 25a =30.(2020届浙江省温州市11月适应测试)如图所示,四边形ABCD 中,7AC AD CD ===,120ABC ︒∠=,53sin 14BAC ∠=,则ABC ∆的面积为________,BD =________.【答案】15348 【解析】在ABC ∆中, 7AC =,120ABC ︒∠=,53sin 14BAC ∠=由正弦定理sin sin AC BCABC BAC=∠∠,代入得753sin120=o 解得5371453BC ==,而1cos cos1202ABC ∠==-o 由余弦定理可得2222cos AC AB BC AB BC ABC =+-⋅⋅∠代入可得214925102AB AB ⎛⎫=+-⋅⨯- ⎪⎝⎭解方程可求得3AB =则11sin 3722144ABC S AB AC BAC ∆=⨯⨯⨯∠=⨯⨯⨯=因为60DCA ∠=o ,11cos 14BAC ∠==且()sin sin BCA BAC ABC ∠=∠+∠sin cos sin cos BAC ABC ABC BAC =∠⋅∠+∠⋅∠111214⎛⎫=- ⎪⎝⎭=所以13cos 14BCA ∠== 则()cos cos DCB DCA BAC ∠=∠+∠cos cos sin sin DCA BCA DCA BCA =∠⋅∠-∠⋅∠11312147=⨯= 由余弦定理可知2222cos BD DC CB DC CB DCB =+-⋅⋅∠代入可得214925275647BD =+-⨯⨯⨯=所以8BD =故答案为:;8 31.(2019年9月浙江省超级全能生高三第一次联考)在ABC △中,D 为AC 中点,若2AB BC BD ===,cos ABC ∠=________,sin C =________________.【解析】由D 为AC 中点可得,1()2BD BA BC =+u u u r u u u r u u u r,所以2221132(2)(422cos )5443BD BA BC BA BC ABC =++⋅=++⨯∠=u u u r u u u r u u u r u u u r u u u r ,解得cos ABC ∠=由余弦定理可得2222cos AC AB BC AB BC ABC =+-⨯⨯⨯∠32284223363=+-⨯⨯=,由正弦定理可得sin sin AB ACC ABC=∠,即3sin C =,解得sin C=32.(2019年9月浙江省嘉兴市高三测试)已知函数2()(1cos 2)sin f x x x =+(R x ∈),则()f x 的最小正周期为_______;当[0,]4x π∈时,()f x 的最小值为________.【答案】2π. 0. 【解析】因为21cos 2()(1cos 2)sin (1cos 2)2-=+=+⋅xf x x x x 21cos 211cos 411cos 422444-+==-=-x x x ,所以()f x 的最小正周期为242T ππ==; 因为[0,]4x π∈,所以4[0,]π∈x ,所以cos 4[1,1]∈-x , 因此,111()cos 40,442⎡⎤=-∈⎢⎥⎣⎦f x x . 即()f x 的最小值为0. 故答案为(1)2π;(2)0 33.(2020届江苏高三月考)如图,在四边形ABCD 中,90BAC ∠=︒,4BC =,1CD =,2AB AD =,AC 是BCD ∠的角平分线,则BD =_____.【答案】21 【解析】设AD x =,则2AB x =,2164AC x =-, 又AC 是BCD ∠的角平分线,即ACB ACD ∠=∠,222cos cos 2AC AC CD ADACB ACD BCAC CD+-∠==∠=⋅3x ⇒=,即3AD =,2AC =,=60o ACB ACD ∠=∠,=120o BCD ∠2241241cos12021o BD =+-⨯⨯=故填2134.(2020届浙江省名校新高考研究联盟(Z20联盟)高三上学期第一次联考)在ABC ∆中,90ACB ∠=︒,点,D E 分别在线段,BC AB 上,36AC BC BD ===,60EDC ∠=︒,则BE =________,cos CED ∠=________.【答案】326+ 22【解析】如图ABC ∆中,因为60EDC ∠=︒,所以120EDB ∠=︒, 所以sin sin BE BD EDB BED =∠∠,即2sin120sin15BE =o o,解得:sin152222BE===o在CEB∆中,由余弦定理,可得:2222cosCE BE CB BE CB B=+-⋅224(4=-=-,所以4CE=-2221cos22CE BE CBCEBCE BE+-∠==⋅,CEB60,︒∠=CED CEB BED45∠=∠-∠=o,所以cos2CED∠=;2.三.解答题35.(2020届浙江省名校新高考研究联盟(Z20联盟)高三上学期第一次联考)已知函数2()cos cosf x x x x=+.(1)求3fπ⎛⎫⎪⎝⎭的值;(2)若13,0,2103fαπα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭,求cosα的值.【答案】(1)1;(2)4cos10α=【解析】(1)因为21cos21()cos cos sin22226xf x x x x x xπ+⎛⎫==+=++⎪⎝⎭,所以121511sin sin132362622fππππ⎛⎫⎛⎫=++=+=+=⎪ ⎪⎝⎭⎝⎭.(2)由13,0,2103fαπα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭得43sin,cos6565ππαα⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭,cos cos cos cos sin sin666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭36.(2020届浙江省杭州地区(含周边)重点中学高三上期中)在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对边的长,cos 4cos a B b A =且1cos 7A =. (Ⅰ)求角B 的值;(Ⅱ)若8a =,求ABC ∆的面积. 【答案】(Ⅰ)3B π=,(Ⅱ)103【解析】(Ⅰ)∵cos 4cos a B b A ⋅=⋅,sin cos 4sin cos A B B A =,即1tan tan 4B A =,又∵1cos 7A =,∴2117tan 437A ⎛⎫- ⎪⎝=⎭=,∴tan 3B =, ∵tan 0B >, ∴B 为锐角 ∴3B π=,(Ⅱ)ABC ∆中,1cos 7A =,则43sin 7A =, 53sin sin()sin cos cos sin C A B A B A B =+=+=, 根据正弦定理5sin sin c ac C A=⇒=, ∴113sin 58103222ABC S ac B ∆==⋅⋅⋅=. 37.(2020届浙江省台州五校高三上学期联考)已知,函数.(Ⅰ)若,求的单调递增区间;(Ⅱ)若的最大值是,求的值.【答案】(Ⅰ),;(Ⅱ).【解析】(Ⅰ)由,可先由两角和差正弦公式、二倍角公式将函数解析式化简为,再根据余弦函数的单调递增区间,求出函数的单调递增区间;(Ⅱ)利用两角和余弦公式、二倍角公式整理得,由函数最大值为,且对于型函数的最大值为,又,从而问题可得解.试题解析:(Ⅰ)由题意由,得.所以单调的单调递增区间为,.(Ⅱ)由题意,由于函数的最大值为,即, 从而,又,故.38. (2019·新疆高二月考)已知,,a b c 分别为△ABC 三个内角,,A B C 的对边,且满足()(sin sin )()sin a b A B c b C +⋅-=-⋅.(Ⅰ)求角A 的大小;(Ⅱ)当2a =时,求△ABC 面积的最大值. 【答案】(Ⅰ)3A π=; (Ⅱ3.【解析】(Ⅰ)由正弦定理()()()sin sin sin a b A B c b C +⋅-=-⋅可得()()()a b a b c b c +-=-,化简即为222b c a bc +-=,从而2221cos 22b c a A bc +-==,所以3A π=.(Ⅱ)由2a =,根据余弦定理可得224b c bc bc =+-≥, 当且仅当b c =时,取等号;故1sin 2ABC S bc A ∆=≤ 此时△ABC 是边长为2的正三角形.39.(2019年9月浙江省超级全能生高三第一次联考)已知函数()1cos cos 34f x x x ⎛⎫=+⋅- ⎪⎝⎭π. (Ⅰ)求3f π⎛⎫⎪⎝⎭的值和()f x 的单调递增区间; (Ⅱ)函数()f x θ+是奇函数02⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,πθ,求函数()2y f x =+⎡⎤⎣⎦θ的值域. 【答案】(Ⅰ)132f ⎛⎫=- ⎪⎝⎭π,()f x 的单调递增区间是()236k k k ⎡⎤--∈⎢⎥⎣⎦,πππππ(Ⅱ)104⎡⎤⎢⎥⎣⎦, 【解析】(Ⅰ)因为()1cos cos 34f x x x ⎛⎫=+⋅- ⎪⎝⎭π1cos 224x x =- 1cos 223x ⎛⎫=+ ⎪⎝⎭π, 所以132f ⎛⎫=-⎪⎝⎭π.令()2223k x k k Z -+≤+≤∈ππππ,则()236k x k k Z -≤≤-∈ππππ, 所以()f x 的单调递增区间是()236k k k ⎡⎤--∈⎢⎥⎣⎦,πππππ. (Ⅱ)由()f x θ+是奇函数,得cos 203⎛⎫+= ⎪⎝⎭πθ,所以212k =+ππθ. 又02⎡⎤∈⎢⎥⎣⎦,πθ,得12πθ=,所以()1sin 22f x x +=-θ,所以()()2211sin 21cos448y f x x x =+==-⎡⎤⎣⎦θ, 所以函数()2y f x =+⎡⎤⎣⎦θ的值域为104⎡⎤⎢⎥⎣⎦,. 40.(浙江省杭州市第二中学2020届高三上学期开学考)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足cos cos cos cos C A B A B +=. (1)求cos B 的值;(2)若2a c +=,求b 的取值范围【答案】(1)13;(2)23⎡⎫⎪⎢⎪⎣⎭. 