新高三数学上期中一模试卷附答案
- 格式:doc
- 大小:1.83 MB
- 文档页数:18
2024~2025学年第一学期高三期中模拟测试卷(1)姓名:___________ 班级:___________一、单选题1.若,则()A.B.C.D.2.已知全集,集合,,则如图所示的图中阴影部分表示的集合为()A.B.C.D.3.若等比数列{an}的前n项和为S n,且S5=10,S10=30,则S20=()A.80B.120C.150D.1804.命题“”为真命题的一个充分不必要条件是()A.B.C.D.5.记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且的图象关于点(3π2,2)中心对称,则f(π2)=()A.1B.C.D.36.在△ABC中,,为上一点,且,若,则的值为()A.B.C.D.7.已知,,且,则的最小值为().A.4B.6C.8D.128.设,则()A.B.C.D.二、多选题9.将函数的图象向左平移个单位得到函数,则下列说法正确的是()A.的周期为B.的一条对称轴为C.是奇函数D.在区间上单调递增10.已知函数,则()A.有两个极值点B.有三个零点C.点是曲线的对称中心D.直线是曲线的切线11.如图,棱长为2的正方体中,为棱的中点,为正方形内一个动点(包括边界),且平面,则下列说法正确的有()A.动点B.三棱锥体积的最小值为C.与不可能垂直D.当三棱锥的体积最大时,其外接球的表面积为三、填空题12.已知为第一象限角,为第三象限角,,,则.13.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.14.若曲线在点处的切线也是曲线的切线,则.四、解答题15.已知函数的定义域为,对任意且,都满足.(1)求;(2)判断的奇偶性;(3)若当时,,且,求不等式的解集.1i1zz=+-z=1i--1i-+1i-1i+RU={}2560A x x x=--≤3lg3xB x yx-⎧⎫==⎨⎬+⎩⎭Venn(]3,1--(]1,3-(]1,3[]3,6[]21,2,0x x a∀∈-≤4a≤4a≥5a≤5a≥()y f x=3252π,23BAC AD DB∠==P CD12AP mAC AB=+||3,||4AC AB==AP CD⋅76-761312-1312x>0y>26xy x y++=2x y+0.110.1e,ln0.99a b c===-,a b c<<c b a<<c a b<<a c b<<()sin26f x xπ⎛⎫=-⎪⎝⎭6π()g x()g xπ()g x3xπ=()g x()g x,36ππ⎡⎤-⎢⎣⎦3()1f x x x=-+()f x()f x(0,1)()y f x=2y x=()y f x=1111ABCD A B C D-E1DD F11C CDD1//B F1A BEF11B D EF-131B F1A B11B D DF-25π2αβtan tan4αβ+=tan tan1αβ+sin()αβ+=e xy x=+()0,1ln(1)y x a=++a=()f x(,0)(0,)-∞+∞,x y∈R||||x y≠()22()()f x y f x y f x y++-=-(1),(1)f f-()f x1x>()0f x>(2)1f=(2)(1)2f x f x+--<16.如图,三棱锥中,,,,E 为BC 的中点.(1)证明:;(2)点F 满足,求二面角的正弦值.17.已知函数.(1)讨论的单调性;(2)证明:当时,.18.已知数列满足,(1)记,写出,,并求数列的通项公式; (2)求的前20项和.19.记△ABC 的内角的对边分别为,已知.(1)求; (2)若,求△ABC 面积.参考答案:题号12345678910答案C D C D A D A CAD AC 题号11 答案ABD12.A BCD -DA DB DC ==BD CD ⊥60ADB ADC ∠=∠= BC DA ⊥EF DA =D AB F --()()e xf x a a x =+-()f x 0a >()32ln 2f x a >+{}n a 11a =11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数2n n b a =1b 2b {}n b {}n a ,,A B C ,,a b c 2222cos b c a A+-=bc cos cos 1cos cos a B b A ba Bb A c--=+()tan tan tan 1tan tan αβαβαβ++==--因为,,则,,又因为,则,,则,则,解得法二:因为为第一象限角,为第三象限角,则,则13.【详解】方法一:由于,而截去的正四棱锥的高为,所以原正四棱锥的高为,所以正四棱锥的体积为,截去的正四棱锥的体积为,所以棱台的体积为.方法二:棱台的体积为.故答案为:.14.【详解】由得,,故曲线在处的切线方程为;由得,设切线与曲线相切的切点为,由两曲线有公切线得,解得,则切点为,切线方程为,根据两切线重合,所以,解得.故答案为:15.【详解】(1)因为对任意且,都满足,令,得,,令,得,.(2)对任意非零实数,,令,可得.在上式中,令,得,即对任意非零实数,都有,是偶函数.(3)对任意且,有,由(2)知,在区间上单调递增.,,是定义域为的偶函数,且在区间上单调递增,原不等式转化为,解得或或,原不等式的解集为.16.【详解】(1)连接,因为E为BC中点,,所以①,因为,,所以与均为等边三角形,,从而②,由①②,,平面,所以,平面,而平面,所以.(2)不妨设,,.,,又,平面平面.以点为原点,所在直线分别为轴,建立空间直角坐标系,如图所示:设,设平面与平面的一个法向量分别为,二面角平面角为,而,因为,所以,即有,,取,所以;,取,所以,所以,,从而所以二面角17.【详解】(1)因为,定义域为,所以,当时,由于,则,故恒成立,所以在上单调递减;π3π2π,2π,2ππ,2π22k k m mαβ⎛⎫⎛⎫∈+∈++⎪ ⎪⎝⎭⎝⎭,Zk m∈()()()22ππ,22π2πm k m kαβ+∈++++,Zk m∈()tan0αβ+=-<()()3π22π,22π2π2m k m kαβ⎛⎫+∈++++⎪⎝⎭,Zk m∈()sin0αβ+<()()sincosαβαβ+=-+()()22sin cos1αβαβ+++=()sinαβ+=αβcos0,cos0αβ><cosα==cosβ==sin()sin cos cos sin cos cos(tan tan)αβαβαβαβαβ+=+=+4cos cosαβ====282142=36()1446323⨯⨯⨯=()122343⨯⨯⨯=32428-=(13164283⨯⨯+=28ln2e xy x=+e1xy'=+0|e12xy='=+=e xy x=+()0,121y x=+()ln1y x a=++11yx'=+()ln1y x a=++()()00,ln1x x a++121yx'==+012x=-11,ln22a⎛⎫-+⎪⎝⎭112ln21ln222y x a x a⎛⎫=+++=++-⎪⎝⎭ln20a-=ln2a=ln2,x y∈R||||x y≠()22()()f x y f x y f x y++-=-1,0x y==(1)(1)(1)f f f+=(1)0f∴=1,0x y=-=(1)(1)(1)0f f f-+-==(1)0f∴-=a b,22a b a bx y+-==()()()f a f b f ab+=1b=-()(1)()f a f f a+-=-a()()f a f a=-()f x∴12,(0,)x x∈+∞12x x<22111,0x xfx x⎛⎫>∴>⎪⎝⎭()()()22211111x xf x f x f f x f xx x⎛⎫⎛⎫=⨯=+>⎪ ⎪⎝⎭⎝⎭()f x∴(0,)+∞(2)1,211(2)(2)(4)f f f f=∴=+=+=(2)(1)2f x f x+--<(2)(1)2(1)(4)(44),f x f x f x f f x∴+<-+=-+=-()f x(,0)(0,)-∞+∞(0,)+∞∴0|2||44|x x<+<-2x<-225x-<<2x>∴2(,2)2,(2,)5∞∞⎛⎫--⋃-⋃+⎪⎝⎭,AE DE DB DC=DE BC⊥DA DB DC==60ADB ADC∠=∠= ACDABD△AC AB∴=AE BC⊥AE DE E=,AE DE⊂ADE⊥BC ADE AD⊂ADE BC DA⊥2DA DB DC===BD CD⊥BC DE AE∴==2224AE DE AD∴+==AE DE∴⊥,AE BC DE BC E⊥=,DE BC⊂BCD AE∴⊥BCD E,,ED EB EA,,x y z(0,0,0)D A B EDAB ABF()()11112222,,,,,n x y z n x y z==D AB F--θ(AB=(EF DA==(F()AF=1111⎧=⎪∴=11x=1(1,1,1)n=222==⎪⎩21y=2(0,1,1)n=cos=sinθ==D AB F--()()e xf x a a x=+-R()e1xf x a=-'a≤e0x>e0xa≤()e10xf x a=-<'()f x R当时,令,解得,当时,,则在上单调递减;当时,,则在上单调递增;综上:当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)方法一:由(1)得,,要证,即证,即证恒成立,令,则令,则,则所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.方法二:令,则,由于在上单调递增,所以在上单调递增,又,所以当时,;当时,;所以在上单调递减,在上单调递增,故,则,当且仅当时,等号成立,因为,当且仅当,即时,等号成立,所以要证,即证,即证,令,则,令,则,则在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.18.【详解】解:(1)[方法一]【最优解】:显然为偶数,则,所以,即,且,所以是以2为首项,3为公差的等差数列,于是.[方法二]:奇偶分类讨论由题意知,所以.由(为奇数)及(为偶数)可知,数列从第一项起,若为奇数,则其后一项减去该项的差为1,若为偶数,则其后一项减去该项的差为2.所以,则.[方法三]:累加法由题意知数列满足.所以,,则.所以,数列的通项公式.(2)[方法一]:奇偶分类讨论.[方法二]:分组求和由题意知数列满足,所以.所以数列的奇数项是以1为首项,3为公差的等差数列;同理,由知数列的偶数项是以2为首项,3为公差的等差数列.0a >()e 10xf x a =-='ln x a =-ln x a <-()0f x '<()f x (),ln a -∞-ln x a >-()0f x '>()f x ()ln ,a -+∞0a ≤()f x R 0a >()f x (),ln a -∞-()f x ()ln ,a -+∞()()()ln min 2ln ln ln e1af a a x a f a a a --+=++=+=3()2ln 2f x a >+2312ln 2ln a a a ++>+21ln 02a a -->()()21ln 02g a a a a =-->()21212a g a a a a -=-='()0g a '<0a <<()0g a '>a >()g a ⎛ ⎝⎫+∞⎪⎪⎭()2min102g a g ==--=>()0g a >0a >3()2ln 2f x a >+()e 1xh x x =--()e 1x h x '=-e x y =R ()e 1x h x '=-R ()00e 10h =-='0x <()0h x '<0x >()0h x '>()h x (),0-∞()0,∞+()()00h x h ≥=e 1x x ≥+0x =()2ln 22()e e eln 1xxx af x a a x a a x a x x a a x +=+-=+-=+-≥+++-ln 0x a +=ln x a =-3()2ln 2f x a >+23ln 12ln 2x a a x a +++->+21ln 02a a -->()()21ln 02g a a a a =-->()21212a g a a a a -=-='()0g a '<0a <<()0g a '>a >()g a ⎛ ⎝⎫+∞⎪⎪⎭()2min 102g a g ==--=>()0g a >0a >3()2ln 2f x a >+2n 21222212,1n n n n a a a a +++=+=+2223n n a a +=+13n n b b +=+121+12b a a ==={}n b 122,5,31n b b b n ===-1231,2,4a a a ===122432,15b a b a a ====+=11n n a a +-=n 12n n a a +-=n n n *23()n n a a n N +-=∈()11331n b b n n =+-⨯=-{}n a *113(1)1,()22nn n a a a n +-==++∈N 11213(1)11222b a a -==++=+=322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++ 12(1)131n n n =+-+=-⨯122,5b b =={}n b 31n b n =-20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-={}n a 12212121,1,2n n n n a a a a a -+==+=+2122123n n n a a a +-=+=+{}n a 2221213n n n a a a ++=+=+{}n a从而数列的前20项和为:.19.【详解】(1)因为,所以,解得:.(2)由正弦定理可得,变形可得:,即,而,所以,又,所以故的面积为.{}n a 201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=2222cos a b c bc A =+-2222cos 22cos cos b c a bc Abc A A+-===1bc =cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A Ba Bb Ac A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B BA B A B A B ---=-==+++()()sin sin sin A B A B B --+=2cos sin sin A B B -=0sin 1B <≤1cos 2A =-0πA <<sin A =ABC V 11sin 122ABC S bc A ==⨯△。
第1⻚/共4⻚合肥⼀中2024—2025学年第⼀学期⾼三年级教学质量检测数学学科试卷时⻓:120分钟分值:150分⼀、单选题:本题共8⼩题,每⼩题5分,共40分.1.已知集合,集合,则()A.B.C.D.2.若,则()A.或 B.或C.D.3.已知函数,则“”是“函数的是奇函数”的()A 充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.函数在上单调,则a 的取值范围是()A.B.C.D.5.在中,内⻆A ,B ,C 的对边分别为a ,b ,c ,已知的外接圆半径为1,且,则的⾯积是()A.B. C.1 D.26.已知⼀个正整数,且N 的15次⽅根仍是⼀个整数,则这个数15次⽅根为().(参考数据:)A.3B.4C.5D.67.已知函数,,若,使得,则实数a 的取值范围是()A.B.第2⻚/共4⻚C.D.8.已知正数x ,y 满⾜,则的最⼩值为()A.1B.2C.3D.4⼆、多项选择题:本题共3⼩题,每⼩题6分,共18分.在每⼩题给出的选项中,有多项符合题⽬要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知关于x 的不等式的解集为,则下列结论正确的是()A. B.的最⼤值为 C.的最⼩值为D.的最⼩值为10.如图是函数的部分图象,A 是图象的⼀个最⾼点,D 是图象与y 轴的交点,B ,C 是图象与x 轴的交点,且的⾯积等于,则下列说法正确的是()A.函数的最⼩正周期为B.函数图象关于直线对称C.函数图象可由的图象向右平移个单位⻓度得到D.函数与在上有2个交点11.已知函数及其导函数的定义域均为R ,若,且是奇函数,令,则下列说法正确的是()第3⻚/共4⻚A.函数是奇函数B.CD.三、填空题:本题共3⼩题,每⼩题5分,共15分.12.已知幂函数在上单调递减,则______.13.已知,且,则________.14.设函数,下列说法正确的有________.①函数的⼀个周期为;②函数的值域是③函数的图象上存在点,使得其到点的距离为;④当时,函数的图象与直线有且仅有⼀个公共点.四、解答题:本题共5⼩题,共77分.解答应写出⽂字说明、证明过程或演算步骤.15.已知命题“”为假命题,命题“在上为增函数”为真命题,设实数a 的所有取值构成的集合为A .(1)求集合;(2)设集合,若是必要不充分条件,求实数m 的取值范围.16.已知函数.(1)若的图象在点处的切线经过点,求;(2)若是的两个不同极值点,且,求实数a 的取值范围.17.已知定义域为的函数满⾜对任意,都有(1)求证:是奇函数;第4⻚/共4⻚(2)当时,.若关于x 的不等在上恒成⽴,求a 的取值范围.18.记的内⻆A ,B ,C 的对边分别为a ,b ,c ,已知.(1)求A 取值的范围;(2)若,求周⻓的最⼤值;(3)若,求的⾯积.19.已知函数,其中.(1)当时,求曲线在点处的切线⽅程;(2)判断函数是否存在极值,若存在,请判断是极⼤值还是极⼩值;若不存在,说明理由;(3)讨论函数在上零点的个数.第1⻚/共22⻚合肥⼀中2024—2025学年第⼀学期⾼三年级教学质量检测数学学科试卷时⻓:120分钟分值:150分⼀、单选题:本题共8⼩题,每⼩题5分,共40分.1.已知集合,集合,则()A.B.C.D.【答案】C 【解析】【分析】根据题意,将集合化简,再结合交集的运算,即可得到结果.【详解】或,,所以,故选:C 2.若,则()A.或 B.或C.D.【答案】B 【解析】【分析】根据,将原式上下同时除以,化简求解即可.【详解】根据题意可知,所以,若,则,与⽭盾故,将其上下同时除以,可得,化简可得,解之得或.故选:B第2⻚/共22⻚3.已知函数,则“”是“函数的是奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由是奇函数确定的取值范围,即可判断.【详解】由为奇函数,可得:,即,即恒成⽴,即恒成⽴,即恒成⽴,解得,所以是函数为奇函数的充分不必要条件.故选:A 4.函数在上单调,则a 的取值范围是()A.B.C.D.【答案】D 【解析】【分析】利⽤导数求得其导函数并使其恒⼤于0,再根据分段函数单调性得出不等式即可.【详解】由题意可知时,,时,;第3⻚/共22⻚⼜因为,所以在上单调递增,因此可得时,恒成⽴,可得,⼜,可得;综上可得a 的取值范围是.故选:D 5.在中,内⻆A ,B ,C 的对边分别为a ,b ,c ,已知的外接圆半径为1,且,则的⾯积是()A.B. C.1 D.2【答案】C 【解析】【分析】根据给定条件,利⽤余弦定理求出,利⽤三⻆恒等变换求出,再利⽤正弦定理及三⻆形⾯积公式计算得解.【详解】在中,由及余弦定理,得,解得,⼜,则,由,得,整理得,即,两边平⽅得,⼜,,则,即,由正弦定理得,所以的⾯积是.故选:C6.已知⼀个正整数,且N 的15次⽅根仍是⼀个整数,则这个数15次⽅根为().(参考数据:)第4⻚/共22⻚A.3B.4C.5D.6【答案】C 【解析】【分析】设这个15次⽅根为,则,利⽤对数的运算性质求即可.【详解】设这个15次⽅根为,则,其中且,故,,,,故,,,由于,故.故选:C .7.已知函数,,若,使得,则实数a 的取值范围是()A.B.C.D.【答案】B 【解析】【分析】利⽤导函数证明在区间上单调递增,从⽽得出的值域;同理得出的单调区间和值域,由题意可知,这两个函数值域需要有交集,得出不等式组,从⽽得出范围.【详解】,∴时,,∴在区间上单调递增,∴当时,,令,则,令,则,∵,∴时,,∴单调递增,∴,∴在上单调递增,第5⻚/共22⻚∴,由题意可知,∴.故选:B8.已知正数x ,y 满⾜,则的最⼩值为()A.1 B.2C.3D.4【答案】A 【解析】【分析】应⽤三⻆换元,令,且,结合已知、平⽅关系、和⻆正弦公式得,进⽽有,最后利⽤基本不等式“1”的代换求⽬标式最⼩值.【详解】,由,得,令,且,所以,有,即,故,所以,则,当且仅当,即时取等号,第6⻚/共22⻚所以的最⼩值为1.故选:A【点睛】关键点点睛:根据已知等量关系及三⻆函数的性质,应⽤三⻆换元将已知等式化为是关键.⼆、多项选择题:本题共3⼩题,每⼩题6分,共18分.在每⼩题给出的选项中,有多项符合题⽬要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知关于x 的不等式的解集为,则下列结论正确的是()A. B.的最⼤值为 C.的最⼩值为D.的最⼩值为【答案】BC 【解析】【分析】由已知结合⼆次不等式与⼆次⽅程的关系可得,然后结合基本不等式的乘“1”法可判断C ,利⽤向量的性质可求解B ,根据⼆次函数的性质可判断D .【详解】因为关于的不等式,的解集为,所以,所以,,所以,A 错误;因为,,所以,当且仅当时取等号,故,由于设,由于,故,当且仅当时等号成⽴,故B 正确;第7⻚/共22⻚,当且仅当,即时取等号,C 正确;,当且仅当时取等号,故最⼩值为,D 错误.故选:BC .10.如图是函数的部分图象,A 是图象的⼀个最⾼点,D 是图象与y 轴的交点,B ,C 是图象与x 轴的交点,且的⾯积等于,则下列说法正确的是()A.函数的最⼩正周期为B.函数的图象关于直线对称C.函数的图象可由的图象向右平移个单位⻓度得到D.函数与在上有2个交点【答案】ABC 【解析】【分析】根据部分图像求出的表达式,再由函数图像平移及正弦函数性质可判断各项.【详解】设的最⼩正周期为,第8⻚/共22⻚由图像可知,,即,可得,故A 正确;且,所以,解得,⼜因为图像过点,可得,即,且,可得,所以.对于选项B :因为,为最⼩值,所以函数的图象关于直线对称,故B 正确;对于选项C :将的图象向右平移个单位⻓度,得到,所以函数的图象可由的图象向右平移个单位⻓度得到,故C 正确;对于选项D :注意到,在同⼀坐标系内,分别作出函数与在上的图象,由图象可知:函数与在上有3个交点,故D 错误;故选:ABC.11.已知函数及其导函数的定义域均为R ,若,且是奇第9⻚/共22⻚函数,令,则下列说法正确的是()A.函数是奇函数B.C.D.【答案】BCD 【解析】【分析】把已知等式中换成,再移项变形可得A 错误;求导令可得,再由是奇函数,再求导可得B 正确;由奇函数的性质得到①,在令,可得,再由已知等式得到④,进⽽得到,然后可得C 正确;由原函数和导函数的奇偶性可得,进⽽可得D 正确;【详解】对于A ,因为,把换成,则,移项化简可得,即,为偶函数,故A 错误;对于B ,由A 中求导可得,令,可得,⼜是奇函数,即,求导可得,即,令,则,所以,故B 正确;对于C ,由B 中可得,①由A 中,②把①中换成可得,③由②③可得,所以:第10⻚/共22⻚故C 正确;对于D ,由B 中,⼜由可得,即,所以所以令可得;令可得;,所以,故D 正确;故选:BCD.【点睛】关键点点睛:本题C 选项的关键在于理解抽象复合函数求导,原函数为奇函数则导函数为偶函数这⼀性质,再利⽤函数的奇偶性解答.三、填空题:本题共3⼩题,每⼩题5分,共15分.12.已知幂函数在上单调递减,则______.【答案】【解析】【分析】先根据函数是幂函数计算求参得出或,最后结合函数的单调性计算得出符合题意的参数.【详解】由题意可得为幂函数,则,解得或.当时,为增函数,不符合题意;当时,在单调递减,符合题意.故答案为:.第11⻚/共22⻚13.已知,且,则________.【答案】【解析】【分析】根据给定条件,利⽤同⻆公式求出,再利⽤和差⻆的余弦公式求出即可.【详解】由,得,,由,得,,由,得,即,则,因此,所以.故答案为:14.设函数,下列说法正确的有________.①函数的⼀个周期为;②函数的值域是③函数的图象上存在点,使得其到点的距离为;④当时,函数的图象与直线有且仅有⼀个公共点.【答案】①④【解析】【分析】利⽤函数的周期性定义结合余弦函数的周期性可判断①;采⽤三⻆代换,利⽤导数判断函数单调性,利⽤函数单调性求解函数值域,判断②;利⽤,结合两点间距离公式可判断③;结合解,根据解的情况判断④,即得答案.第12⻚/共22⻚【详解】对于①,,,故是函数的⼀个周期,①正确;对于②,,需满⾜,即,令,,则即为,当时,在上单调递增,则;当时,,(,故)此时在上单调递减,则,综上,的值域是,②错误;对于③,由②知,,当时,满⾜此条件下的图象上的点到的距离;当时,,满⾜此条件下的图象上的点到的距离第13⻚/共22⻚,当且仅当且时等号成⽴,⽽时,或,满⾜此条件的x 与⽭盾,即等号取不到,故函数的图象上不存在点,使得其到点的距离为,③错误;对于④,由②的分析可知,则,即,⼜,故当且仅当时,,即当时,函数的图象与直线有且仅有⼀个公共点,④正确.故答案为:①④【点睛】关键点点睛:对于函数,先求出定义域,再采⽤换元法令,,得函数,利⽤单调性求其值域.四、解答题:本题共5⼩题,共77分.解答应写出⽂字说明、证明过程或演算步骤.15.已知命题“”为假命题,命题“在上为增函数”为真命题,设实数a 所有取值构成的集合为A .(1)求集合;(2)设集合,若是的必要不充分条件,求实数m 的取值范围.【答案】(1)或(2)或【解析】第14⻚/共22⻚【分析】(1)由:“,”为假命题时,可转化为关于的⼀元⼆次⽅程⽆解,然后利⽤判别式即可,命题q 可利⽤对勾函数的性质求解,取交集即可得a 的取值范围,则集合A 可求,再结合补集运算可得答案;(2)由是的必要不充分条件可得B,然后分为空集和⾮空集两种情况讨论即可.【⼩问1详解】因为命题为假命题,所以关于的⼀元⼆次⽅程⽆解,即,解得,因为命题q 为真命题,当时,在上为增函数,满⾜题意;当时,结合对勾函数的性质可知在上单调递减,不满⾜题意;故集合,所以或;【⼩问2详解】由是的必要不充分条件,则B,当时,,解得,此时满⾜B,当时,则或,解得或,综上所述,的取值范围是或.16.已知函数.(1)若的图象在点处的切线经过点,求;(2)若是的两个不同极值点,且,求实数a 的取值范围.【答案】(1)或(2)【解析】第15⻚/共22⻚【分析】(1)求出函数的导数,利⽤导数的⼏何意义求出切线⽅程即可求解作答.(2)利⽤极值点的意义,结合⻙达定理、根的判别式列出不等式,求解作答.【⼩问1详解】函数,求导得,则,,于是函数的图象在点处的切线⽅程为,即,⽽切线过点,则,整理可得,解得或,所以或【⼩问2详解】由(1)知,⽅程,即有两个不等实根,则,解得,且,于是,由,得,解得,因此,所以实数的取值范围是.17.已知定义域为的函数满⾜对任意,都有(1)求证:是奇函数;(2)当时,.若关于x 的不等在上恒成⽴,求a 的取值范围.【答案】(1)证明⻅解析第16⻚/共22⻚(2)【解析】【分析】(1)利⽤赋值法,先求出及的值,再证明即可;(2)由题意得,构造函数,得出的奇偶性及在上的单调性,继⽽可得,结合题意可得,令,利⽤导数求出在上的最⼤值即可求解.【⼩问1详解】证明:令,得,即,令,得,即,令,,所以是奇函数.【⼩问2详解】,,且,所以,令,因,所以,则,设,则,所以,因为,所以在上是减函数,第17⻚/共22⻚,所以为偶函数,所以在上恒成⽴,即或,即或(负值,舍去),令,即,,令,解得,所以,,单调递增,所以,所以.故的取值范围是.18.记的内⻆A ,B ,C 的对边分别为a ,b ,c ,已知.(1)求A 取值的范围;(2)若,求周⻓的最⼤值;(3)若,求的⾯积.【答案】(1);(2)6;(3).【解析】【分析】(1)根据题意利⽤正弦定理结合三⻆恒等变换分析可得,在利⽤余弦定理结合基本不等式分析运算即可;(2)由(1)可得,结合基本不等式分析运算;(3)根据题意结合正弦定理可求得,利⽤正弦定理以及⾯积公式分析运算.【⼩问1详解】第18⻚/共22⻚由题设,所以,,⼜,则,根据正弦边⻆关系,易得,则,⼜,则,当且仅当时取等号,所以,结合,可得;【⼩问2详解】由(1)有,⼜,⼜,则,所以,当且仅当取等号,所以周⻓的最⼤值6.【⼩问3详解】由,且,所以,⽽,则,由,显然,故,即,结合,可得,由,⽽,由,整理得,可得(负值舍),第19⻚/共22⻚所以,故.19.已知函数,其中.(1)当时,求曲线在点处的切线⽅程;(2)判断函数是否存在极值,若存在,请判断是极⼤值还是极⼩值;若不存在,说明理由;(3)讨论函数在上零点的个数.【答案】(1);(2)答案⻅解析;(3)答案⻅解析.【解析】【分析】(1)求出、,利⽤点斜式可得出所求切线的⽅程;(2)对实数的取值进⾏分类讨论,分析导数在上的符号变化,由此可得出结论;(3)对实数的取值进⾏分类讨论,分析函数在上的单调性,结合零点存在定理可得出结论.【详解】(1)当时,,则,所以,,,所以,曲线在点处的切线⽅程为,即;(2),设,则对任意的恒成⽴,故在上单调递减.所以,,当时,.①若,即时,由零点存在定理可知,存在,使得,第20⻚/共22⻚当时,,此时函数单调递增,当时,,此时函数单调递减.所以,在处取得极⼤值,不存在极⼩值;②若,则,对任意的恒成⽴,此时,函数在上单调递增,此时函数⽆极值.综上所述,当时,函数有极⼤值,⽆极⼩值;当时,函数⽆极值;(3)分以下情况讨论:①若,函数在上单调递增,则,此时,函数在上⽆零点;②若,由(2)可知,由零点存在定理可知,存在,使得,且函数在上单调递增,在上单调递减.从⽽有,设,则对任意的恒成⽴,从⽽当增⼤时,也增⼤.(i )若,此时,此时函数在上单调递减,若,可得或(舍去).此时函数在上⽆零点;第21⻚/共22⻚若,可得,此时函数在上有且只有⼀个零点.当时,,,此时函数在上只有⼀个零点;(ii )当时,此时,此时函数在上单调递增,在上单调递减.,,所以,,设,则对任意恒成⽴,所以,函数在上单调递增,所以,,若,即,即,此时函数在上⽆零点;若,即,即时,此时函数在上有且只有⼀个零点.综上所述,当时,函数在上⽆零点;当时,函数在上有且只有⼀个零点.【点睛】⽅法点睛:利⽤导数解决函数零点问题的⽅法:(1)直接法:先对函数求导,根据导数的⽅法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与轴的交点问题,突出导数的⼯具作⽤,体现了转化与化归思想、数形结合思想和分类讨论思想的应⽤;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;第22⻚/共22⻚(3)参变量分离法:由分离变量得出,将问题等价转化为直线与函数的图象的交点问题.。