【解析】(1)因为cos cos cos cos C A B A B +=所以cos()cos cos cos A B A B A B -++=,即sin sin cos A B A B =因为sin 0A ≠,所以sin 0B B => 又因为22sin cos 1B B += 解得:1cos 3B =. (2)∵2a c +=,可得2c a =-,由余弦定理可得:2222222cos 3b ac ac B a c ac =+-=+-222284(2)(2)(1)333a a a a a =+---==-+∵02a <<,∴2323b ≤< 所以b 的取值范围为23,23⎡⎫⎪⎢⎪⎣⎭. 41.(2020届浙江学军中学高三上期中中)已知函数()32sin cos()32f x x x π=++. (1)求函数()f x 的单调递减区间; (2)求函数()f x 在区间[0,]2π上的最大值及最小值.【答案】(Ⅰ)7[,]1212k k ππππ++,k Z ∈;(Ⅱ)()f x 取得最大值,()f x 取得最小值3-. 【解析】 (Ⅰ). ……………………………………3分由,,得,.即的单调递减区间为,.……………………6分(Ⅱ)由得, ………………………………8分所以. …………………………………………10分所以当时,取得最小值;当时,取得最大值1. ………………………………13分42.(2020届浙江学军中学高三上期中中)已知在ABC △中,1AB =,2AC =.(1)若BAC ∠的平分线与边BC 交于点D ,求()2AD AB AC ⋅-u u u r u u u r u u u r;(2)若点E 为BC 的中点,求2211AE BC+u u u r u u u r 的最小值. 【答案】(1)0;(2)910【解析】(1)因为AD 是角平分线,从而得到12BD AB CD AC ==u u u r u u u r u u u r u u u r 所以可得2133AD AB AC =+u u u r u u u r u u u r,所以()21233AD AB AC AB AC ⎛⎫⋅-=+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r ()20AB AC ⋅-=u u u r u u u r;(2)在ABE ∆和ACE ∆由用余弦定理可得222cos 2AE BE AB AEB AE BE +-∠=u u u r u u u r u u u r u u u r u u u r ,222cos 2AE CE ACAEC AE CE+-∠=u u u r u u u r u u u r u u u r u u u r, 而BE CE =u u u r u u u r,cos cos AEB AEC ∠=-∠,所以得到22222222AE BE AB AE CE ACAE BE AE CE+-+-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r整理得:224AE BC +u u u r u u u r ()22210AB AC =+=u u u r u u u r22221111110AE BC AE BC ⎛⎫ ⎪∴+=+ ⎪ ⎪⎝⎭u u u r u u u r u u u r u u u r ()224AE BC +u u ur u u u r2222414110BC AEAE BC ⎡⎤⎢⎥=+++⎢⎥⎢⎥⎣⎦u u u r u u u r u u u r u u u r1951010⎛+= ⎝≥ 当且仅当2BC AE =u u u r u u u r时,等号成立.43.(2020届浙江湖州、衢州、丽水三地市高三上期中)已知平面向量(),,0,a cosx b cosx ⎫⎪⎪⎝⎭==r r,函数()2()f x a b x R =+∈r r.(1)求函数()f x 图象的对称轴; (2)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域. 【答案】(1),2()6k x k Z ππ=+∈(2)【解析】(1))2,2a b cosx cosx +=+r r()f x==由262x k πππ+=+解得:,2()6k x k Z ππ=+∈, 所以函数()f x 图象的对称轴是直线,2()6k x k Z ππ=+∈ (2) 当0,2x π⎛⎫∈ ⎪⎝⎭时,72666x πππ⎛⎫+∈ ⎪⎝⎭, 所以12,162sin x π⎛⎫⎛⎤+∈- ⎪ ⎥⎝⎭⎝⎦ 所以()f x ∈.所以()f x 的值城是44.(2019·9月浙江省丽水四校高三联考)已知函数()2sin cos 333x x x f x =+ (1)求函数()f x 图象对称中心的坐标;(2)如果ABC ∆的三边,,a b c 满足2b ac =,且边b 所对的角为B ,求()f B 的取值范围.【答案】(1)对称中心3,,222k k Z ππ⎛-+∈ ⎝⎭ (2)()2f B ∈+⎦【解析】(1)()2333x x x f x sincos =+.=12212323sin x cos x ⎛⎫++ ⎪⎝⎭,=sin(233x π+ 令233x k ππ+=(k∈Z ), 解得:x=322k ππ-(k∈Z ),所以函数的图象的对称中心为:3,22k k Z ππ⎛-+∈ ⎝⎭. (2)由于b 2=ac ,所以:cosB=22221222a cb ac ac ac ac +--≥=,则:03B π≤<.所以:253339B πππ+≤<,2133B sin π⎛⎫+≤ ⎪⎝⎭,()12f B ≤+.则:f(B)的取值范围为:+.45.(2020届浙江省金丽衢十二校高三上学期第一次联考)设函数()sin cos f x x x =+,x ∈R . (Ⅰ)求()()f x fx π⋅-的最小正周期;(Ⅱ)求函数()33sin cos g x x x =+的最大值. 【答案】(Ⅰ)最小正周期为π;(Ⅱ)最大值为1. 【解析】 (Ⅰ)因为()()()sin cos f x f x x x π⋅-=+()22sin cos sin cos x x x x -=-cos2x =-所以()()f x fx π⋅-的最小正周期为π;(Ⅱ)由题()sin cos f x x x =+=4x π⎛⎫⎡+∈ ⎪⎣⎝⎭而()()sin cos g x x x =+()22sin sin cos cos x x x x -+()sin cos x x =+⋅()2sin cos 112x x ⎡⎤+--⎢⎥⎢⎥⎣⎦()()2322f x f x ⎡⎤=-=⎢⎥⎣⎦()()31322f x f x -+令()f x t =,则()g x 的的最大值即为函数31322y t t =-+,t ⎡∈⎣的最大值,由()2312y t '=--可得函数在1⎡⎤-⎣⎦和⎡⎣上递减,在[]1,1-上递增.又x =2y =-;1x =时,1y =. 所以函数()g x 的最大值为1.46.(浙江省宁波市宁波十校2020届高三11月联考)已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且b acosC =+.(1)求A ;(2)若a =ABC 的面积S 的最大值.【答案】(1)A 6π=【解析】(1)由题意,在ABC ∆中,b acosC =+,由正弦定理得sin sin sin cos B C A A C =+, 又由A B C π++=,可得sin sin[()]sin()sin cos cos sin B A C A C A C A C π=-+=+=+所以sin cos cos sin sin sin cos A C A C C A A C +=+,即cosAsinC =,又因为sinC ≠0,所以cosA =,可得tanA =, 又由A ∈(0,π),∴A 6π=.(2)由余弦定理可得cosA 2222b c a bc +-==,可得b 2+c 2﹣3=,因为b 2+c 2≥2bc ,所以3≥2bc ,可得bc≤=3(2,所以三角形的面积S 12=bcsin 634π+≤,当且仅当b =c =所以△ABC 的面积S . 47.(2020届浙江省宁波市慈溪市高三上期中)在ABC △中,已知内角A ,B ,C 的对边分别是a ,b ,c ,且7,8a b ==,3A π=. (1)求sin B 和c ;(2)若ABC △是钝角三角形,求ABC △的面积.【答案】(1) sin 7B =,5c =或3c =. (2) 【解析】(1)在ABC △中,因为7,8,3a b A π===,所以由正弦定理sin sin B Ab a=,得sin 8sin 7b A B a ===由余弦定理得2222cos ,a b c bc A =+-得214964282c c =+-⨯⨯⨯即28150c c -+=,得5c =或3c =.(2)b a >Q ,b c >,所以B Ð为ABC △中最大的角,当5c =时,222cos 02a c b B ac +-=>,与ABC △为钝角三角形矛盾,舍掉,当3c =时,222cos 02a c b B ac+-=<,ABC △为钝角三角形,所以3c =所以1sin 2ABC S bc A ∆==48.(2020届浙江省宁波市慈溪市高三上期中)已知平面向量(sin 2,cos 2),(sin 2,cos 2)a x x b ϕϕ==r r,设函数()f x a b =⋅r r (ϕ为常数且满足0πϕ-<<),若函数4y f x π⎛⎫=- ⎪⎝⎭图象的一条对称轴是直线8x π=.(1)求ϕ的值;(2)求函数4y f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值:(3)30y -+=与函数4y f x π⎛⎫=- ⎪⎝⎭的图象不相切.【答案】(1) 38ϕπ=- (2) 最大值和最小值分别为2和-1. (3)证明见解析 【解析】(1)可知()sin 2sin 2cos 2cos 2cos(22)f x a b x x x ϕϕϕ=⋅=+=-r r,所以cos 22sin(22)44f x x x ππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫-=--=+⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦ 因为8x π=是函数4y f x π⎛⎫=-⎪⎝⎭图象的一条对称轴, 所以22()82k k Z ππϕπ⨯+=+∈,得1()28k k Z πϕπ=+∈因为0πϕ-<<,所以31,8k ϕπ=-=-(2)所以3sin 244y f x x ππ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以332,444x πππ⎡⎤-∈-⎢⎥⎣⎦所以函数4y f x π⎛⎫=-⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦和1-. (3)因为32cos 24y x π'⎛⎫=-⎪⎝⎭所以2y '≤即函数4y f x π⎛⎫=-⎪⎝⎭图象的切线斜率的取值范围为[2,2]-,30y -+=2>,30y -+=与函数4y f x π⎛⎫=-⎪⎝⎭的图象不相切. 49.(2020届浙江省浙南名校联盟高三上学期第一次联考)函数()()2sin f x x ωϕ=+0,02πωϕ⎛⎫><<⎪⎝⎭的图象过点12⎛ ⎝.(Ⅰ)求函数()f x 的解析式;(Ⅱ)求()f x 在[]0,2上的单调递增区间. 【答案】(Ⅰ)()2sin()4f x x ππ=+;(Ⅱ)1[0,]4和5[,2]4. 【解析】(Ⅰ)函数()f x 的周期T ,=ωπ∴把坐标1(2代入得2sin()2πϕ+=cos 2ϕ∴=又02πϕ<<,4πϕ∴=,()2sin()4f x x ππ∴=+(Ⅱ)令22,242k x k k Z ππππππ-≤+≤+∈解得 3122,44k x k k Z -≤≤+∈ [0,2]x ∈Q()f x ∴在[]0,2上的单调递增区间是1[0,]4和5[,2]450.(2020届浙江省五校高三上学期联考)已知()sin 3f x x x π⎛⎫=+- ⎪⎝⎭,ABC △中,角,,A B C 所对的边为,,a b c . (1)若,22x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域;(2)若()13f A =,a =2b =,求sin B 的值. 【答案】(1)11,2⎡⎤-⎢⎥⎣⎦(2)6【解析】()1sin sin sin 3223f x x x x x x x ππ⎛⎫⎛⎫=+=+=- ⎪ ⎪⎝⎭⎝⎭(1)∵51,,sin 2236632x x x ππππππ⎡⎤⎡⎤⎛⎫⎡⎤∈-⇒-∈-⇒-∈-1, ⎪⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎣⎦, 即()11,2f x ⎡⎤∈-⎢⎥⎣⎦(2)()11sin 333f A A π⎛⎫=⇒-= ⎪⎝⎭,因为1132<,所以036A ππ<-<,或者563A πππ<-<,即32A ππ<<或者7463A ππ<<(舍去),故cos 33A π⎛⎫-= ⎪⎝⎭;1sin sin 336A A ππ⎛⎫+⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭,由正弦定理得:sin sin a b A b =⇒sin 6B = 51.(2020届浙江省温州市11月适应测试)在锐角..ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .已知3b =,sin sin A a B +=.(1)求角A 的值;(2)求函数()()22cos cos f x x A x =--(0,2x π⎡⎤∈⎢⎥⎣⎦)的值域. 【答案】(1)3A π=(2)3,42⎡-⎢⎣⎦【解析】 (1)由正弦定理sin sin a b A B= ,可得sin sin 3sin a B b A A ==,则sin sin 4sin A a B A +==得sin 2A =, 又A 为锐角,故3A π=; (2)22()cos cos 3f x x x π⎛⎫=-- ⎪⎝⎭21cos 21cos 2322x x π⎛⎫+- ⎪+⎝⎭=-132cos 222x x ⎤=-⎥⎣⎦23x π⎛⎫=- ⎪⎝⎭,因02x π≤≤,故22333x πππ-≤-≤,于是sin 2123x π⎛⎫-≤-≤ ⎪⎝⎭,因此()34f x -≤≤即()f x的值域为34⎡-⎢⎣⎦.52.(2020届浙江省宁波市镇海中学高三上期中)已知()222x x x f x sin cos sin a ⎛⎫=⋅++ ⎪⎝⎭. (1)求实数a 的值;(2)若443f f ππαα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,求2141tan παα⎛⎫-+ ⎪⎝⎭+的值. 【答案】(1)12-;(2)516. 【解析】 (1)()()11122222242x x x f x sincos sin a sinx cosx a sin x a π⎛⎫⎛⎫=⋅++=-++=-++ ⎪ ⎪⎝⎭⎝⎭,,故102a +=,解得a 12=-. (2)由于f (x)24sin x π⎛⎫=- ⎪⎝⎭,所以443f f ππαα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,整理得43sin πα⎛⎫-= ⎪⎝⎭.所以4cos πα⎛⎫-= ⎪⎝⎭所以224466sin sin ππαα+⎛⎫=-+= ⎪⎝⎭.2446cos cos ππαα⎛⎫=-+=⎪⎝⎭或所以2626sin cos αα⎧+=⎪⎪⎨⎪=⎪⎩或2626sin cos αα⎧=⎪⎪⎨⎪=-⎪⎩,故22122122422211sin cos sin sin cos sin sin cos tan cos cos παααααααααααααα⎛⎫-++ ⎪+⎝⎭===+++,所以当sin cos αα⎧=⎪⎪⎨⎪=⎪⎩时.144523616sin cos αα-==.当2626sin cos αα⎧-=⎪⎪⎨⎪=-⎪⎩时,144523616sin cos αα-==, 所以原式516=. 53.(2020届浙江省宁波市镇海中学高三上期中)在锐角ABC ∆中,角A ,B ,C 所对边分别为a ,b ,c ,已知223,39b a c c ==-+.(1)求A ;(2)求22sin sin B C +的取值范围. 【答案】(1)3π;(2)53,42⎛⎤ ⎥⎝⎦. 【解析】(1)在锐角△ABC 中,∵b =3,a 2=c 2﹣3c +9, ∴可得c 2+b 2﹣a 2=bc ,∴由余弦定理可得:cos A 2221222b c a bc bc bc +-===,∴由A 为锐角,可得A 3π=.(2)∵sin 2B +sin 2C =sin 2B +sin 2(23π-B )=sin 2BB 12+sin B )2=112+(B 12-cos2B )=112+sin(2B 6π-), 又∵022032B B πππ⎧⎪⎪⎨⎪-⎪⎩<<<<,可得6π<B 2π<,∴2B 6π-∈(6π,56π), ∴sin(2B 6π-)∈(12,1],∴sin 2B +sin 2C =112+sin(2B 6π-)∈(54,32],即sin 2B +sin 2C 的取值范围是(54,32].54.(2020届浙江省高三上学期百校联考)已知函数2()sin 2xf x x =- (1)求()f π的值;(2)求函数()y f x =的单调递增区间.【答案】(2)5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z . 【解析】(1)化简得()sin 2sin 3f x x x x π⎛⎫==-⎪⎝⎭,所以2()2sin3πf π==(2)由于2sin 3πy x ⎛⎫=-⎪⎝⎭,故π32ππk x k π-+剟,k ∈Z , 解得函数()y f x =的单调递增区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z .。
§5.3 三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0). (2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )概念方法微思考1.正(余)弦曲线相邻两条对称轴之间的距离是多少?相邻两个对称中心的距离呢?提示 正(余)弦曲线相邻两条对称轴之间的距离是半个周期;相邻两个对称中心的距离也为半个周期. 2.思考函数f (x )=A sin(ωx +φ)(A ≠0,ω≠0)是奇函数,偶函数的充要条件? 提示 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)由sin ⎝⎛⎭⎫π6+2π3=sin π6知,2π3是正弦函数y =sin x (x ∈R )的一个周期.( × ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin|x |是偶函数.( √ ) 题组二 教材改编2.[P35例2]函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是________. 答案 π3.[P46A 组T2]y =3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域是________. 答案 ⎣⎡⎦⎤-32,3 解析 当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6, sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, 即y =3sin ⎝⎛⎭⎫2x -π6的值域为⎣⎡⎦⎤-32,3. 4.[P47B 组T2]函数y =-tan ⎝⎛⎭⎫2x -3π4的单调递减区间为________________.