2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |x <1},则如图中阴影部分所表示的集合为( )A .{1}B .{2}C .{﹣1,0}D .{1,2}2.已知(1+i )Z =2﹣4i ,则|Z |=( ) A .2 B .√10 C .4 D .103.已知a =313,b=log 213,c =log 131e ,则( )A .a >c >bB .c >a >bC .a >b >cD .c >b >a4.已知向量a →=(2,1),b →=(1,−3),(ka →−b →)⊥(a →+b →),则实数k 的值为( ) A .−94B .94C .﹣1D .15.已知函数f(x)=(m 2−m −1)x m2+m−3是幂函数,且在(0,+∞)上单调递减,若a ,b ∈R ,且a <0<b ,|a |<|b |,则f (a )+f (b )的值( ) A .恒大于0B .恒小于0C .等于0D .无法判断6.若命题“对任意的x ∈(0,+∞),x +1x−m >0恒成立”为假命题,则m 的取值范围为( )A .{m |m ≥2}B .{m |m >2}C .{m |m ≤2}D .{m |m <2}7.函数y =x−3sinxe |x|的大致图像是( )A .B .C .D .8.将函数f(x)=sin(ωx +π6)(ω>0)的图像向左平移π6个单位长度后,得到的图像关于y 轴对称,且函数f (x )在[0,π6]上单调递增,则ω的取值是( )A .12B .2C .32D .1二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.设等差数列{a n }的前n 项和为S n ,且S 30>0,S 31<0,则下列结论正确的是( ) A .a 15>0 B .{Sn n}是等差数列C .a 16>0D .对任意n ∈N *,都有S n ≤S 1510.设f (x )是定义在R 上的奇函数,且f (x )在(0,+∞)上单调递减,f (﹣7)=0,则( ) A .f (x )在(﹣∞,0)上单调递增 B .f (8)<0C .不等式f (x )>0的解集为(﹣∞,﹣7)∪(0,7)D .f (x )的图象与x 轴只有3个交点11.已知函数f(x)={2(x+2)2,x ≤−1|log 2(x +1)|,x >−1,若关于x 的方程f (x )=m 有四个不等实根x 1、x 2、x 3、x 4(x 1<x 2<x 3<x 4),则下列结论正确的是( ) A .1<m ≤2B .﹣3<x 1<﹣2C .﹣1≤4x 3+x 4<0D .x 12+x 22+log m √2的最小值为1012.如图,在△ABC 中,BA =BC =1,延长BC 到点D ,使得BC =CD ,以AD 为斜边向外作等腰直角三角形ADE ,则( )A .AD 2=5﹣4cos BB .sin ∠CAD ∈(12,√32)C .△ACD 面积的最大值为12D .四边形ACDE 面积的最大值为5+2√54三、填空题(共4小题,每小题5分,满分20分)13.已知函数f(x)={(a +2)x ,x ≥2a x +1,x <2是R 上的单调递增函数,则实数a 的取值范围是 .14.已知函数f(x)=1−e x1+e x ,若m >0,n >0,且f (2m )+f (n ﹣1)=f (0),则1m +2n的最小值为 .15.已知x ,y ,z ∈R ,且x ﹣2y +2z =5,则(x +5)2+(y ﹣1)2+(z +3)2的最小值是 .16.已知函数f (x ),g (x )的定义域均为R ,f (x )为奇函数,g (x +1)为偶函数,f (﹣1)=2,g (x +2)﹣f (x )=1,则∑g(i)2023i=1= .四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知数列{a n }的前n 项和为S n ,且a n ={5,n =12n +2,n ≥2.(1)求S n ; (2)若b n =1S n +1,求数列{b n }的前n 项和T n . 18.(12分)已知函数y =f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过点(4,2).(1)若f (3x ﹣1)>f (﹣x +5)成立,求x 的取值范围;(2)若对于任意x ∈[1,4],不等式f (2x )g (x4)−m <0恒成立,求实数m 的取值范围.19.(12分)已知向量a →=(√3,−sin ωx 2),b →=(sinωx ,2sin ωx2),函数f(x)=a →⋅b →+1(其中0<ω<1),函数f (x )的图象的一条对称轴是直线x =π2.(1)求ω的值;(2)若0<α<π3且f(32α)=43,求f(32α+3π8)的值.20.(12分)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cosA a+cosB b=2√3sinC 3a.(1)求角B 的大小;(2)若b =2√3,求△ABC 面积的取值范围.21.(12分)为了改善湖泊的水质,某市环保部门于2021年年终在该湖泊中投入一些浮萍,这些浮萍在水中的繁殖速度越来越快,2022年2月底测得浮萍覆盖面积为360m 2,2022年3月底测得浮萍覆盖面积为480m 2,浮萍覆盖面积y (单位:m 2)与2022年的月份x (单位:月)的关系有两个函数模型y =ka x (k >0,a >1)与y =mx 2+n (m >0)可供选择. (1)分别求出两个函数模型的解析式;(2)若2021年年终测得浮萍覆盖面积为200m 2,从上述两个函数模型中选择更合适的一个模型,试估算至少到哪一年的几月底浮萍覆盖面积能超过8100m 2?(参考数据:lg 2≈0.30,lg 3≈0.48) 22.(12分)已知{a n }是等差数列,a 2+a 5=16,a 5﹣a 3=4.(Ⅰ)求{a n }的通项公式及∑ 2n−1i=2n−1a i (n ∈N *);(Ⅱ)设{b n}是等比数列,且对于任意的k∈N*,当2k﹣1≤n≤2k﹣1时,b k<a n<b k+1.(i)当k≥2时,求证:2k﹣1<b k<2k+1;(ii)求{b n}的通项公式及前n项和.2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |x <1},则如图中阴影部分所表示的集合为( )A .{1}B .{2}C .{﹣1,0}D .{1,2}解:阴影部分表示的集合为A ∩∁R B ,又∁R B ={x |x ≥1},所以A ∩∁R B ={1,2}. 故选:D .2.已知(1+i )Z =2﹣4i ,则|Z |=( ) A .2B .√10C .4D .10解:(1+i )Z =2﹣4i ,则Z =2−4i 1+i =(2−4i)(1−i)(1+i)(1−i)=−1﹣3i ,故|Z |=√(−1)2+(−3)2=√10. 故选:B . 3.已知a =313,b=log 213,c =log 131e ,则( )A .a >c >bB .c >a >bC .a >b >cD .c >b >a解:因为函数y =3x 为单调递增函数, 所以a =313>30=1,即a >1; 因为y =log 2x 为单调递增函数, 所以b =log 213<log 21=0,即b <0;因为y =log 13x 单调递减,所以log 131<log 131e <log 1313,即0<c <1, 故a >c >b . 故选:A .4.已知向量a →=(2,1),b →=(1,−3),(ka →−b →)⊥(a →+b →),则实数k 的值为( )A .−94B .94C .﹣1D .1解:a →=(2,1),b →=(1,−3),则ka →−b →=(2k −1,k +3),a →+b →=(3,−2), (ka →−b →)⊥(a →+b →),则3(2k ﹣1)﹣2(k +3)=0,解得k =94.故选:B .5.已知函数f(x)=(m 2−m −1)x m2+m−3是幂函数,且在(0,+∞)上单调递减,若a ,b ∈R ,且a <0<b ,|a |<|b |,则f (a )+f (b )的值( ) A .恒大于0B .恒小于0C .等于0D .无法判断解:由m 2﹣m ﹣1=1得m =2或m =﹣1, m =2时,f (x )=x 3在R 上是增函数,不合题意,m =﹣1时,f (x )=x ﹣3,在(0,+∞)上是减函数,满足题意,所以f (x )=x ﹣3,a <0<b ,|a |<|b |,则b >﹣a >0,f (﹣a )>f (b ), f (x )=﹣x 3是奇函数,因此f (﹣a )=﹣f (a ), 所以﹣f (a )>f (b ),即f (a )+f (b )<0. 故选:B .6.若命题“对任意的x ∈(0,+∞),x +1x−m >0恒成立”为假命题,则m 的取值范围为( )A .{m |m ≥2}B .{m |m >2}C .{m |m ≤2}D .{m |m <2}解:当原命题为真时,m <x +1x恒成立,即y =x +1x ≥2√x ×1x =2,m <(x +1x)min =2, 则当命题为假命题时,m ≥2, 所以m 的取值范围为{m |m ≥2}. 故选:A . 7.函数y =x−3sinxe |x|的大致图像是( )A .B .C .D .解:设f(x)=y =x−3sinxe |x|,x ∈R , 由f(−x)=−x+3sinxe |x|=−f(x),得f (x )为奇函数,故B ,D 错误;由f(π2)=π2−3sin π2e |π2|=π2−3e π2<0,故A 正确,C 错误.故选:A .8.将函数f(x)=sin(ωx +π6)(ω>0)的图像向左平移π6个单位长度后,得到的图像关于y 轴对称,且函数f (x )在[0,π6]上单调递增,则ω的取值是( )A .12B .2C .32D .1解:f(x)=sin(ωx +π6)的图像向左平移π6个单位长度后,得到g(x)=sin(ωx +π6ω+π6)的图象.因为g(x)=sin(ωx +π6ω+π6)关于y 轴对称,所以π6ω+π6=π2+kπ,k ∈Z ,解得ω=2+6k ,k ∈Z .因为ω>0,故当x ∈[0,π6]时,ωx +π6∈[π6,ωπ6+π6],因为函数f (x )在[0,π6]上单调递增,所以ωπ6+π6∈(π6,π2],解得ω∈(0,2].故ω=2+6k ∈(0,2],解得k ∈(−13,0].因为k ∈Z ,所以k =0,故ω=2. 故选:B .二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.设等差数列{a n }的前n 项和为S n ,且S 30>0,S 31<0,则下列结论正确的是( ) A .a 15>0 B .{Sn n}是等差数列C .a 16>0D .对任意n ∈N *,都有S n ≤S 15解:设等差数列{a n } 的公差为d , 则S n =na 1+n(n−1)d2,得S n n =a 1+(n−1)d 2, 所以S n+1n+1−S n n=a 1+nd 2−a 1−(n−1)d 2=d 2,所以{Sn n } 是以a 1为首项,d 2为公差的等差数列,选项B 正确;S 31=31(a 1+a 31)2=31a 16<0,即a 16<0,选项C 错误;S 30=30(a 1+a 30)2=15(a 15+a 16)>0,由于a 16<0,所以a 15>0,A 正确;因为a 15>0,a 16<0,所以当n =15 时,S n 取得最大值,故对任意n ∈N *,恒有S n ≤S 15,选项D 正确. 故选:ABD .10.设f (x )是定义在R 上的奇函数,且f (x )在(0,+∞)上单调递减,f (﹣7)=0,则( ) A .f (x )在(﹣∞,0)上单调递增 B .f (8)<0C .不等式f (x )>0的解集为(﹣∞,﹣7)∪(0,7)D .f (x )的图象与x 轴只有3个交点解:函数f (x )是定义在R 上的奇函数,且f (x )在(0,+∞)上单调递减, 函数f (x )在(﹣∞,0)上单调递减,A 错误;由f (﹣7)=0,得f (7)=0,则f (8)<f (7)=0,B 正确;当x <0时,f (x )>f (﹣7),则x <﹣7,当x >0时,f (x )>f (7),则0<x <7, 因此不等式f (x )>0的解集为(﹣∞,﹣7)∪(0,7),C 正确; 当x <0时,函数f (x )的图象交x 轴于点(﹣7,0), 当x >0时,函数f (x )的图象交x 轴于点(7,0),而f (0)=0,则点(0,0)是函数f (x )的图象与x 轴的公共点, 所以f (x )的图象与x 轴只有3个交点,D 正确. 故选:BCD .11.已知函数f(x)={2(x+2)2,x ≤−1|log 2(x +1)|,x >−1,若关于x 的方程f (x )=m 有四个不等实根x 1、x 2、x 3、x 4(x 1<x 2<x 3<x 4),则下列结论正确的是( ) A .1<m ≤2B .﹣3<x 1<﹣2C .﹣1≤4x 3+x 4<0D .x 12+x 22+log m √2的最小值为10解:作出函数f(x)={2(x+2)2,x ≤−1|log 2(x +1)|,x >−1的图象如下图所示:根据图象知:f(﹣1)=2,f(﹣2)=1,因为直线y=m与函数f(x)的图象有四个交点,则1<m≤2,故A正确;对于B选项,由图可知x1<﹣2,由f(x1)=2(x1+2)2∈(1,2],可得0<(x1+2)2≤1,所以﹣3≤x1<﹣2,故B错误;对于C选项,由图可知﹣1<x3<0<x4,则0<x3+1<1<x4+1,由f(x3)=f(x4),得|log2(x3+1)|=|log2(x4+1)|,即﹣log2(x3+1)=log2(x4+1),所以x4+1=1x3+1,化简得到x4=1x3+1−1.由f(x3)=﹣log2(x3+1)∈(1,2],可得14≤x3+1<12,所以4x3+x4=4x3+1x3+1−1=4(x3+1)+1x3+1−5,由双勾函数的单调性可知g(x)=4x+1x在[14,12)上单调递减,所以4(x3+1)+1x3+1−5>4×12+2−5=−1,且4(x3+1)+1x3+1−5≤4×14+4−5=0,当x3=−34时取等号,所以﹣1<4x3+x4≤0,故C错误;由2(x+2)2=m,可得x2+4x+4﹣log2m=0,所以x1、x2为方程x2+4x+4﹣log2m=0的两根,由根与系数的关系可得{x1+x2=−4x1x2=4−log2m,所以x12+x22+log m√2=(x1+x2)2−2x1x2+log m√2=16−8+2log2m+12log m2=2log2m+12log2m+8≥2√2log2m×12log2m+8=10,当且仅当2log2m=12log2m时,即当m=√2时等号成立,故D正确.故选:AD.12.如图,在△ABC中,BA=BC=1,延长BC到点D,使得BC=CD,以AD为斜边向外作等腰直角三角形ADE ,则( )A .AD 2=5﹣4cos BB .sin ∠CAD ∈(12,√32)C .△ACD 面积的最大值为12D .四边形ACDE 面积的最大值为5+2√54解:在△ABD 中,由余弦定理得AD 2=AB 2+BD 2−2AB ⋅BDcosB =5−4cosB ,A 正确;∠ACB =∠CAB =π−B 2,∠ACD =π−∠ACB =π2+B 2∈(π2,π),则∠CAD ∈(0,π2),所以sin ∠CAD ∈(0,1),B 错误;易得S △CAD =12S △BAD 当BA ⊥CD 时,S △BAD S △ACD 取最大值12,C 正确;S 四边形ACDE =S △ADE +S △ACD =S △ADE +S △ABC =AD 24+12sinB=54−cosB +12sinB =54+√12+(12)2sin(B −φ)≤54+√12+(12)2=5+2√54,其中sinφ=2√55,cosφ=√55,D 正确. 故选:ACD .三、填空题(共4小题,每小题5分,满分20分)13.已知函数f(x)={(a +2)x ,x ≥2a x+1,x <2是R 上的单调递增函数,则实数a 的取值范围是 (1,3] .解:函数f (x )是R 上的增函数,则f (x )在[2,+∞)上单调递增, 故a +2>0⇒a >﹣2,f (x )在(﹣∞,2)上单调递增,则a >1, 且在x =2处,有a 2+1≤2(a +2)⇒﹣1≤a ≤3, 所以a 的取值范围是(1,3]. 故答案为:(1,3].14.已知函数f(x)=1−e x 1+e x ,若m >0,n >0,且f (2m )+f (n ﹣1)=f (0),则1m +2n 的最小值为 8 .解:因为f(x)=1−e x1+e x的定义域为R ,关于(0,0)对称,且f(−x)=1−e −x1+e −x =e x −1e x1+e xe x =e x −11+e x=−f(x),即函数f (x )为奇函数, 又因为f(0)=1−e 01+e 0=0,所以f (2m )+f (n ﹣1)=f (0)=0, 即2m +(n ﹣1)=0,所以2m +n =1,则1m +2n =(1m +2n )(2m +n)=n m +4m n +4≥2√n m ⋅4m n +4=8, 当且仅当{n m =4m n 2m +n =1时,即{m =14n =12,取等号. 所以1m +2n的最小值为8. 故答案为:8.15.已知x ,y ,z ∈R ,且x ﹣2y +2z =5,则(x +5)2+(y ﹣1)2+(z +3)2的最小值是 36 .解:由于[(x +5)2+(y ﹣1)2+(z +3)2][(12+(﹣2)2+22)]≥[(x +5)+(﹣2)(y ﹣1)+2(z +3)]2 =324,则(x +5)2+(y ﹣1)2+(z +3)2≥36(当且仅当x+51=y−1−2=z+32,即{x =−3y =−3z =1时取等号. 故答案为:3616.已知函数f (x ),g (x )的定义域均为R ,f (x )为奇函数,g (x +1)为偶函数,f (﹣1)=2,g (x +2)﹣f (x )=1,则∑g(i)2023i=1= 2023 .