答案 ⎝⎛⎭⎫π8+k π2,5π8+k π2(k ∈Z )解析 由-π2+k π<2x -3π4<π2+k π(k ∈Z ),得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝⎛⎭⎫2x -3π4的单调递减区间为 ⎝⎛⎭⎫π8+k π2,5π8+k π2(k ∈Z ).题组三 易错自纠5.下列函数中最小正周期为π且图象关于直线x =π3对称的是( )A .y =2sin ⎝⎛⎭⎫2x +π3B .y =2sin ⎝⎛⎭⎫2x -π6 C .y =2sin ⎝⎛⎭⎫x 2+π3 D .y =2sin ⎝⎛⎭⎫2x -π3 答案 B解析 函数y =2sin ⎝⎛⎭⎫2x -π6的最小正周期T =2π2=π, 又sin ⎝⎛⎭⎫2×π3-π6=1, ∴函数y =2sin ⎝⎛⎭⎫2x -π6的图象关于直线x =π3对称. 6.函数f (x )=4sin ⎝⎛⎭⎫π3-2x 的单调递减区间是______________________. 答案 ⎣⎡⎦⎤k π-π12,k π+512π(k ∈Z ) 解析 f (x )=4sin ⎝⎛⎭⎫π3-2x =-4sin ⎝⎛⎭⎫2x -π3. 所以要求f (x )的单调递减区间,只需求y =4sin ⎝⎛⎭⎫2x -π3的单调递增区间. 由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤512π+k π(k ∈Z ). 所以函数f (x )的单调递减区间是⎣⎡⎦⎤-π12+k π,512π+k π(k ∈Z ).7.cos 23°,sin 68°,cos 97°的大小关系是________. 答案 sin 68°>cos 23°>cos 97° 解析 sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.题型一 三角函数的定义域1.函数f (x )=-2tan ⎝⎛⎭⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6 B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π12 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π6(k ∈Z ) 答案 D解析 由正切函数的定义域,得2x +π6≠k π+π2,k ∈Z ,即x ≠k π2+π6(k ∈Z ),故选D.2.函数y =sin x -cos x 的定义域为________. 答案 ⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ) 解析 方法一 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .方法二 利用三角函数线,画出满足条件的终边范围(如图中阴影部分所示).所以定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . 3.函数y =lg(sin x )+cos x -12的定义域为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤2k π+π3,k ∈Z 解析 要使函数有意义,则⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,k ∈Z ,-π3+2k π≤x ≤π3+2k π,k ∈Z , 所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤2k π+π3,k ∈Z . 思维升华 三角函数定义域的求法求三角函数的定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. 题型二 三角函数的值域(最值)例1 (1)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1- 3 答案 A解析 因为0≤x ≤9,所以-π3≤πx 6-π3≤7π6,所以-32≤sin ⎝⎛⎭⎫πx 6-π3≤1,则-3≤y ≤2.所以y max +y min =2-3.(2)函数y =cos 2x +2cos x 的值域是( ) A .[-1,3] B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-32,-1 D.⎣⎡⎦⎤32,3答案 B解析 y =cos 2x +2cos x =2cos 2x +2cos x -1=2⎝⎛⎭⎫cos x +122-32,因为cos x ∈[-1,1],所以原式的值域为⎣⎡⎦⎤-32,3.(3)(2018·全国Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 答案 -332解析 f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1). ∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增,∴当cos x =12时,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.思维升华 求解三角函数的值域(最值)常见到以下几种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(4)一些复杂的三角函数,可考虑利用导数确定函数的单调性,然后求最值.跟踪训练1 (1)(2017·台州模拟)已知函数f (x )=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,若f (x )的值域是⎣⎡⎦⎤-12,1,则实数a 的取值范围是__________________. 答案 ⎣⎡⎦⎤π3,π解析 ∵x ∈⎣⎡⎦⎤-π3,a ,∴x +π6∈⎣⎡⎦⎤-π6,a +π6, ∵当x +π6∈⎣⎡⎦⎤-π6,π2时,f (x )的值域为⎣⎡⎦⎤-12,1, ∴由函数的图象(图略)知,π2≤a +π6≤7π6,∴π3≤a ≤π. (2)函数y =sin x -cos x +sin x cos x 的值域为__________. 答案 ⎣⎡⎦⎤-12-2,1 解析 设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x ·cos x ,sin x cos x =1-t 22,且-2≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1,t ∈[-2,2].当t =1时,y max =1; 当t =-2时,y min =-12- 2.∴函数的值域为⎣⎡⎦⎤-12-2,1.题型三 三角函数的周期性、奇偶性、对称性命题点1 三角函数的周期性例2 (1)(2016·浙江)设函数f (x )=sin 2x +b sin x +c ,则f (x )的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 答案 B解析 因为f (x )=sin 2x +b sin x +c =-cos 2x 2+b sin x +c +12,其中当b =0时,f (x )=-cos 2x 2+c +12,f (x )的周期为π;b ≠0时,f (x )的周期为2π.即f (x )的周期与b 有关但与c 无关,故选B.(2)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________. 答案 2或3解析 由题意得,1<πk <2,∴k <π<2k ,即π2<k <π,又k 是自然数,∴k =2或3. 命题点2 三角函数的奇偶性例3 函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为________. 答案5π6解析 由题意知f (x )为偶函数,关于y 轴对称, ∴f (0)=3sin ⎝⎛⎭⎫φ-π3=±3,∴φ-π3=k π+π2,k ∈Z ,又0<φ<π,∴φ=5π6.命题点3 三角函数图象的对称性例4 (1)(2017·温州“十五校联合体”期末联考)已知函数f (x )=a sin x -b cos x (a ,b 为常数,a ≠0,x ∈R )在x =π4处取得最小值,则函数g (x )=f ⎝⎛⎭⎫3π4-x 是( ) A .偶函数且它的图象关于点(π,0)对称 B .奇函数且它的图象关于点(π,0)对称 C .奇函数且它的图象关于点⎝⎛⎭⎫3π2,0对称 D .偶函数且它的图象关于点⎝⎛⎭⎫3π2,0对称答案 B解析 已知函数f (x )=a sin x -b cos x (a ,b 为常数,a ≠0,x ∈R ), 所以f (x )=a 2+b 2sin(x -φ)的周期为2π,若函数在x =π4处取得最小值,不妨设f (x )=sin ⎝⎛⎭⎫x -3π4, 则函数y =f ⎝⎛⎭⎫3π4-x =sin ⎝⎛⎭⎫3π4-x -3π4=-sin x , 所以y =f ⎝⎛⎭⎫3π4-x 是奇函数且它的图象关于点(π,0)对称.(2)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为________.答案 9解析 因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝⎛⎭⎫-π4=T 4+kT 2, 即π2=2k +14T =2k +14·2πω,所以ω=2k +1(k ∈N ), 又因为f (x )在⎝⎛⎭⎫π18,5π36上单调, 所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,若ω=11,又|φ|≤π2,则φ=-π4,此时,f (x )=sin ⎝⎛⎭⎫11x -π4,f (x )在⎝⎛⎭⎫π18,3π44上单调递增,在⎝⎛⎭⎫3π44,5π36上单调递减,不满足条件. 若ω=9,又|φ|≤π2,则φ=π4,此时,f (x )=sin ⎝⎛⎭⎫9x +π4,满足f (x )在⎝⎛⎭⎫π18,5π36上单调的条件. 