解:因为f (x )为奇函数,所以f (﹣x )=﹣f (x ),因为g (x +1)为偶函数,所以g (﹣x +1)=g (x +1),所以g (x +2)=g (﹣x ),g (﹣x +2)=g (x ),又因为g (x +2)﹣f (x )=1,所以g (x +2)=f (x )+1,①所以g (﹣x +2)=f (﹣x )+1,所以g (x )=﹣f (x )+1,②①+②得g (x +2)+g (x )=2,所以g (x +4)+g (x +2)=2,所以g (x +4)=g (x ),又因为g (1)+g (3)=g (2)+g (4)=2,g (2)=f (0)+1=0+1=1,所以∑g(i)2023i=1=505×[g (1)+g (2)+g (3)+g (4)]+g (1)+g (2)+g (3),=505×4+2+1=2023.故答案为:2023.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知数列{a n }的前n 项和为S n ,且a n ={5,n =12n +2,n ≥2. (1)求S n ;(2)若b n =1S n +1,求数列{b n }的前n 项和T n . 解:(1)当n ≥2时,S n =5+(n−1)(6+2n+2)2=5+(n −1)(n +4)=n 2+3n +1. 当n =1时,S 1=a 1=5,也适合上式.故S n =n 2+3n +1.(2)由(1)可得b n =1n 2+3n+2=1(n+1)(n+2)=1n+1−1n+2, 则T n =b 1+b 2+⋯+b n =(12−13)+(13−14)+⋯+(1n+1−1n+2)=12−1n+2=n 2n+4. 18.(12分)已知函数y =f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过点(4,2).(1)若f (3x ﹣1)>f (﹣x +5)成立,求x 的取值范围;(2)若对于任意x ∈[1,4],不等式f (2x )g (x 4)−m <0恒成立,求实数m 的取值范围. 解:∵g (4)=log a 4=2,∴a 2=4,解得a =2,∴g (x )=log 2x ,由已知得f (x )=lo g 12x ,即f (x )=﹣log 2x .(1)∵f (x )=lo g 12x 在(0,+∞)上单调递减,∴{3x −1>0,−x +5>0,3x −1<−x +5,解得13<x <32, ∴x 的取值范围为(13,32). (2)∵f (2x )g (x 4)−m <0, ∴m >f (2x )g (x 4)对于任意x ∈[1,4]恒成立等价于m >(f(2x)g(x 4))max . ∵y =f (2x )g (x 4)=−log 22x log 2x 4=−(1+log 2x )(log 2x ﹣2)=﹣(log 2x )2+log 2x +2, 令u =log 2x ,1≤x ≤4,则u ∈[0,2],∴y =﹣u 2+u +2=−(u −12)2+94, 当u =12,即log 2x =12,即x =√2时,y max =94, ∴实数m 的取值范围是m >94. 即m ∈(94,+∞). 19.(12分)已知向量a →=(√3,−sin ωx 2),b →=(sinωx ,2sin ωx 2),函数f(x)=a →⋅b →+1(其中0<ω<1),函数f (x )的图象的一条对称轴是直线x =π2. (1)求ω的值;(2)若0<α<π3且f(32α)=43,求f(32α+3π8)的值. 解:(1)已知向量a →=(√3,−sin ωx 2),b →=(sinωx ,2sin ωx 2), 则f(x)=a →⋅b →+1=√3sinωx −2sin 2ωx 2+1=√3sinωx +cosωx =2sin(ωx +π6), ∵函数f (x )的图象的一条对称轴是直线x =π2, ∴π2ω+π6=kπ+π2,k ∈Z , 得ω=23+2k ,k ∈Z , ∵0<ω<1,∴ω=23; (2)由(1)可得f(x)=2sin(23x +π6), 由f(32α)=43得2sin(α+π6)=43, 即sin(α+π6)=23, 结合0<α<π3, 则π6<α+π6<π2, 得cos(α+π6)=√1−sin 2(α+π6)=√53, ∴f(32α+3π8)=2sin[(α+π6)+π4]=2sin(α+π6)cos π4+2cos(α+π6)sin π4=2×23×√22+2×√53×√22=2√2+√103.20.(12分)在锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,且cosAa+cosBb=2√3sinC3a.(1)求角B的大小;(2)若b=2√3,求△ABC面积的取值范围.解:(1)由已知条件得bcosA+acosB=2√33bsinC,由正弦定理得sinBcosA+cosBsinA=2√33sinBsinC,即sin(A+B)=2√33sinBsinC,因为在△ABC中,sin(A+B)=sin C≠0,所以sinB=√32,又B是锐角,所以B=π3.(2)由正弦定理得asinA=csinC=bsinB=√3√32=4,则a=4sin A,c=4sin C,所以S△ABC=√34ac=4√3sinAsinC=4√3sin(π3+C)sinC=4√3(√32cosC+12sinC)sinC=6sinCcosC+2√3sin2C=2√3sin(2C−π6)+√3,由0<C<π2,0<2π3−C<π2,得π6<C<π2,所以π6<2C−π6<5π6,所以sin(2C−π6)∈(12,1],所以2√3sin(2C−π6)+√3∈(2√3,3√3],所以△ABC面积的取值范围为(2√3,3√3].21.(12分)为了改善湖泊的水质,某市环保部门于2021年年终在该湖泊中投入一些浮萍,这些浮萍在水中的繁殖速度越来越快,2022年2月底测得浮萍覆盖面积为360m2,2022年3月底测得浮萍覆盖面积为480m2,浮萍覆盖面积y(单位:m2)与2022年的月份x(单位:月)的关系有两个函数模型y=ka x (k>0,a>1)与y=mx2+n(m>0)可供选择.(1)分别求出两个函数模型的解析式;(2)若2021年年终测得浮萍覆盖面积为200m2,从上述两个函数模型中选择更合适的一个模型,试估算至少到哪一年的几月底浮萍覆盖面积能超过8100m2?(参考数据:lg2≈0.30,lg3≈0.48)解:(1)若选择模型y=ka x(k>0,a>1),则{ka 2=360ka 3=480,解得a =43,k =4052, 故函数模型为y =4052(43)x , 若选择模型y =mx 2+n (m >0),则{4m +n =3609m +n =480, 解得m =24,k =264,故函数模型为y =24x 2+264.(2)把x =0代入y =4052(43)x 可得,y =4052=202.5, 把x =0代入y =24x 2+264可得,y =264,∵202.5﹣200<264﹣200,∴选择函数模型y =4052(43)x 更合适, 令y =4052(43)x >8100,可得(43)x >40,两边取对数可得,xlg(43)>lg40, ∴x >lg4+lg10lg4−lg3=2lg2+12lg2−lg3≈2×0.3+12×0.3−0.48≈13.3, 故浮萍至少要到2023年2月底覆盖面积能超过8100m 2.22.(12分)已知{a n }是等差数列,a 2+a 5=16,a 5﹣a 3=4.(Ⅰ)求{a n }的通项公式及∑ 2n−1i=2n−1a i (n ∈N *); (Ⅱ)设{b n }是等比数列,且对于任意的k ∈N *,当2k ﹣1≤n ≤2k ﹣1时,b k <a n <b k +1. (i )当k ≥2时,求证:2k ﹣1<b k <2k +1;(ii )求{b n }的通项公式及前n 项和.解:(Ⅰ)∵{a n }是等差数列,a 2+a 5=16,a 5﹣a 3=4.∴{a 1+d +a 1+4d =2a 1+5d =16a 1+4d −a 1−2d =2d =4,得d =2,a 1=3, 则{a n }的通项公式a n =3+2(n ﹣1)=2n +1(n ∈N •),∑ 2n −1i=2n−1a i 中的首项为a i =2×2n−1+1=2n +1,项数为2n ﹣1﹣2n ﹣1+1=2n ﹣2n ﹣1=2×2n ﹣1﹣2n ﹣1=2n ﹣1,则∑ 2n −1i=2n−1a i =2n ﹣1(2n +1)+2n−1(2n−1−1)2×2=2n ﹣1(2n +1)+2n ﹣1(2n ﹣1﹣1)=2n ﹣1(2n +1+2n ﹣1﹣1)=2n ﹣1(2n +2n ﹣1)=2n ﹣1×3×2n ﹣1=3×4n ﹣1. (Ⅱ)(i )∵2k ﹣1≤n ≤2k ﹣1,∴2k ≤2n ≤2k +1﹣2,1+2k ≤2n +1≤2k +1﹣1, 即1+2k ≤a n ≤2k +1﹣1,当k ≥2时,∵b k <a n <b k +1.∴b k<1+2k,且b k+1>2k+1﹣1,即b k>2k﹣1,综上2k﹣1<b k<1+2k,故成立;(ii)∵2k﹣1<b k<2k+1成立,∵{b n}为等比数列,∴设公比为q,当k≥2时,2k+1﹣1<b k+1<2k+1+1,12k+1<1b k<12k−1,则2k+1−12k+1<b k+1b k<2k+1+12k−1,即2(2k+1)−32k+1<b k+1b k<2(2k−1)+32k−1,即2−32k+1<q<2+32k−1,当k→+∞,2−32k+1→2,2+32k−1→2,∴q=2,∵k≥2时,2k﹣1<b k<2k+1,∴2k﹣1<b12k﹣1<2k+1,即2k−12k−1<b1<2k+12k−1,即2−12k−1<b1<2+12k−1,当k→+∞,2−12k−1→2,2+12k−1→2,则b1=2,则b n=2×2n﹣1=2n,即{b n}的通项公式为b n=2n,则{b n}的其前n项和T n=2(1−2n)1−2=2n+1﹣2.。
哈师大附中2024—2025学年度高三上学期期中考试数学试题考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I 卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|230A x x x =-+≤,(){}2ln 2B x y x==-,则A B = ()A .()13,B.3⎡-⎣C.⎡⎤⎣⎦D.(⎤⎦2.复数2025z=2025i -在复平面内对应的点所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限3.函数()2cos f x x x =+在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为()A.2πB .2C.6π+ D.13π+4.已知a 是单位向量,则“||||1a b b +-= 是“a b∥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知函数()()e 1x a xf x -⎛⎫= ⎪⎝⎭在区间()1,0-上单调递增,则a 的取值范围是()A .[)0,+∞B .[)2,-+∞C .(],0-∞D .(],2-∞-6.已知等比数列{}n a 的前n 项和为n S ,若3614S S =,则1236SS S =+()A.43B.8C.9D.167.菱形ABCD 边长为2,P 为平面ABCD 内一动点,则()()PA PB PC PD +⋅+的最小值为()A.0B.2- C.2D.4-8.已知函数()f x 为偶函数,且满足(13)(13)f x f x -=+,当(0,1)x ∈,()31xf x =-,则323(log )f 的值为()A.31B.5932C.4932D.21132二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.函数()2sin(1)3f x x πωω=+≤的图象如图所示,则下列说法中正确的是()A .1ω=B .函数的图象关于点,03π⎛⎫⎪⎝⎭对称C .将()y f x =向左平移3π个单位长度,得到函数()2cos(6g x x π=+D .若方程(2)f x m =在0,2π⎡⎤⎢⎥⎣⎦上有2个不相等的实数根,则m的取值范围是2⎤⎦10.设正实数,m n 满足1m n +=,则()A .1m nm+的最小值为3B+C的最小值为12D .33m n +的最小值为1411.已知函数1()(0)xf x x x =>,则下列说法中正确的是()A.方程1()(f x f x=有一个解B.若()()g x f x m =-有两个零点,则10em e<<C.若21()(log ())2a h x x f x =-存在极小值和极大值,则(1,e)a ∈D.若()0f xb -=有两个不同零点,2(())()0f x b x cx d --+≤恒成立,则2ln b c <<第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.中国冶炼块铁的起始年代虽然迟至公元前6世纪,约比西方晚900年,但是冶炼铸铁的技术却比欧洲早2000年.现将一个轴截面为正方形且侧面积为π36的实心圆柱铁锭冶炼熔化后,浇铸成一个底面积为π81的圆锥,则该圆锥的高度为.13.已知某种科技产品的利润率为P ,预计5年内与时间(t 月)满足函数关系式(t P ab =其中a b 、为非零常数).若经过12个月,利润率为10%,经过24个月,利润率为20%,那么当利润率达到50%以上,至少需要经过________________个月(用整数作答,参考数据:lg 20.3010)≈14.已知b 为单位向量,,a c 满足42a b c b ⋅=-= ,则12a c -的最小值为四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题13分)在△ABC 中,a b c 、、分别为角A B C 、、所对的边,且22()b a a c c -=-(1)求角B .(2)若b =△ABC 周长的最大值.16.(本小题15分)已知数列{}n a 满足*3212122,N 22n n a a a n a n -++++=∈ (1)求{}n a 的通项公式;(2)在n a 和1n a +之间插入n 个数,使得这2n +个数依次构成公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .17.(本小题15分)行列式在数学中是一个函数,无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用.将形如11122122a a a a 的符号称二阶行列式,并规定二阶的行列式计算如下:1112112212212122a a a a a a a a =-,设函数22sin sin ()()π26cos()x xf x x x =∈+R .(1)求()f x 的对称轴方程及在[0,]π上的单调递增区间;(2)在锐角ABC ∆中,已知()32f A =-,2133AD AB AC =+,cos B =,求tan BAD ∠18.(本小题17分)已知数列}{n a 满足111,,333,n n na n n a a a n n +⎧+⎪==⎨⎪-⎩为奇数为偶数(*∈N n ).(1)记232-=n n a b (*∈N n ),证明:数列}{n b 为等比数列,并求}{n b 的通项公式;(2)求数列}{n a 的前n 2项和n S 2;(3)设12121--=+n n n b b c (*∈N n ),且数列}{n c 的前n 项和为n T ,求证:1133ln --<-n n n n T (*∈N n ).19.(本小题17分)已知函数ln ()sin ,(0,)x a f x e x x -=-∈+∞.(1)当a e =时,求()y f x =在(0,(0))f 处的切线方程;(2)若32(())(())ln(1())0f x f x f x -++≥恒成立,求a 的范围;(3)若()f x 在(0,)π内有两个不同零点12,x x ,求证:122x x ππ<+<2024—2025学年度上学期高三学年期中考试数学答案一、单选题1.D 2.D 3.A 4.A 5.D 6.B7.D8.C二、多选题9.AC 10.ABD 11.ACD 三、填空题12.213.4014.1四、解答题15.