由此得ω的最大值为9.思维升华 (1)对于函数y =A sin(ωx +φ)(A ≠0,ω≠0),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点. (2)求三角函数周期的方法 ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.跟踪训练2 (1)函数y =2sin ⎝⎛⎭⎫2x +π3的图象( ) A .关于原点对称 B .关于点⎝⎛⎭⎫-π6,0对称C .关于y 轴对称D .关于直线x =π6对称答案 B解析 ∵当x =-π6时,函数y =2sin ⎝⎛⎭⎫-π6×2+π3=0, ∴函数图象关于点⎝⎛⎭⎫-π6,0对称. (2)若直线x =54π和x =94π是函数y =cos(ωx +φ)(ω>0)图象的两条相邻对称轴,则φ的一个可能取值为( )A.34πB.π2C.π3D.π4 答案 A解析 由题意,函数的周期T =2×⎝⎛⎭⎫94π-54π=2π,∴ω=2πT =1,∴y =cos(x +φ),当x =54π时,函数取得最大值或最小值,即cos ⎝⎛⎭⎫54π+φ=±1,可得54π+φ=k π,k ∈Z ,∴φ=k π-54π,k ∈Z .当k =2时,可得φ=34π.题型四 三角函数的单调性命题点1 求三角函数的单调区间例5 (1)函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调递减区间为______________________. 答案 ⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) 解析 f (x )=sin ⎝⎛⎭⎫-2x +π3=sin ⎣⎡⎦⎤-⎝⎛⎭⎫2x -π3 =-sin ⎝⎛⎭⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递减区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). (2)函数f (x )=tan ⎝⎛⎭⎫2x +π3的单调递增区间是____________. 答案 ⎝⎛⎭⎫k π2-5π12,k π2+π12(k ∈Z ) 解析 由k π-π2<2x +π3<k π+π2(k ∈Z ),得k π2-5π12<x <k π2+π12(k ∈Z ),所以函数f (x )=tan ⎝⎛⎭⎫2x +π3的单调递增区间为 ⎝⎛⎭⎫k π2-5π12,k π2+π12(k ∈Z ).(3)函数y =12sin x +32cos x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的单调递增区间是____________. 答案 ⎣⎡⎦⎤0,π6 解析 ∵y =12sin x +32cos x =sin ⎝⎛⎭⎫x +π3, 由2k π-π2≤x +π3≤2k π+π2(k ∈Z ),解得2k π-5π6≤x ≤2k π+π6(k ∈Z ).∴函数的单调递增区间为⎣⎡⎦⎤2k π-5π6,2k π+π6(k ∈Z ), 又x ∈⎣⎡⎦⎤0,π2,∴函数的单调递增区间为⎣⎡⎦⎤0,π6. 命题点2 根据单调性求参数例6 已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 ⎣⎡⎦⎤12,54解析 由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 的单调递减区间为⎣⎡⎦⎤2k π+π2,2k π+3π2,k ∈Z , 所以⎩⎨⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-⎝⎛⎭⎫2k +54≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈⎣⎡⎦⎤12,54. 引申探究本例中,若已知ω>0,函数f (x )=cos ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递增,则ω的取值范围是____________. 答案 ⎣⎡⎦⎤32,74解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎨⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝⎛⎭⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z , 得k =1,所以ω∈⎣⎡⎦⎤32,74.思维升华 (1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解. 跟踪训练3 (1)已知函数f (x )=2sin ⎝⎛⎭⎫π4-2x ,则函数f (x )的单调递减区间为( ) A.⎣⎡⎦⎤3π8+2k π,7π8+2k π(k ∈Z ) B.⎣⎡⎦⎤-π8+2k π,3π8+2k π(k ∈Z ) C.⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ) D.⎣⎡⎦⎤-π8+k π,3π8+k π(k ∈Z ) 答案 D解析 函数的解析式可化为f (x )=-2sin ⎝⎛⎭⎫2x -π4. 由2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得-π8+k π≤x ≤3π8+k π(k ∈Z ),即函数f (x )的单调递减区间为⎣⎡⎦⎤-π8+k π,3π8+k π(k ∈Z ). (2)若函数g (x )=sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,a 3和⎣⎡⎦⎤4a ,7π6上均单调递增,则实数a 的取值范围是________. 答案 ⎣⎡⎭⎫π6,7π24解析 由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),可得k π-π3≤x ≤k π+π6(k ∈Z ),∴g (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). 又∵函数g (x )在区间⎣⎡⎦⎤0,a 3和⎣⎡⎦⎤4a ,7π6上均单调递增,∴⎩⎪⎨⎪⎧a 3≤π6,4a ≥2π3,4a <7π6,解得π6≤a <7π24.三角函数的图象与性质纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.例 (1)(2018·浙江十校联盟适应性考试)下列四个函数中,以π为最小正周期,在⎝⎛⎭⎫0,π2上单调递减且为偶函数的是( ) A .y =sin|x | B .y =cos|x | C .y =|tan x | D .y =-ln|sin x |答案 D解析 由题意知函数y =sin|x |在⎝⎛⎭⎫0,π2上单调递增,y =cos|x |的最小正周期为2π,y =|tan x |在⎝⎛⎭⎫0,π2上单调递增.因为f (x )=|sin x |为偶函数,且当x ∈⎝⎛⎭⎫0,π2时单调递增,所以y =-ln|sin x |为偶函数,且当x ∈⎝⎛⎭⎫0,π2时单调递减,又g (x )=sin x 的最小正周期为2π,所以f (x )=|sin x |的最小正周期为π,则函数y =-ln|sin x |的最小正周期为π,故选D.(2)设函数f (x )=cos ⎝⎛⎭⎫x +π3,则下列结论错误的是( ) A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝⎛⎭⎫π2,π上单调递减 答案 D解析 A 项,因为f (x )=cos ⎝⎛⎭⎫x +π3的周期为2k π(k ∈Z ,且k ≠0),所以f (x )的一个周期为-2π,A 项正确; B 项,因为f (x )=cos ⎝⎛⎭⎫x +π3的图象的对称轴为直线x =k π-π3(k ∈Z ),所以y =f (x )的图象关于直线x =8π3对称,B 项正确;C 项,f (x +π)=cos ⎝⎛⎭⎫x +4π3.令x +4π3=k π+π2(k ∈Z ),得x =k π-5π6(k ∈Z ),当k =1时,x =π6, 所以f (x +π)的一个零点为x =π6,C 项正确;D 项,因为f (x )=cos ⎝⎛⎭⎫x +π3的单调递减区间为⎣⎡⎦⎤2k π-π3,2k π+2π3(k ∈Z ), 单调递增区间为⎣⎡⎦⎤2k π+2π3,2k π+5π3(k ∈Z ), 所以f (x )在⎝⎛⎭⎫π2,2π3上单调递减,在⎣⎡⎭⎫2π3,π上单调递增,D 项错误. 故选D.(3)函数f (x )=cos(ωx +φ)(ω>0)的部分图象如图所示,则f (x )的单调递减区间为______________________.答案 ⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由图象知,周期T =2×⎝⎛⎭⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4, ∴f (x )=cos ⎝⎛⎭⎫πx +π4.由2k π<πx +π4<2k π+π,k ∈Z , 得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z . (4)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 答案 π解析 记f (x )的最小正周期为T . 由题意知T 2≥π2-π6=π3,又f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,且2π3-π2=π6, 可作出示意图如图所示(一种情况):∴x 1=⎝⎛⎭⎫π2+π6×12=π3, x 2=⎝⎛⎭⎫π2+2π3×12=7π12,∴T 4=x 2-x 1=7π12-π3=π4,∴T =π.1.(2018·浙江六校协作体期末联考)“φ=k π+π2(k ∈Z )”是“函数f (x )=cos(ωx +φ)是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 若φ=k π+π2(k ∈Z ),则f (x )=cos(ωx +φ)=cos ⎝⎛⎭⎫ωx +k π+π2=±sin ωx ,函数f (x )为奇函数,所以充分性成立;反之,若函数f (x )=cos(ωx +φ)是奇函数,则ω×0+φ=k π+π2(k ∈Z ),即φ=k π+π2(k ∈Z ),因此必要性成立.所以“φ=k π+π2(k ∈Z )”是“函数f (x )=cos(ωx +φ)是奇函数”的充要条件,故选C.2.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22 C.22D .0 答案 B解析 由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22.故选B. 3.(2019·舟山模拟)函数y =sin x 2的图象是( )答案 D解析 函数y =sin x 2为偶函数,排除A ,C ;又当x =π2时函数取得最大值,排除B ,故选D. 4.函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1 D .2,-2答案 D解析 y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1,令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2, 所以y max =2,y min =-2.5.已知函数f (x )=2sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象过点(0,3),则f (x )图象的一个对称中心是( ) A.⎝⎛⎭⎫-π3,0 B.⎝⎛⎭⎫-π6,0 C.⎝⎛⎭⎫π6,0 D.⎝⎛⎭⎫π12,0 答案 B解析 函数f (x )=2sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象过点(0,3),则f (0)=2sin φ=3, ∴sin φ=32,又|φ|<π2,∴φ=π3, 则f (x )=2sin ⎝⎛⎭⎫2x +π3,令2x +π3=k π(k ∈Z ), 则x =k π2-π6(k ∈Z ),当k =0时,x =-π6,∴⎝⎛⎭⎫-π6,0是函数f (x )的图象的一个对称中心. 6.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π4对任意x ∈R 恒成立,且f ⎝⎛⎭⎫π6>0,则f (x )的单调递减区间是( ) A.⎣⎡⎦⎤k π,k π+π4(k ∈Z ) B.⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z ) C.⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ) D.⎣⎡⎦⎤k π-π2,k π(k ∈Z ) 答案 C解析 由题意可得函数f (x )=sin(2x +φ)的图象关于直线x =π4对称,故有2×π4+φ=k π+π2,k ∈Z ,即φ=k π,k ∈Z .又f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π3+φ>0,所以φ=2n π,n ∈Z ,所以f (x )=sin(2x +2n π)=sin 2x .令2k π+π2≤2x ≤2k π+3π2,k ∈Z ,求得k π+π4≤x ≤k π+3π4,k ∈Z ,故函数f (x )的单调递减区间为⎣⎡⎦⎤k π+π4,k π+3π4,k ∈Z . 7.函数y =1tan ⎝⎛⎭⎫x -π4的定义域为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z 解析 要使函数有意义必须有tan ⎝⎛⎭⎫x -π4≠0, 则⎩⎨⎧x -π4≠π2+k π,k ∈Z ,x -π4≠k π,k ∈Z .所以x -π4≠k π2,k ∈Z ,所以x ≠k π2+π4,k ∈Z ,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z . 8.设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________. 答案 2解析 |x 1-x 2|的最小值为函数f (x )的半个周期, 又T =4,∴|x 1-x 2|的最小值为2.9.(2018·浙江温州中学模拟)函数f (x )=2cos 2x +cos ⎝⎛⎭⎫2x -π3-1,则函数的最小正周期为____________,在[0,π]内的对称轴方程是________. 答案 π x =π12和x =7π12解析 因为f (x )=1+cos 2x +12cos 2x +32sin 2x -1=32sin 2x +32cos 2x =3sin ⎝⎛⎭⎫2x +π3, 所以最小正周期T =2π2=π.解sin ⎝⎛⎭⎫2x +π3=±1, 得f (x )的对称轴方程为x =π12+k π2(k ∈Z ).由于x ∈[0,π],所以在[0,π]内的对称轴方程是x =π12和x =7π12.10.已知函数f (x )=⎪⎪⎪⎪tan ⎝⎛⎭⎫12x -π6,则下列说法正确的是________.(填序号) ①f (x )的周期是π2;②f (x )的值域是{y |y ∈R ,且y ≠0}; ③直线x =5π3是函数f (x )图象的一条对称轴;④f (x )的单调递减区间是⎝⎛⎦⎤2k π-2π3,2k π+π3,k ∈Z . 答案 ④解析 函数f (x )的周期为2π,①错;f (x )的值域为[0,+∞),②错;当x =5π3时,12x -π6=2π3≠k π2,k ∈Z ,∴x=5π3不是f (x )的对称轴,③错;令k π-π2<12x -π6≤k π,k ∈Z ,可得2k π-2π3<x ≤2k π+π3,k ∈Z ,∴f (x )的单调递减区间是⎝⎛⎦⎤2k π-2π3,2k π+π3,k ∈Z ,④正确. 11.(2018·温州市适应性测试)已知f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x +π12,求: (1)f ⎝⎛⎭⎫π6的值;(2)f (x )在⎣⎡⎦⎤0,π2上的取值范围. 解 (1)因为f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x +π12 =1-cos ⎝⎛⎭⎫2x +π22-1-cos ⎝⎛⎭⎫2x +π62=12cos ⎝⎛⎭⎫2x +π6-12cos ⎝⎛⎭⎫2x +π2 =34cos 2x -14sin 2x +12sin 2x =34cos 2x +14sin 2x =12sin ⎝⎛⎭⎫2x +π3, 所以f ⎝⎛⎭⎫π6=12×sin 2π3=34. (2)当x ∈⎣⎡⎦⎤0,π2时,2x +π3∈⎣⎡⎦⎤π3,4π3, 所以f (x )∈⎣⎡⎦⎤-34,12, 所以f (x )在⎣⎡⎦⎤0,π2上的取值范围是⎣⎡⎦⎤-34,12. 12.已知函数f (x )=2sin ⎝⎛⎭⎫2x +π6+a +1. (1)求函数f (x )的单调递增区间;(2)当x ∈⎣⎡⎦⎤0,π2时,f (x )的最大值为4,求a 的值; (3)在(2)的条件下,求满足f (x )=1,且x ∈[]-π,π的x 的取值集合. 解 (1)令2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6,k ∈Z . (2)因为当x =π6时,f (x )取得最大值,即f ⎝⎛⎭⎫π6=2sin π2+a +1=a +3=4. 解得a =1.(3)由f (x )=2sin ⎝⎛⎭⎫2x +π6+2=1, 可得sin ⎝⎛⎭⎫2x +π6=-12, 则2x +π6=7π6+2k π,k ∈Z 或2x +π6=11π6+2k π,k ∈Z ,即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z ,又x ∈[-π,π],可解得x =-π2,-π6,π2,5π6,所以x 的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6.13.定义运算:a *b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .例如例如1*2=1,则函数f (x )=sin x *cos x 的值域为( )A.⎣⎡⎦⎤-22,22 B .[-1,1] C.⎣⎡⎦⎤22,1D.⎣⎡⎦⎤-1,22 答案 D解析 根据三角函数的周期性,我们只看两函数在一个最小正周期内的情况即可,设x ∈[0,2π],当π4≤x ≤5π4时,sin x ≥cos x ,此时f (x )=cos x ,f (x )∈⎣⎡⎦⎤-1,22,当0≤x <π4或5π4<x ≤2π时,cos x >sin x ,此时f (x )=sin x ,f (x )∈⎣⎡⎭⎫0,22∪[-1,0].综上知f (x )的值域为⎣⎡⎦⎤-1,22. 14.已知函数f (x )=2cos(ωx +φ)+1⎝⎛⎭⎫ω>0,|φ|<π2,其图象与直线y =3相邻两个交点的距离为2π3,若f (x )>1对任意x ∈⎝⎛⎭⎫-π12,π6恒成立,则φ的取值范围是( )A.⎣⎡⎦⎤-π6,π6B.⎣⎡⎦⎤-π4,0 C.⎝⎛⎦⎤-π3,-π12 D.⎣⎡⎦⎤0,π4 答案 B解析 由题意可得函数f (x )=2cos(ωx +φ)+1的最大值为3.∵f (x )的图象与直线y =3相邻两个交点的距离为2π3,∴f (x )的周期T =2π3,∴2πω=2π3,解得ω=3,∴f (x )=2cos(3x +φ)+1.∵f (x )>1对任意x ∈⎝⎛⎭⎫-π12,π6恒成立,∴2cos(3x +φ)+1>1,即cos(3x +φ)>0对任意x ∈⎝⎛⎭⎫-π12,π6恒成立,∴-π4+φ≥2k π-π2且π2+φ≤2k π+π2,k ∈Z ,解得φ≥2k π-π4且φ≤2k π,k ∈Z ,即2k π-π4≤φ≤2k π,k ∈Z .