(1)22()b a a c c -=-即222b a c ac =+-∵2222cos b a c ac B =+-∴1cos 2B =,又(0,)B π∈∴3B π=(2)由sin sin a c AC =可得,2sin a A =,2sin c C=2sin 2sin l a b c A C =++=+∵2+3A C π=∴23C Ap =-∴22sin 2sin()3l a b c A A π=++=+-3sin A A =)6A π=+∵203A π<<∴l的最大值为16.(1)321212222nn na a a a -++++= 当2n ≥时,312122)2222(1n n a a a n a --++++=- 两式相减,得122nn a -=,即2n n a =.又当1n =时,12a =符合题意,所以2n n a =.(2)由(1)得2n n a =,所以11222111n n nn n n b b d n n n ++--===+++,则112nn n d +=,所以()123111123412222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()12341111112341222222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅+++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相减得:()()112111111111113342211112222222212n n n nn n n T n n ++++⎛⎫- ⎪+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=⋅++⋅⋅⋅+-+=+-+=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,所以332n nn T +=-.17.(1)221()2sin cos()2sin 2sin (cos sin )2sin 226f x x x x x x x xπ=+-=--23323sin sin 2(1cos 2)sin(2)22232x x x x x π=---+-,由22,32x k k πππ+=+∈Z ,得,12x k k ππ=+∈Z ,所以()f x 的对称轴为ππ()122kx k =+∈Z .由222,232k x k k πππππ-+<+<+∈Z ,[]0,x π∈,所以单调递增区间为701212πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦,,,(2)由(1)知,33())322f A A π=+-=-,则πsin(2)03A +=,由02A π<<,得ππ4π2333A <+<,则π23A π+=,解得π3A =,因为ABC V中,cos B =,则B 为锐角,所以sin 3B ===,因为π3A =,πA B C ++=,所以2π3C B =-,所以2π2π2π11sin sin sin cos cos sin 333232326C B B B ⎛⎫=-=-=⨯+⨯=+⎪⎝⎭,设BADθ∠=,则π3 CADθ∠=-,在ABD△和ACD中,由正弦定理得sin sinBD ADBθ==πsinsin3CD ADCθ=⎛⎫-⎪⎝⎭因为2CD BD=(π3sin3θθ⎛⎫-=+⎪⎝⎭,(1cos sin3sin22θθθ⎫-=+⎪⎪⎭(2sinθθ=+,所以tan tanBADθ∠==18.(1)证明:2123123)1231(231212221-+=-++=-=++++nanaabnnnnnnnnbaanna31)23(312131212)6(31222=-=-=-+-=,又212313123121=-+=-=aab,所以,数列}{nb为以21为首项,31为公比的等比数列.(2)由(1)可知13121-⎪⎭⎫⎝⎛=nnb,又232-=nnab,23312112+⎪⎭⎫⎝⎛=∴-nna.设nnaaaP242++=,则nnPnnn233143432331131121+⎪⎭⎫⎝⎛-=+-⎪⎭⎫⎝⎛-⋅=,设1231-++=nnaaaQ ,1231122-+=-naann,2312)121(31nQnnQPnnn+=-+⋅+=∴,233nPQnn-=∴,故21223631334nnnPQPSnnnnn-+⎪⎭⎫⎝⎛-=-=+=-.(3)nnnnnnnc321132113331311311-<--=--=-⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=-,n n n n n n n T 311311()313131(22+-=--=+++-<∴ ,所以欲证1133ln --<-n n n n T ,只需证)311ln(313ln 133ln 31n n n n n n --=--=-<,即证n n 31311ln(-<-.设)0,1(),1ln()(-∈+-=x x x x f ,01)(<+='∴x xx f ,故)(x f 在)0,1(-上单调递减,0)0()(=>f x f ,)0,1(-∈∴x 时,)1ln(x x +>.)0,31[31-∈-n ,n n 31311ln(-<-∴得证.19.1) =s =K1−sins 0=−1,n =K1−coss n 0=−1−1∴−−1=−1−12)3−2+ln 1+≥0.令=s 3−2+ln 1+≥0(1)t >-令=3−2+ln 1+,n =32−2+1r1=33+2−2r1r1,当≥0,'≥0∴在0,+∞单调递增,当()32322(0,1),ln 1(1)0t t t t t t t t t t ∈+++<++=++<∴≥0解集为≥0∴≥0>0,sins1≥sin=ℎ. ℎ' = cosKsin =, ∴ 在 单调递增, (4,54)单调递减,当>54时,ℎ<154∴ℎ=224∴1≥224,0<≤243)ℎ=sin ∴sin=1有两个根1,2。
2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={x |x 2+x ﹣6=0},B ={2,3},则A ∩B =( ) A .∅B .{2}C .{3}D .{2,3}2.已知a ∈R ,若(2+i )(1+ai )为纯虚数,则a =( ) A .−12B .12C .﹣2D .23.“a =1”是“函数f(x)=2x−a2x +a是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.学校以“布一室馨香,育满园桃李”为主题开展了系列评比活动,动员师生一起为营造舒心愉悦的学习生活环境奉献智慧.张老师特地培育了一盆绿萝放置在教室内,绿萝底部的盆近似看成一个圆台,圆台的上、下底面半径之比为3:2,母线长为10cm ,其母线与底面所成的角为60°,则这个圆台的体积为( )A .2375√33πcm 3B .4750√33πcm 3C .7125√33πcm 3 D .9500√33πcm 35.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2),现有如下四个命题: 甲:该函数图象的相邻两条对称轴之间的距离为π2;乙:该函数图象可以由y =cos2x −√3sin2x 的图象向右平移π4个单位长度得到;丙:该函数在区间(−π12,π6)上单调递增; 丁:该函数满足f(π3+x)+f(π3−x)=0. 如果只有一个假命题,那么该命题是( )A .甲B .乙C .丙D .丁6.已知奇函数f (x )的图象关于直线x =1对称,当x ∈[0,1]时,f (x )=2x +b ,则f(20232)=( ) A .−1−√2B .1−√2C .√2+1D .√2−17.若sin(α+π6)=35,则sin(2α+5π6)=( ) A .−725B .−1625C .725D .16258.已知函数f (x )=x 3+ax 2+bx +c (a ,b ,c ∈R ),若不等式f (x )<0的解集为{x |x <m +1且x ≠m },则函数f (x )的极小值是( ) A .−14B .0C .−427D .−49二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,M ,N 分别为CC 1,A 1D 1的中点,则( ) A .BM ∥AD 1 B .AM ⊥BDC .B 1M ⊥平面ABND .MN ∥平面A 1BD10.设a >b >0,c ∈R ,则( ) A .a |c |>b |c | B .ba≤b+c 2a+c 2C .a 2−b 2<1a−1bD .a +b <√2(a 2+b 2)11.已知数列{a n }满足a 4=4,a n a n +1=2n (n ∈N *),则( ) A .a 1=1B .数列{a n }为递增数列C .a 1+a 2+…+a 2023=21013﹣3D .1a 1+1a 2+⋯+1a n<312.已知函数f (x )=a 2x ﹣x (a >0,a ≠1),则下列结论中正确的是( ) A .函数f (x )恒有1个极值点B .当a =e 时,曲线y =f (x )恒在曲线y =lnx +2上方C .若函数f (x )有2个零点,则1<a <e 12eD .若过点P (0,t )存在2条直线与曲线y =f (x )相切,则0<t <1 三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a →=(λ,1),b →=(−1,2),若a →与b →共线,则|a →−b →|= . 14.写出一个同时满足下列两个性质的函数:f (x )= . ①f (x 1+x 2)=f (x 1)•f (x 2);②∀x ∈R ,f ′(x )<0.15.咖啡适度饮用可以提神醒脑、消除疲劳,让人精神振奋.冲咖啡对水温也有一定的要求,把物体放在空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,经过t 分钟后物体的温度为θ℃满足θ=θ0+(θ1−θ0)e −0.08t .研究表明,咖啡的最佳饮用口感会出现在65℃.现有一杯85℃的热水用来冲咖啡,经测量室温为25℃,那么为了获得最佳饮用口感,从冲咖啡开始大约需要等待 分钟.(结果保留整数)(参考数据:ln 2≈0.7,ln 3≈1.1,ln 11≈2.4)16.在平面四边形ABCD 中,AB =AD =√2,BC =CD =1,BC ⊥CD ,将四边形沿BD 折起,使A ′C =√3,则四面体A ′﹣BCD 的外接球O 的表面积为 ;若点E 在线段BD 上,且BD =3BE ,过点E 作球O 的截面,则所得的截面中面积最小的圆的半径为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f(x)=(1−2sin 2x)sin2x +12cos4x . (1)求f (x )的最大值及相应x 的取值集合;(2)设函数g (x )=f (ωx )(ω>0),若g (x )在区间 (0,π2) 上有且仅有1个极值点,求ω的取值范围.18.(12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +tan B =−√3cacosB.(1)求角A ;(2)已知a =7,D 是边BC 的中点,且AD ⊥AB ,求AD 的长. 19.(12分)已知数列{a n }中,a 1=1,a n+1n+1−a n n=1n(n+1),n ∈N ∗.(1)求数列{a n }的通项公式; (2)设b n =(﹣1)n﹣14na n a n+1,求数列{b n }的前n 项和S n .20.(12分)已知函数f (x )=ax ﹣a ﹣lnx .(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:当a =1时,f (x )≥0;(3)设m 为整数,若对于∀n ∈N ∗,(1+13)(1+232)(1+2233)⋯(1+2n−13n )<m 成立,求m 的最小值.21.(12分)如图,AB 是半球O 的直径,AB =4,M ,N 是底面半圆弧AB ̂上的两个三等分点,P 是半球面上一点,且∠PON =60°. (1)证明:PB ⊥平面P AM ;(2)若点P 在底面圆内的射影恰在ON 上,求直线PM 与平面P AB 所成角的正弦值.22.(12分)已知函数f(x)=1+lnx.x(1)讨论f(x)的单调性;(2)设a,b为两个不相等的实数,且ae b﹣be a=e a﹣e b,证明:e a+e b>2.2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={x |x 2+x ﹣6=0},B ={2,3},则A ∩B =( ) A .∅B .{2}C .{3}D .{2,3}解:A ={x |x 2+x ﹣6=0}={﹣3,2},故A ∩B ={2}. 故选:B .2.已知a ∈R ,若(2+i )(1+ai )为纯虚数,则a =( ) A .−12B .12C .﹣2D .2解:(2+i )(1+ai )=2﹣a +(1+2a )i , 因为a ∈R ,且(2+i )(1+ai )为纯虚数, 所以{2−a =01+2a ≠0,解得a =2.故选:D .3.“a =1”是“函数f(x)=2x−a2x +a是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:若a =1,则f(x)=2x−12x +1,f(−x)=12x −112x +1=1−2x 1+2x =−2x−12x +1=−f(x),所以f (x )是奇函数; 若函数f(x)=2x−a2x +a在其定义域上为奇函数,可得f(−x)=12x −a 12x +a =1−a⋅2x 1+a⋅2x =−f(x)=−2x −a 2x +a =a−2x2x +a, 解得a =±1,∴a =1是函数f(x)=2x−a2x +a在其定义域上为奇函数的充分不必要条件.故选:A .4.学校以“布一室馨香,育满园桃李”为主题开展了系列评比活动,动员师生一起为营造舒心愉悦的学习生活环境奉献智慧.张老师特地培育了一盆绿萝放置在教室内,绿萝底部的盆近似看成一个圆台,圆台的上、下底面半径之比为3:2,母线长为10cm ,其母线与底面所成的角为60°,则这个圆台的体积为( )A .2375√33πcm 3B .4750√33πcm 3C .7125√33πcm 3 D .9500√33πcm 3解:根据题意,设圆台的上、下底面半径分别为3x ,2x , 因为母线长为10,且母线与底面所成的角为60°, 所以圆台的高为10sin60°=5√3,并且x =10×12=5,所以圆台的上底面半径为3x =15,下底面半径为2x =10,高为5√3. 由此可得圆台的体积为V =13π(152+102+15×10)×5√3=2375√3π3(cm 3). 故选:A .5.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2),现有如下四个命题: 甲:该函数图象的相邻两条对称轴之间的距离为π2;乙:该函数图象可以由y =cos2x −√3sin2x 的图象向右平移π4个单位长度得到;丙:该函数在区间(−π12,π6)上单调递增; 丁:该函数满足f(π3+x)+f(π3−x)=0. 如果只有一个假命题,那么该命题是( ) A .甲B .乙C .丙D .丁 解:对于甲,该f (x )图象的相邻两条对称轴之间的距离为T 2=πω=π2,则f (x )的周期T =π;对于乙,将函数y =cos2x −√3sin2x =2cos(2x +π3)的图象向右平移 π4个单位长度,得到y =2cos[2(x −π4)+π3]=2sin(2x +π3) 的图象;对于丙,函数f(x)在区间(−π12,π6)上单调递增;对于丁,函数f(x)满足f(π3+x)+f(π3−x)=0,即f(x)图象关于(π3,0)对称.因为只有乙的条件最具体,所以从乙入手,若乙正确,此时f(x)的单调递增区间为[−5π12+kπ,π12+kπ](k∈Z),与丙的结论矛盾,根据题设“只有一个命题是假命题”,可知这一个假命题只能是乙或丙,若丙是真命题,则甲、丙、丁三个是真命题,由f(x)图象关于(π3,0)对称,且周期为π,可知:在点(π3,0)的左侧且距离最近的f(x)图象的对称轴为x=π12,而π12∈(−π12,π6),说明f(x)在区间(−π12,π6)上不单调,与丙是真命题矛盾.