结合|φ|<π2可得,当k =0时,φ的取值范围为⎣⎡⎦⎤-π4,0.15.已知函数f (x )=cos(2x +θ)⎝⎛⎭⎫0≤θ≤π2在⎣⎡⎦⎤-3π8,-π6上单调递增,若f ⎝⎛⎭⎫π4≤m 恒成立,则实数m 的取值范围为________. 答案 [0,+∞)解析 f (x )=cos(2x +θ)⎝⎛⎭⎫0≤θ≤π2, 当x ∈⎣⎡⎦⎤-3π8,-π6时,-3π4+θ≤2x +θ≤-π3+θ, 由函数f (x )在⎣⎡⎦⎤-3π8,-π6上是增函数得 ⎩⎨⎧-π+2k π≤-3π4+θ,-π3+θ≤2k π,k ∈Z ,则2k π-π4≤θ≤2k π+π3(k ∈Z ).又0≤θ≤π2,∴0≤θ≤π3,∵f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫π2+θ, 又π2≤θ+π2≤5π6,∴f ⎝⎛⎭⎫π4max =0,∴m ≥0. 16.设函数f (x )=2sin ⎝⎛⎭⎫2ωx -π6+m 的图象关于直线x =π对称,其中0<ω<12. (1)求函数f (x )的最小正周期.(2)若函数y =f (x )的图象过点(π,0),求函数f (x )在⎣⎡⎦⎤0,3π2上的值域. 解 (1)由直线x =π是y =f (x )图象的一条对称轴, 可得sin ⎝⎛⎭⎫2ωπ-π6=±1,∴2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又0<ω<12,∴ω=13,∴函数f (x )的最小正周期为3π. (2)由(1)知f (x )=2sin ⎝⎛⎭⎫23x -π6+m ,∵f (π)=0,∴2sin ⎝⎛⎭⎫2π3-π6+m =0,∴m =-2, ∴f (x )=2sin ⎝⎛⎭⎫23x -π6-2,当0≤x ≤3π2时,-π6≤23x -π6≤5π6,-12≤sin ⎝⎛⎭⎫23x -π6≤1. ∴-3≤f (x )≤0,故函数f (x )在⎣⎡⎦⎤0,3π2上的值域为[]-3,0.。
2020年高考冲刺数学小题狂刷卷(浙江专用)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a R ∈,复数122,12z ai z i =+=-,若12z z 为纯虚数,则a 的值为( ) A .0B .1C .3D .5 【答案】B 【解析】 由()()122(12)222(4)2241212(12)555ai i z ai a a i a a i z i i i +++-++-+====+--+, 因为复数是纯虚数,所以1a =满足题意,故选B.2.函数()233sin 32f x x π⎛⎫=+ ⎪⎝⎭是( ) A .周期为3π的偶函数 B .周期为2π的偶函数C .周期为3π的奇函数D .周期为43π的偶函数 【答案】A 【解析】()2323sin 3cos 323f x x x π⎛⎫=+=- ⎪⎝⎭,3T π=,为偶函数.故选A. 3.已知集合{1A x x ≤=-或}1x ≥,集合{}01B x x =<<,则( )A .{}1AB ⋂=B .R A B A ⋂=ðC .()(]R 0,1A B ⋂=ð D .A B =R U 【答案】B【解析】1B ∉ 故A 错;{}R 01B x x x =≤≥或ð 故B 正确; ()(]R 0,1A B ⋂≠ð ;R A B ⋃≠;故选B.4.点()1,1M 到抛物线22y ax =准线的距离为2,则a 的值为( ) A .1 B .1或3 C .18或124- D .14-或112【答案】C 【解析】依题意可知0a ≠,抛物线的标准方程为212x y a= 当0a <时,抛物线的准线方程为18y a =-,点()1,1M 到18y a =-的距离为1111288a a ⎛⎫--=+= ⎪⎝⎭,解得124a =-.当0a >时,抛物线的准线方程为18y a =-,点()1,1M 到18y a =-的距离为1111288a a ⎛⎫--=+= ⎪⎝⎭,解得18a =.所以a 的值为18或124-.故选C. 5.若x y ,满足约束条件0300x y x y x m +≥⎧⎪-+≥⎨⎪≤≤⎩,且2z x y =-的最大值为9.则实数m 的值为( )A .12B .1C .2D .3【答案】D 【解析】画出可域如下图,其中x=m 是一条动直线,由于已知max 2x-9y =(),所以当29x y -=经过可行域某个顶点(或边界)时取到最大值,此时点A(3,-3),所以m=3,选D.6.电影院一排10个位置,甲、乙、丙三人去看电影,要求他们坐在同一排,那么他们每人左右两边都有空位且甲坐在中间的坐法的种数为( )A .40B .36C .32D .20 【答案】A【解析】除甲、乙、丙三人的座位外,还有7个座位,共可形成六个空,三人从6个空中选三位置坐上去有36C 种坐法,又甲坐在中间,所以乙、丙有22A 种方法,所以他们每人左右两边都有空位且甲坐在中间的坐法有36C 2240A ⋅=种.故答案为A. 7.已知等差数列{}n a 的前n 项和为n S ,且112,0,3(2)m m m S S S m -+=-==≥,则n nS 的最小值为( ) A .-3B .-5C .-6D .-9【答案】D【解析】由112,0,3(2)m m m S S S m -+=-==≥可知12,3m m a a +==, 设等差数列{}n a 的公差为d ,则1d =,∵0m S =,∴12m a a =-=-,则3n a n =-,(5)2n n n S -=,2(5)2n n n nS -=,设2(5)(),02x x f x x -=>,23'()5,02f x x x x =->,∴()f x 的极小值点为103x =,∵n Z ∈,且(3)9f =-,(4)8f =-,∴min ()9f n =-,故选D.8.已知随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<.令随机变量|()|E ηξξ=-,则( )A .()()E E ηξ>B .()()E E ηξ<C .()()D D ηξ>D .()()D D ηξ<【答案】D【解析】随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<. 则随机变量ξ的分布列为:所以()()(),1E p D p p ξξ==-,随机变量|()|E ηξξ=-,所以当0ξ=时,()E p ηξξ=-=,当1ξ=时,()1E p ηξξ=-=-,所以随机变量|()|E ηξξ=-的分布列如下表所示(当0.5p =时,η只有一个情况,概率为1):则()()()()1121E p p p p p p η=-+-=-,()()()()22211121D p p p p p p p p η=--⋅-+---⋅⎡⎤⎡⎤⎣⎦⎣⎦()()2121p p p =--, 当()()E E ξη=即()21p p p =-,解得12p =.所以A 、B 错误.()()D D ξη-()()()21121p p p p p =----()22410p p =->恒成立.所以C 错误,D 正确,故选D.9.在平行四边形ABCD 中,点P 在对角线AC 上(包含端点),且2AC =,则()PB PD PA +⋅u u u v u u u v u u u v 有( ) A .最大值为12,没有最小值 B .最小值为12-,没有最大值 C .最小值为12-,最大值为4 D .最小值为4-,最大值为12 【答案】C 【解析】如图:2PB PD PO +=u u u r u u u r u u u r 所以2PB PD PA PO PA +⋅=⋅u u u r u u u r u u u r u u u r u u u r (),(1)当点P 在AO 上,设||[0,1]PO a =∈u u u r ,()22(1)PB PD PA PO PA a a +⋅=⋅=--u u u r u u u r u u u r u u u r u u u r ,当12a =时,有最小值12-;(2)当点P 在CO 上,设||[0,1]PO a =∈u u u r ,()22(1)PB PD PA PO PA a a +⋅=⋅=+u u u r u u u r u u u r u u u r u u u r ,当1a =时,有最大值4;综上()PB PD PA +⋅u u u r u u u r u u u r 有最小值为12-,最大值为4.故选C. 10.已知1F ,2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,若存在过1F 的直线分别交双曲线C 的左、右支于A ,B 两点,使得221∠=∠BAF BF F ,则双曲线C 的离心率的取值范围是( )A .(1,23]+B .(1,25]+C .(3,23]+D .(3,25]+【答案】D 【解析】在2BAF V 和21BF F V 中,由221221,BAF BF F ABF F BF ∠=∠∠=∠,可得221BAF BF F V V ∽, 即有221212BF F A BA k BF BF F F ===,即为112212,2AB BF AF kBF BF kBF AF k c =-=⎧⎪=⎨⎪=⋅⎩ 121111222(1)21a BF BF a BF kBF a k BF a BF k-=-=∴-=∴=-Q ,, . 2112112211,,2BF AF kBF AF BF kBF AF a BF k BF -=∴=-∴-=-Q ,()222211a k c a k k ∴⋅-=--21,3a k e c a∴=<∴>-.1122()12,,253a a c a BF a BF c a e c a c a -⎛⎫-==≥+∴≤+ ⎪--⎝⎭故选D. 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
(一)三角函数与解三角形
1.(2019·余高、缙中、长中模拟)已知函数f (x )=cos x (sin x +cos x )-1
2.