若乙是真命题,则甲、乙、丁三个都是真命题,此时f(x)=2sin(2x+π3),最小正周期T=π,且图象关于(π3,0)对称,甲、乙、丁之间相符合.综上所述,丙不可能是真命题,即唯一的假命题是丙.故选C.6.已知奇函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,f(x)=2x+b,则f(20232)=()A.−1−√2B.1−√2C.√2+1D.√2−1解:因为f(x)为奇函数,且当x∈[0,1]时,f(x)=2x+b,所以f(0)=1+b=0,解得:b=﹣1,即当x∈[0,1]时,f(x)=2x﹣1,又因为f(x)的图象关于直线x=1对称,所以f(x)=f(2﹣x),且f(x)=﹣f(﹣x)则f(x)=f(2﹣x)=﹣f(x﹣2)=﹣f[2﹣(x﹣2)]=﹣f(4﹣x)=f(x﹣4),即函数f(x)是以4为周期的周期函数,故f(20232)=f(252×4+72)=f(72−4)=f(−12)=−f(12)=1−√2.故选:B.7.若sin(α+π6)=35,则sin(2α+5π6)=()A.−725B.−1625C.725D.1625解:∵sin(α+π6)=35,∴sin(2α+5π6)=sin(2α+π3+π2)=cos(2α+π3)=1−2sin2(α+π6)=1−2×(35)2=725.故选:C.8.已知函数f(x)=x3+ax2+bx+c(a,b,c∈R),若不等式f(x)<0的解集为{x|x<m+1且x≠m},则函数f(x)的极小值是()A.−14B.0C.−427D.−49解:因为不等式f(x)<0的解集为{x|x<m+1且x≠m},所以f(m)=f(m+1)=0,且x=m为f(x)=0的二重根,所以f(x)=(x﹣m)2[x﹣(m+1)],则f′(x)=2(x﹣m)[x﹣(m+1)]+(x﹣m)2=(x﹣m)(3x﹣3m﹣2),则当x>3m+23或x<m时f′(x)>0,当m<x<3m+23时f′(x)<0,所以f(x)在(3m+23,+∞),(﹣∞,m)上单调递增,在(m,3m+23)上单调递减,所以f(x)在x=3m+23处取得极小值,即f(x)极小值=f(3m+23)=(3m+23−m)2[3m+23−(m+1)]=−427.故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD﹣A1B1C1D1中,M,N分别为CC1,A1D1的中点,则()A.BM∥AD1B.AM⊥BDC.B1M⊥平面ABN D.MN∥平面A1BD解:对于选项A:连接BC1,则BC1∥AD1,又BC1∩BM=B,所以BM∥AD1不正确,故选项A不正确;对于选项B:在正方体中,BD⊥AA1,BD⊥AC且AA1∩AC=A,AA1⊂平面AA1C1C,AC⊂平面AA1C1C,所以BD⊥平面AA1C1C,又AM⊂平面AA1C1C,所以AM⊥BD,故选项B正确;对于选项C:在正方体中,AB⊥平面B1BCC1,又B1M⊂平面B1BCC1,所以AB⊥B1M,取B1C1的中点Q,连接BQ,在正方形BCC1B1中(如图),△BB1Q≅△B1C1M,∠BQB1=∠B1MC1,又∠B1MC1+∠MB1C1=90°,所以∠B1QB+∠MB1C1=90°,所以B1M⊥BQ,又在正方体中,AN∥BQ,所以B1M⊥AN,又AN∩AB=A,所以B1M⊥平面ABN,故选项C正确;对于选项D:取A1D的中点E,连接EN,EC,则EN∥AA1,且EN=1AA1,2所以EN∥MC,且EN=MC,故四边形NECM为平行四边形,则MN∥EC,又EC与平面A1BD相交于点E,所以MN不可能与平面A1BD平行,故选项D不正确.故选:BC .10.设a >b >0,c ∈R ,则( ) A .a |c |>b |c | B .ba≤b+c 2a+c 2C .a 2−b 2<1a−1bD .a +b <√2(a 2+b 2)解:选项A .当c =0时,a |c |>b |c |不成立,故选项A 不正确. 选项B .由b+c 2a+c 2−b a=(b+c 2)a−b(a+c 2)a(a+c 2)=c 2(a−b)a(a+c 2)>0,所以ba≤b+c 2a+c 2,故选项B 正确.选项C .由 a 2−b 2−(1a−1b)=(a −b)(a +b)−b−a ab =(a −b)(a +b +1ab)>0, 所以a 2−b 2>1a−1b,故选项C 不正确.选项D .由[√2(a 2+b 2)]2−(a +b)2=a 2+b 2−2ab =(a −b)2>0,所以a +b <√2(a 2+b 2),故选项D 正确. 故选:BD .11.已知数列{a n }满足a 4=4,a n a n +1=2n (n ∈N *),则( ) A .a 1=1B .数列{a n }为递增数列C .a 1+a 2+…+a 2023=21013﹣3D .1a 1+1a 2+⋯+1a n<3解:依题意,a 4=4,a n a n+1=2n,a n =2na n+1,a n+1=2na n,所以a 3=23a 4=84=2,a 2=22a 3=42=2,a 1=21a 2=22=1,A 选现正确.所以a 3=a 2,所以B 选项错误. 由a n a n+1=2n 得a n+1a n+2=2n+1,两式相除得a n+2a n=2,所以数列{a n }的奇数项是首项为1,公比为2的等比数列;偶数项是首项为2,公比为2的等比数列.a 1+a 2+⋯+a 2023=(a 1+a 3+⋯+a 2023)+(a 2+a 4+⋯+a 2022)=1(1−21012)1−2+2(1−21011)1−2=21012−1+21012−2=21013−3,所以C 选项正确.由上述分析可知,数列{1a n}的奇数项是首项为1,公比为12的等比数列;偶数项是首项为12,公比为12的等比数列. 当n 为偶数时,1a 1+1a 2+⋯+1a n=(1a 1+1a 3+⋯+1a n−1)+(1a 2+1a 4+⋯+1a n),=1(1−12n 2)1−12+12(1−12n 2)1−12=3−32n 2<3;当n 为奇数时,1a 1+1a 2+⋯+1a n =(1a 1+1a 3+⋯+1a n)+(1a 2+1a 4+⋯+1a n−1),=1(1−12n+12)1−12+12(1−12n−12)1−12=3−22n+12−12n−12<3, 综上所述,1a 1+1a 2+⋯+1a n<3,所以D 选项正确.故选:ACD .12.已知函数f (x )=a 2x ﹣x (a >0,a ≠1),则下列结论中正确的是( ) A .函数f (x )恒有1个极值点B .当a =e 时,曲线y =f (x )恒在曲线y =lnx +2上方C .若函数f (x )有2个零点,则1<a <e 12eD .若过点P (0,t )存在2条直线与曲线y =f (x )相切,则0<t <1 解:f (x )=a 2x ﹣x (a >0,a ≠1),f ′(x )=2a 2x lna ﹣1,对于A :因为a 2x >0恒成立,所以当a ∈(0,1)时,f ′(x )<0,此时f (x )单调递减, 所以此时不存在极值点,A 错误;对于B :当a =e 时,f (x )=e 2x ﹣x ,令g (x )=f (x )﹣(lnx +2)=e 2x ﹣x ﹣lnx ﹣2, 下面先证明:e x ≥x +1和lnx ≤x ﹣1,令f 1(x)=e x −x −1,则f 1′(x)=e x −1>0⇒x >0,所以f 1(x )在(﹣∞,0)单调递减,在(0,+∞)单调递增,所以f 1(x )≥f 1(0)=0,所以e x ≥x +1,当且仅当x =0时,取到等号; 令f 2(x )=lnx ﹣x +1,则f 2′(x)=1x −1>0⇒0<x <1, 所以f 2(x )在(0,1)单调递增,在(1,+∞)单调递减,所以f 2(x )≤f 2(1)=0,所以lnx ≤x ﹣1,当且仅当x =1时,取到等号, 由上结论可得:e 2x ≥2x +1,﹣lnx ≥﹣x +1,因为不能同时取等,所以两式相加可得:e 2x ﹣lnx >x +2, 即e 2x ﹣lnx ﹣x ﹣2>0恒成立,即g (x )>0恒成立, 所以y =f (x )恒在曲线y =lnx +2上方,B 正确;对于C :函数f (x )有2个零点等价于方程a 2x ﹣x =0有两个根, 即a 2x =x ⇒lna 2x =lnx ⇒2xlna =lnx ⇒2lna =lnxx有两个根, 令ℎ(x)=lnxx ,则ℎ′(x)=1−lnxx 2<0⇒x >e , 所以h (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,所以ℎ(x)max =ℎ(e)=1e ,当x →0时,h (x )→﹣∞,当x →+∞时,h (x )→0, 所以要使得2lna =lnx x 有两个根,则2lna ∈(0,1e), 所以0<lna <12e⇒1<a <e 12e ,所以C 正确;对于D :设切点坐标为(x 0,a 2x 0−x 0),则k =f ′(x 0)=2a 2x 0lna −1,又因为切线经过点P (0,t ),所以k =a 2x 0−x 0−tx 0, 所以2a2x 0lna −1=a 2x 0−x 0−tx 0,解得t =a 2x 0−a 2x 0lna 2x 0,令m =a 2x 0,则m ∈(0,+∞),所以t =m ﹣mlnm , 因为过点P (0,t )存在2条直线与曲线y =f (x )相切, 所以方程t =m ﹣mlnm 有两个不同的解,令φ(m )=m ﹣mlnm ,则φ′(m )=﹣lnm >0⇒0<m <1, 所以φ(m )在(0,1)上单调递增,在(1,+∞)上单调递减,所以φ(m )max =φ(1)=1,当m →0时,φ(m )→0,当m →+∞时,φ(m )→﹣∞, 所以要使得方程t =m ﹣mlnm 有两个根,则t ∈(0,1),D 正确. 故选:BCD .三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a →=(λ,1),b →=(−1,2),若a →与b →共线,则|a →−b →|=√52. 解:由于a →与b →共线,所以λ×2=1×(−1),λ=−12,a →=(−12,1),a →−b →=(−12,1)−(−1,2)=(12,−1), 所以|a →−b →|=√14+1=√52.故答案为:√52. 14.写出一个同时满足下列两个性质的函数:f (x )= a x (0<a <1)(答案不唯一) . ①f (x 1+x 2)=f (x 1)•f (x 2); ②∀x ∈R ,f ′(x )<0.解:由性质②,f(x)是R上的减函数,且满足性质①f(x1+x2)=f(x1)•f(x2),可以是指数函数,所以函数f(x)=a x(0<a<1)符合题意.故答案为:a x(0<a<1)(答案不唯一).15.咖啡适度饮用可以提神醒脑、消除疲劳,让人精神振奋.冲咖啡对水温也有一定的要求,把物体放在空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,经过t分钟后物体的温度为θ℃满足θ=θ0+(θ1−θ0)e−0.08t.研究表明,咖啡的最佳饮用口感会出现在65℃.现有一杯85℃的热水用来冲咖啡,经测量室温为25℃,那么为了获得最佳饮用口感,从冲咖啡开始大约需要等待5分钟.(结果保留整数)(参考数据:ln2≈0.7,ln3≈1.1,ln11≈2.4)解:由题意得,65=25+(85﹣25)e﹣0.08t,即e−0.08t=2 3,所以−0.08t=ln 23,解得t=−252×(ln2−ln3)≈252×(0.7−1.1)=5,所以大约需要等待5分钟.故答案为:5.16.在平面四边形ABCD中,AB=AD=√2,BC=CD=1,BC⊥CD,将四边形沿BD折起,使A′C=√3,则四面体A′﹣BCD的外接球O的表面积为3π;若点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得的截面中面积最小的圆的半径为23.解:如图所示:因为AB=AD=√2,BC=CD=1,BC⊥CD,所以BE=CE=DE=√22,AE=√AD2−DE2=√(√2)2−(√22)2=√62,且AC⊥BD,点E为△BCD外接圆的圆心,所以四面体A′﹣BCD的外接球的球心O一定在过点E且垂直面BCD的直线上,如图不妨设GE⊥面BCD,A′F⊥面BCD,四面体A′﹣BCD的外接球的半径OE=ℎ,OB=R=√OE2+EB2=√ℎ2+12,FE=x,则由对称性可知点F也在直线CE上且A′F⊥FC,A′F=2OE=2h,由题意A ′E =AE =√62,FC =FE +EC =x +√22,A ′C =√3, 在Rt △A ′FE 中,有A ′F 2+FE 2=A ′E 2,即x 2+(2ℎ)2=32, 在Rt △A ′FC 中,有A ′F 2+FC 2=A ′C 2,即(x +√22)2+(2ℎ)2=3,联立以上两式解得x =√22,ℎ=12, 所以R =√ℎ2+12=√14+12=√32, 从而四面体A ′﹣BCD 的外接球O 的表面积为S =4πR 2=4π×(√32)2=3π;如图所示:由题意将上述第一空中的点E 用现在的点F 来代替,而现在的点E 为线段BD 的靠近点B 的三等分点, 此时过点E 作球O 的截面,若要所得的截面中面积最小,只需截面圆半径最小, 设球心到截面的距离为d ,截面半径为r ,则r =√R 2−d 2, 所以只需球心到截面的距离为d 最大即可,而当且仅当OE 与截面垂直时,球心到截面的距离为d 最大,即d max =OE , 由以上分析可知此时OO 1=FE =FB −BE =12BD −13BD =√26,OF =12,OE =√14+118=√116,R =√32,所以r =r min =√R 2−OE 2=√34−1136=23. 故答案为:3π;23.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f(x)=(1−2sin 2x)sin2x +12cos4x . (1)求f (x )的最大值及相应x 的取值集合;(2)设函数g (x )=f (ωx )(ω>0),若g (x )在区间 (0,π2) 上有且仅有1个极值点,求ω的取值范围.解:(1)f(x)=(1−2sin 2x)sin2x +12cos4x =cos2x sin2x +12cos4x=12(sin4x +cos4x )=√22sin (4x +π4), 当4x +π4=π2+2k π,k ∈Z ,即x =π16+kπ2,k ∈Z 时,函数取得最大值√22,此时{x |x =π16+kπ2,k ∈Z }; (2)因为g (x )=f (ωx )=√22sin (4ωx +π4),ω>0,若g (x )在区间 (0,π2) 上有且仅有1个极值点,则极值点只能为极大值, 根据五点作图法,令4ωx +π4=π2,则x =π16ω, 令4ωx +π4=3π2,则x =5π16ω,所以{π16ω<π25π16ω≥π2ω>0解得18<ω≤58,故ω的范围为(18,58].18.(12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +tan B =−√3cacosB . (1)求角A ;(2)已知a =7,D 是边BC 的中点,且AD ⊥AB ,求AD 的长.解:(1)因为tan A +tan B =−√3cacosB ,所以sinA cosA +sinBcosB =−√3c acosB,由正弦定理得,sinAcosA +sinBcosB =−√3sinCsinAcosB ,因为sinAcosA+sinB cosB=sinAcosB+cosAsinB cosAcosB=sin(A+B)cosAcosB=sinC cosAcosB,所以sinCcosAcosB=−√3sinCsinAcosB,因为0<C <π,所以sin C ≠0, 又cos B ≠0,所以tan A =−√3, 因为0<A <π,所以A =2π3.(2)因为D 是边BC 的中点,所以BD =CD =12BC =72, 因为AD ⊥AB ,所以∠DAC =∠BAC ﹣∠BAD =2π3−π2=π6,在Rt △ABD 中,sin B =AD BD =AD 72=2AD7, 在△ACD 中,由正弦定理知,ADsinC=CD sin∠DAC,所以sin C =ADsin∠DAC CD=AD×1272=AD7, 在△ABC 中,由正弦定理知,bsinB=c sinC=a sin∠BAC=√32=√3,所以b2AD 7=cAD 7=√3,所以b =4AD 3,c =2AD3, 在△ABC 中,由余弦定理得,a 2=b 2+c 2﹣2bc cos A , 所以49=b 2+c 2﹣2bc ×cos 2π3,即b 2+c 2+bc =49, 所以(√3)2+(√3)23×3=49,解得AD =√212.19.(12分)已知数列{a n }中,a 1=1,a n+1n+1−a n n=1n(n+1),n ∈N ∗.(1)求数列{a n }的通项公式; (2)设b n =(﹣1)n ﹣14na n a n+1,求数列{b n }的前n 项和S n .解:(1)因为a n+1n+1−a n n=1n(n+1)⇒a n+1n+1−a n n=1n−1n+1⇒a n+1+1n+1=a n +1n,所以{a n +1n }是常数列,所以a n +1n =a 1+11=2,所以a n =2n ﹣1. (2)b n =(−1)n−14na n a n+1=(−1)n−14n(2n−1)(2n+1)=(−1)n−1(12n−1+12n+1),当n 为偶数时,S n =(1+13)−(13+15)+⋯+(12n−3+12n−1)−(12n−1+12n+1)=1−12n+1=2n2n+1, 当n 为奇数时,S n =(1+13)−(15+12)+⋯−(12n−3+12n−1)+(12n−1+12n+1)=1+12n+1=2n+22n+1,所以S n =2n+1+(−1)n−12n+1.20.(12分)已知函数f (x )=ax ﹣a ﹣lnx .(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:当a =1时,f (x )≥0;(3)设m 为整数,若对于∀n ∈N ∗,(1+13)(1+232)(1+2233)⋯(1+2n−13n )<m 成立,求m 的最小值.解:(1)已知f (x )=ax ﹣a ﹣lnx ,函数定义域为(0,+∞),可得f′(x)=a−1x,此时f′(1)=a﹣1,又f(1)=0,所以曲线y=f(x)在点(1,f(1))处的切线方程为y=(a﹣1)(x﹣1),即(a﹣1)x﹣y﹣a+1=0;(2)证明:当a=1时,f(x)=x﹣1﹣lnx,函数定义域为(0,+∞),可得f′(x)=1−1x=x−1x,当0<x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以当x=1时,函数f(x)取得极小值也是最小值,最小值f(1)=0,故f(x)≥0;(3)由(2)知lnx≤x﹣1,当且仅当x=1时,等号成立,令x=2n−13n+1,此时ln(1+2n−13n)<2n−13n,可得ln(1+13)+ln(1+232)+ln(1+2233)+⋯+ln(1+2n−13n)<13+232+⋯+2n−13n=13(1−2n3n)1−23=1−2n3n<1,即ln[(1+13)(1+232)(1+2233)⋯(1+2n−13n)]<1,所以(1+13)(1+232)(1+2233)⋯(1+2n−13n)<e,当n≥4时,(1+13)(1+232)(1+2233)⋯(1+2n−13n)≥(1+13)(1+232)(1+2233)(1+2334)=12139659049>2,所以对于任意n∈N*,(1+13)(1+232)(1+2233)⋯(1+2n−13n)<m成立时,整数m的最小值为3.21.(12分)如图,AB是半球O的直径,AB=4,M,N是底面半圆弧AB̂上的两个三等分点,P是半球面上一点,且∠PON=60°.(1)证明:PB⊥平面P AM;(2)若点P在底面圆内的射影恰在ON上,求直线PM与平面P AB所成角的正弦值.证明:(1)连接OM ,MN ,BM ,因为M ,N 是底面半圆弧AB ̂上的两个三等分点, 所以有∠MON =∠NOB =60°,又因为OM =ON =OB =2,所以△MON ,△NOB 都为正三角形,所以MN =NB =BO =OM ,即四边形OMNB 是菱形, 记ON 与BM 的交点为Q ,Q 为ON 和BM 的中点, 因为∠PON =60°,OP =ON , 所以三角形OPN 为正三角形, 所以PQ =√3=12BM ,所以PB ⊥PM ,因为P 是半球面上一点,AB 是半球O 的直径,所以PB ⊥P A , 因为PM ∩P A =P ,PM ,P A ⊂平面P AM , 所以PB ⊥平面P AM ;解:(2)因为点P 在底面圆内的射影恰在ON 上,由(1)知Q 为ON 的中点,△OPN 为正三角形,所以PQ ⊥ON , 所以PQ ⊥底面ABM ,因为四边形OMNB 是菱形,所以MB ⊥ON , 即MB 、ON 、PQ 两两互相垂直,以点Q 为坐标原点,QM ,QN ,QP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则O(0,−1,0),M(√3,0,0),B(−√3,0,0),N(0,1,0),A(√3,−2,0),P(0,0,√3), 所以PM →=(√3,0,−√3),OP →=(0,1,√3),OB →=(−√3,1,0),设平面P AB 的一个法向量为m →=(x ,y ,z), 则{m →⋅OP →=0m →⋅OB →=0,所以{y +√3z =0−√3x +y =0, 令x =1,则y =√3,z =﹣1,所以m →=(1,√3,−1), 设直线PM 与平面P AB 的所成角为θ, 所以sinθ=|cos〈PM →,m →〉|=3+36×5=√105,故直线PM 与平面P AB 所成角的正弦值为√105. 22.(12分)已知函数f(x)=1+lnxx. (1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的实数,且ae b ﹣be a =e a ﹣e b ,证明:e a +e b >2. 解:(1)由f(x)=1+lnx x 得,f ′(x)=−lnxx2, 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0. 故f (x )的递增区间为(0,1),递减区间为(1,+∞). (2)将ae b ﹣be a =e a ﹣e b 变形为a+1e a=b+1e b .令e a =m ,e b =n ,则上式变为1+lnm m=1+lnnn,即有f (m )=f (n ),于是命题转换为证明:m +n >2.不妨设m <n ,由(1)知0<m <1,n >1. 要证m +n >2,即证n >2﹣m >1,由于f (x )在(1,+∞)上单调递减,故即证f (n )<f (2﹣m ), 由于f (m )=f (n ),故即证f (m )<f (2﹣m ), 即证f (m )﹣f (2﹣m )<0在0<m <1上恒成立. 令g (x )=f (x )﹣f (2﹣x ),x ∈(0,1),则g ′(x)=f ′(x)+f ′(2−x)=−lnx x 2−ln(2−x)(2−x)2=−(2−x)2lnx+x 2ln(2−x)x 2(2−x)2, =−(4−4x+x 2)lnx+x 2ln(2−x)x 2(2−x)2=−(4−4x)lnx+x 2ln[(2−x)x]x 2(2−x)2≥0,所以g (x )在区间(0,1)内单调递增, 所以g (x )<g (1)=0,即m +n >2成立. 所以e a +e b >2.。
2023-2024学年山东省聊城市高三(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x|0<x <5},B ={x|x+1x−4≤0},则A ∩B =( ) A .[﹣1,4]B .[﹣1,5)C .(0,4]D .(0,4)2.在平面直角坐标系xOy 中,已知角α的始边是x 轴的非负半轴,终边经过点P (﹣1,2),则cos (π﹣α)=( )A .√55B .2√55C .−√55D .−2√553.设复数z 满足2z +z =3+i ,则z i=( ) A .1+iB .1﹣iC .﹣1+iD .﹣1﹣i4.定义在R 上的函数f (x ),满足f (x )=f (﹣x ),且在(﹣∞,0]为增函数,则( ) A .f(cos2023π)<f(log120232022)<f(212023)B .f(212023)<f(cos2023π)<f(log 120232022) C .f(212023)<f(log 120232022)<f(cos2023π)D .f(log 120232022)<f(cos2023π)<f(212023)5.已知命题p :∃x ∈[1,4],log 12x <2x +a ,则p 为假命题的一个充分不必要条件是( )A .a >﹣1B .a >﹣11C .a <﹣1D .a <﹣116.函数f(x)=sin(2x +π6)向右平移m (m >0)个单位后,所得函数g (x )是偶函数,则m 的最小值是( ) A .−π6B .π6C .π3D .2π37.已知x >0,y >0,且x +2y =1,则3x +9y 的最小值为( ) A .2√3B .3√2C .3√3D .2√28.已知0<α<π2,2sin β﹣cos α=1,sinα+2cosβ=√3,则cos(α+π3)=( ) A .14B .−14C .13D .−13二、多项选择题:本题共4小题,每小题5分,共20分。
高三数学上期中一模试卷(含答案)一、选择题1.下列命题正确的是 A .若 a >b,则a 2>b 2 B .若a >b ,则 ac >bc C .若a >b ,则a 3>b 3D .若a>b ,则1a <1b2.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20473.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-4.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( )A.12B .10C .D .5.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( )A .5B .25C D .6.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .137.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .1408.已知数列{a n } 满足a 1=1,且111()(233n n n a a n -=+≥,且n ∈N*),则数列{a n }的通项公式为( )A .32nn a n =+B .23n nn a +=C .a n =n+2D .a n =( n+2)·3n9.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12B .12-C .14D .14-10.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6611.已知0,0x y >>,且91x y +=,则11x y+的最小值是A .10B .12?C .14D .1612.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知274sincos 222A B C +-=,且5,7a b c +==,则ab 为 .14.设0,0,25x y x y >>+=,则xy的最小值为______.15.设不等式组30,{230,1x y x y x +-<--≤≥表示的平面区域为1Ω,平面区域2Ω与1Ω关于直线20x y +=对称,对于任意的12,C D ∈Ω∈Ω,则CD 的最小值为__________.16.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____.17.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,5cos2C =,且cos cos 2a B b A +=,则ABC ∆面积的最大值为 .18.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.19.已知数列是各项均不为的等差数列,为其前项和,且满足()221n n a S n *-=∈N.若不等式()()11181nn n n a nλ++-+⋅-≤对任意的n *∈N 恒成立,则实数的取值范围是 .20.已知实数x ,y 满足约束条件20x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩,若2z x y =+的最小值为3,则实数b =____ 三、解答题21.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD .其中AB =3百米,AD 5是以D 为直角顶点的等腰直角三角形.拟修建两条小路AC ,BD (路的宽度忽略不计),设∠BAD=θ,θ∈(2π,π).(1)当cos θ=5AC 的长度; (2)当草坪ABCD 的面积最大时,求此时小路BD 的长度. 22.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式;(2)设数列{}n n a b +是首项为1,公比为2的等比数列,求{}n b 的前n 项和n S . 23.数列{}n a 中,11a =,121n n a a n +=++. (1)求{}n a 的通项公式; (2)设141n n b a =-,求出数列{}n b 的前n 项和.24.已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n n n a c b ++=+.求数列{}n c 的前n 项和n T . 25.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .26.已知等比数列{}n a 的各项均为正数,234848a a a =+=,.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设4log .n n b a =证明:{}n b 为等差数列,并求{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】对于A ,若1a =,1b =-,则A 不成立;对于B ,若0c =,则B 不成立;对于C ,若a b >,则33a b >,则C 正确;对于D ,2a =,1b =-,则D 不成立.故选C2.C解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.3.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.4.A解析:A 【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.5.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得42c =. 由余弦定理可得:()222222142214252b ac accosB =+-=+-⨯⨯⨯=. 6.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.7.B解析:B 【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x x =.所以1n a n n =++,所以11nn n a =+-,故1121n S n n n n =+-+--++-L 11n =+-,由1110n S n =+-=解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.8.B解析:B 【解析】试题分析:由题可知,将111()(233n n n a a n -=+≥,两边同时除以,得出,运用累加法,解得,整理得23n n n a +=; 考点:累加法求数列通项公式9.C解析:C 【解析】试题分析:由21,,n n n S S S ++成等差数列可得,212n n n n S S S S +++-=-,即122n n n a a a ++++=-,也就是2112n n a a ++=-,所以等比数列{}n a 的公比12q =-,从而2231111()24a a q ==⨯-=,故选C.