(1)求函数f (x )的单调增区间; (2)若f (α)=
26,α∈⎝ ⎛⎭⎪⎫π8
,3π8,求cos2α的值.
解 (1)f (x )=12sin2x +1+cos2x 2-1
2
=
22sin ⎝
⎛
⎭⎪⎫2x +π4,
由-π2+2k π≤2x +π4≤π
2
+2k π,k ∈Z ,得
函数f (x )的单调增区间是⎣⎢⎡⎦⎥⎤-38π+k π,π8+k π,k ∈Z .
(2)由f (α)=
26得sin ⎝
⎛⎭⎪⎫2α+π4=13,
因为α∈⎝ ⎛⎭⎪⎫π8
,3π8,
所以2α+π4∈⎝ ⎛⎭⎪⎫π2,π, 所以cos ⎝
⎛⎭⎪⎫2α+π4=-223,
所以cos2α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α+π4-π4=2-46.
2.(2019·杭州二中高考热身考)已知函数f (x )=sin 2
π4x -3sin π4x cos π
4
x . (1)求f (x )的最大值及此时x 的值; (2)求f (1)+f (2)+…+f (2019)的值. 解 (1)f (x )=12-12cos π2x -32sin π
2x
=12-sin ⎝ ⎛⎭⎪⎫π
2
x +π6,
令π2x +π6=-π
2+2k π,k ∈Z , 得x =4k -4
3
,k ∈Z ,
∴当x =4k -43(k ∈Z )时,f (x )max =3
2
.
(2)由(1)知函数的周期T =4,f (1)=12-3
2
,
f (2)=12+12,f (3)=12+
32,f (4)=12-12
, ∴f (4k +1)=12-32,f (4k +2)=12+1
2
,
f (4k +3)=12+
32,f (4k +4)=12-12
, ∴f (4k +1)+f (4k +2)+f (4k +3)+f (4k +4)=2, ∴f (1)+f (2)+…+f (2019) =504×2+f (1)+f (2)+f (3)=1010.
3.(2019·余高等三校联考)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b sin A -3a cos B =0. (1)求角B 的大小;
(2)若a +c =3,求AC 边上中线长的最小值. 解 (1)由正弦定理得,sin B sin A -3sin A cos B =0, ∵sin A ≠0, ∴tan B =3, ∵B 是三角形的内角, ∴B =60°.
(2)方法一 设AC 边上的中点为E ,在△BAE 中,由余弦定理得,BE 2
=c 2
+⎝ ⎛⎭
⎪⎫b 22
-2c ·b
2·cos A ,
又cos A =b 2+c 2-a 22bc
,a 2+c 2-b 2
=2·cos60°ac ,
∴BE 2=c 2
+b 2
4-
b 2+
c 2-a 2
2
=2a 2
+2c 2
-b 2
4=a 2
+c 2
+ac 4=(a +c )2
-ac 4=9-ac 4
≥
9-⎝
⎛⎭
⎪⎫a +c 22
4
=
2716
, 当且仅当a =c 时取到“=”, ∴AC 边上中线长的最小值为
33
4
. 方法二 设AC 边上的中点为E , BE →
=12
(BA →+BC →
),
|BE →|2=14|BA →+BC →|2=c 2
+a 2
+ac 4
,
以下同方法一.
4.(2019·浙大附中考试)已知f (x )=2cos x ·sin ⎝
⎛⎭⎪⎫x +π6+3sin x ·cos x -sin 2
x .
(1)求函数y =f (x )(0<x <π)的单调递增区间;
(2)设△ABC 的内角A 满足f (A )=2,而AB →·AC →
=3,求BC 边上的高AD 长的最大值. 解 (1)f (x )=2cos x ·sin ⎝ ⎛⎭⎪⎫x +π6+2sin x ·cos ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝ ⎛⎭⎪⎫2x +π6.
由-π2+2k π≤2x +π6≤π
2+2k π,k ∈Z ,
解得k π-π3≤x ≤k π+π
6
,k ∈Z .
∴当0<x <π时,函数y =f (x )的单调递增区间是⎝ ⎛⎦⎥⎤0,π6和⎣⎢⎡⎭
⎪⎫2π3,π.
(2)∵f (A )=2,
∴2sin ⎝ ⎛⎭⎪⎫2A +π6=2,∴A =π6,
∵AB →·AC →
=3,
∴bc ·cos A =3,∴bc =2, ∴S △ABC =12bc sin A =1
2
,
而a =b 2
+c 2
-3bc ≥(2-3)bc =3-1(当且仅当b =c 时等号成立), ∴所求BC 边上的高AD ≤3+1
2
, 即AD 的最大值为
3+1
2
. 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +sin B =3sin C . (1)若cos 2
A =sin 2
B +cos 2
C +sin A sin B ,求sin A +sin B 的值; (2)若c =2,求△ABC 面积的最大值. 解 (1)∵cos 2
A =sin 2
B +cos 2
C +sin A sin B , ∴1-sin 2
A =sin 2
B +1-sin 2
C +sin A sin B , ∴sin 2
A +sin 2
B -sin 2
C =-sin A sin B , ∴由正弦定理,得a 2
+b 2
-c 2
=-ab ,
∴由余弦定理,得cos C =a 2+b 2-c 22ab =-1
2
,
又0<C <π,∴C =2π
3
,
∴sin A +sin B =3sin C =3sin 2π3=3
2.
(2)若c =2,则a +b =3c =23,
∴cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =4
ab
-1,
∴sin C =1-cos 2
C =1-⎝ ⎛⎭
⎪⎫4ab
-12
=
-⎝ ⎛⎭
⎪⎫4ab 2+8ab
, ∴S =12ab sin C =12ab
-⎝ ⎛⎭
⎪⎫4ab 2+8ab
=
1
2
-16+8ab . ∵a +b =23≥2ab ,
即0<ab ≤3,当且仅当a =b =3时等号成立, ∴S =12-16+8ab ≤1
2-16+8×3=2,
∴△ABC 面积的最大值为 2.
6.已知m =(3sin ωx ,cos ωx ),n =(cos ωx ,-cos ωx )(ω>0,x ∈R ),f (x )=m·n -12
且
f (x )的图象上相邻两条对称轴之间的距离为π2
.
(1)求函数f (x )的单调递增区间;
(2)若△ABC 中内角A ,B ,C 的对边分别为a ,b ,c 且b =7,f (B )=0,sin A =3sin C ,求a ,
c 的值及△ABC 的面积.
解 (1)f (x )=m·n -1
2
=3sin ωx cos ωx -cos 2
ωx -12
=
32sin2ωx -1
2
cos2ωx -1 =sin ⎝
⎛⎭⎪⎫2ωx -π6-1.
∵f (x )的图象上相邻两条对称轴之间的距离为π
2,
∴T =2π2ω=π,∴ω=1,∴f (x )=sin ⎝
⎛⎭⎪⎫2x -π6-1,
令2k π-π2≤2x -π6≤2k π+π
2,k ∈Z ,
则k π-π6≤x ≤k π+π
3,k ∈Z ,
∴f (x )的单调递增区间为
⎣⎢⎡⎦
⎥⎤k π-π6,k π+π3,k ∈Z .
(2)由(1)知,f (B )=sin ⎝ ⎛⎭⎪⎫2B -π6-1=0,
∵0<B <π,∴-π6<2B -π6<11π
6,
∴2B -π6=π2,∴B =π
3
,
由sin A =3sin C 及正弦定理,得a =3c , 在△ABC 中,由余弦定理,可得
cos B =a 2+c 2-b 22ac =9c 2+c 2-76c 2=10c 2-76c 2
=1
2
, ∴c =1,a =3,
∴S △ABC =12ac sin B =12×3×1×32=33
4.。