考点:1.等差数列的定义;2.等比数列的通项公式及其前n 项和.10.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.11.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1,∴()111199911016y x x y x y x y x y ⎛⎫+=+⋅+=+++≥+= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.12.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.6【解析】试题分析:即解得所以在中考点:1诱导公式余弦二倍角公式;2余弦定理解析:6 【解析】 试题分析:274sincos 222A B C +-=Q ,274sin cos 222C C π-∴-=,274cos cos 222C C ∴-=,()72cos 1cos 22C C ∴+-=,24cos 4cos 10C C ∴-+=,即()22cos 11C -=,解得1cos 2C =. 所以在ABC ∆中60C =o .2222cos c a b ab C =+-Q ,()2222cos60c a b ab ab ∴=+--o,()223ca b ab ∴=+-,()22257633a b c ab +--∴===.考点:1诱导公式,余弦二倍角公式;2余弦定理.14.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立解析:【解析】 【分析】把分子展开化为26xy +,再利用基本不等式求最值. 【详解】=Q0,0,25,0,x y x y xy >>+=>∴Q22343xyxy xy⋅≥=, 当且仅当3xy =,即3,1x y ==时成立, 故所求的最小值为43. 【点睛】使用基本不等式求最值时一定要验证等号是否能够成立.15.【解析】作出不等式组所表示的可行域如图阴影部分由三角形ABC 构成其中作出直线显然点A 到直线的距离最近由其几何意义知区域内的点最短距离为点A 到直线的距离的2倍由点到直线的距离公式有:所以区域内的点与区 解析:25【解析】作出不等式组所表示的可行域1Ω ,如图阴影部分,由三角形ABC 构成,其中(11),(30),(12)A B C -,,, ,作出直线20x y += ,显然点A 到直线20x y +=的距离最近,由其几何意义知,区域12,ΩΩ 内的点最短距离为点A 到直线20x y +=的距离的2倍,由点到直线的距离公式有:2221521d -==+ ,所以区域1Ω 内的点与区域2Ω 内的点之间的最近距离为25,即255CD = .点睛:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题. 巧妙识别目标函数的几何意义是解答本题的关键.16.(﹣∞﹣6∪6+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1ab=1即c=-b 将转为(a ﹣b )+利用基本不等式求得它的范围【详解】因为一元二次不等式a x2+2x+b >0的解集为{x|x解析:(﹣∞,﹣6]∪[6,+∞)【解析】 【分析】由条件利用二次函数的性质可得ac=﹣1,ab=1, 即c=-b 将227a b a c +++转为(a ﹣b )+9a b -,利用基本不等式求得它的范围. 【详解】因为一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},由二次函数图像的性质可得a >0,二次函数的对称轴为x=1a-=c ,△=4﹣4ab=0, ∴ac=﹣1,ab=1,∴c=1a-,b=1a ,即c=-b,则227a b a c +++=()29a b a b-+-=(a ﹣b )+9a b -,当a ﹣b >0时,由基本不等式求得(a ﹣b )+9a b-≥6, 当a ﹣b <0时,由基本不等式求得﹣(a ﹣b )﹣9a b -≥6,即(a ﹣b )+9a b-≤﹣6, 故227a b a c+++(其中a+c≠0)的取值范围为:(﹣∞,﹣6]∪[6,+∞),故答案为(﹣∞,﹣6]∪[6,+∞). 【点睛】本题主要考查二次函数图像的性质,考查利用基本不等式求最值.17.【解析】试题分析:外接圆直径为由图可知当在垂直平分线上时面积取得最大值设高则由相交弦定理有解得故最大面积为考点:解三角形【思路点晴】本题主要考查解三角形三角函数恒等变换二倍角公式正弦定理化归与转化的【解析】试题分析:cos23C =,21cos 2cos 129C C =-=,sin 9C =,cos cos 2a B b A c +==,外接圆直径为2sin 10c R C ==,由图可知,当C 在AB 垂直平分线上时,面积取得最大值.设高CE x =,则由相交弦定理有1x x ⎫-=⎪⎪⎝⎭,解得x =122S =⋅=.考点:解三角形.【思路点晴】本题主要考查解三角形、三角函数恒等变换、二倍角公式、正弦定理,化归与转化的数学思想方法,数形结合的数学思想方法.一开始题目给了C 的半角的余弦值,我们由二倍角公式可以求出单倍角的余弦值和正弦值.第二个条件cos cos 2a B b A +=我们结合图像,很容易知道这就是2c =.三角形一边和对角是固定的,也就是外接圆是固定的,所以面积最大也就是高最大,在圆上利用相交弦定理就可以求出高了.18.【解析】【分析】利用可求得;利用可证得数列为等比数列从而得到进而得到;利用可得到关于的不等式解不等式求得的取值范围根据求得结果【详解】当时解得:当且时即:数列是以为首项为公比的等比数列解得:又或满足 解析:{5,6}【解析】 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n n a -=,进而得到n b ;利用10n n b b +-<可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==- 11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n n n n a S S a a --\=-=-,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列 12n n a -\=2920n n a b n n =-+-Q 219202n n n n b --+-∴=()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >Q ()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N 5n ∴=或6∴满足条件的n 的取值集合为{}5,6本题正确结果:{}5,6 【点睛】本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识;关键是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果.19.【解析】试题分析:由题意则当为偶数时由不等式得即是增函数当时取得最小值所以当为奇数时函数当时取得最小值为即所以综上的取值范围是考点:数列的通项公式数列与不等式恒成立的综合问题解析:77,153⎡⎤--⎢⎥⎣⎦【解析】试题分析:由题意,则, 当为偶数时由不等式()()11181nn n n a nλ++-+⋅-≤得821n n n λ-≤+,即(8)(21)n n nλ-+≤, (8)(21)8215n n y n n n-+==--是增函数,当2n =时取得最小值15-,所以15;λ≤-当为奇数时,(8)(21)8217n n n n n λ++-≤=++,函数8217y n n=++,当3n =时取得最小值为773,即77,3λ-≤所以773λ≥-,综上, 的取值范围是77,153⎡⎤--⎢⎥⎣⎦. 考点:数列的通项公式,数列与不等式恒成立的综合问题.20.【解析】【分析】画出可行域由图象可知的最小值在直线与直线的交点处取得由解方程即可得结果【详解】由已知作可行域如图所示化为平移直线由图象可知的最小值在直线与直线的交点处取得由解得故答案为【点睛】本题主 解析:94【解析】 【分析】画出可行域,由图象可知,z 的最小值在直线2y x =与直线y x b =-+的交点()00,A x y处取得,由000000232y x y x y x b=-+⎧⎪=⎨⎪=-+⎩,解方程即可得结果.【详解】由已知作可行域如图所示,2z x y =+化为2y x z =-+,平移直线2y x z =-+由图象可知,z 的最小值在直线2y x =与直线y x b =-+的交点()00,A x y 处取得,由000000232y x y x y x b=-+⎧⎪=⎨⎪=-+⎩,解得00339,,424x y b ===,故答案为94. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于中档题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.三、解答题21.(1)37AC =2)26BD =【解析】 【分析】(1)在△ABD 中,由余弦定理可求BD 的值,利用同角三角函数基本关系式可求sinθ,根据正弦定理可求sin∠ADB 35=,进而可求cos∠ADC 的值,在△ACD 中,利用余弦定理可求AC 的值.(2)由(1)得:BD 2=14﹣可求.S ABCD =7152+sin (θ﹣φ),结合题意当θ﹣φ2π=时,四边形ABCD 的面积最大,即θ=φ2π+,此时cosφ=,sinφ=,从而可求BD 的值.【详解】(1)在ABD ∆中,由2222cos BD AB AD AB AD θ=+-⋅,得214BD θ=-,又cos 5θ=-,∴BD =∵,2πθπ⎛⎫∈ ⎪⎝⎭ ∴sin θ===由sin sin BD AB BAD ADB =∠∠3sinADB =∠,解得:3sin 5ADB ∠=,∵BCD ∆是以D 为直角顶点的等腰直角三角形 ∴2CDB π∠=且CD BD ==∴3cos cos sin 25ADC ADB ADB π⎛⎫∠=∠+=-∠=- ⎪⎝⎭ 在ACD ∆中,2222cos AC AD DC AD DC ADC =+-⋅∠(2232375⎛⎫=+--= ⎪⎝⎭,解得:AC =(2)由(1)得:214BD θ=-,2113sin 22ABCD ABD BCD S S S BD θ∆∆=+=⨯+⨯ 7sin 2θθ=+⨯-)()157sin 2cos 7sin22θθθφ=+-=+-,此时sin φ=cos φ=,且0,2πφ⎛⎫∈ ⎪⎝⎭当2πθφ-=时,四边形ABCD 的面积最大,即2πθφ=+,此时sin θ=,cosθ=∴2141426BD θ⎛=-=-= ⎝,即BD =答:当cos 5θ=-时,小路AC 百米;草坪ABCD 的面积最大时,小路BD【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,三角形面积公式,三角函数恒等变换的应用以及正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.22.(1)32n a n =-+(2)n S 23212n n n-=+-【解析】 【分析】(1)依题意()()382726a a a a d +-+==-,从而3d =-.由此能求出数列{}n a 的通项公式;(2)由数列{}n n a b +是首项为1,公比为2的等比数列,求出112322n n n n b a n --=-=-+,再分组求和即可.【详解】(1)设等差数列{}n a 的公差是d . 由已知()()382726a a a a d +-+==-, ∴3d =-,∴2712723a a a d +=+=-, 得 11a =-,∴数列{}n a 的通项公式为32n a n =-+.(2)由数列{}n n a b +是首项为1,公比为2的等比数列,∴12n n n a b -+=,∴112322n n n n b a n --=-=-+,∴()()21147321222n n S n -=+++⋅⋅⋅+-++++⋅⋅⋅+⎡⎤⎣⎦()31212nn n -=+-, 23212n n n -=+-.【点睛】本题考查数列的通项公式和前n 项和公式的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.23.(1)2n a n =;(2)21nn +. 【解析】 【分析】(1)直接根据累加法即可求得数列{}n a 的通项公式; (2)利用裂项相加即可得出数列{}n b 的前n 项和。
菏泽市2024—2025学年度第一学期期中考试高三数学试题(答案在最后)本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}202,0M x x N x x x =∈<<=-≤Z ∣∣,则M N = ()A.{}0,1 B.{}1 C.{}1,1- D.∅2.已知函数()21f x +的定义域为[]1,2,则函数()1f x -的定义域为()A.[]1,2B.[]4,6 C.[]5,9 D.[]3,73.已知2025π1sin sin 22αα⎛⎫-+=⎪⎝⎭,则cos2sin cos ααα=+()A.12-B.12C.0D.14.“函数()32f x x ax =-在[]2,3-上单调递增”是“3a ≤”的()A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分又不必要条件5.过曲线9log =y x 上一点A 作平行于两坐标轴的直线,分别交曲线3log y x =于点,B C ,若直线BC 过原点,则其斜率为()A.1B.3log 22C.ln33D.2log 366.函数()11ln sin 21x f x x x+=--的零点个数为()A.1B.0C.3D.27.自然界中许多流体是牛顿流体,其中水、酒精等大多数纯液体、轻质油、低分子化合物溶液以及低速流动的气体等均为牛顿流体;高分子聚合物的浓溶液和悬浮液等一般为非牛顿流体,非牛顿流体在实际生活和生产中有很多广泛的应用,如工业制造业常利用某些高分子聚合物做成“液体防弹衣”,已知牛顿流体符合牛顿黏性定律,即在一定温度和剪切速率范围内黏度值是保持恒定的:τηγ=,其中τ为剪切应力,η为黏度,γ为剪切速率;而当液体的剪切应力和剪切速率存在非线性关系时液体就称为非牛顿流体.其中宾汉流体(也叫塑性流体),是一种粘塑性材料,是非牛顿流体中比较特殊的一种,其在低应力下表现为刚体,但在高应力下表现为粘性流体(即粘度恒定),以牙膏为例,当我们挤压它的力较小时,它就表现为固体,而当力达到一个临界值,它就会变成流体,从开口流出.如图是测得的某几种液体的流变τγ-曲线,则其中属于牙膏和液体防弹衣所用液体的曲线分别是()A.①和④B.③和④C.③和②D.①和②8.已知函数()()1e xf x x =-,点(),m n 在曲线()y f x =上,则()()f m f n -()A.有最大值为1e-,最小值为1 B.有最大值为0,最小值为1e-C.有最大值为0,无最小值D.无最大值,有最小值为1e-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知0c b a <<<,则()A.ac bc <B.333b c a +< C.a c ab c b+>+D.<10.已知函数()21,2,5,2x x f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则()A.1a ≤- B.[]1,4c ∈ C.()20,5ad ∈ D.222a b +=11.把一个三阶魔方看成是棱长为1的正方体,若顶层旋转x 弧度π02x ⎛⎫<<⎪⎝⎭,记表面积增加量为()S f x =,则()A.π663f ⎛⎫=⎪⎝⎭B.()f x 的图象关于直线π3x =对称C.S 呈周期变化D.6S ≤-三、填空题:本题共3小题,每小题5分,共15分.12.命题:“所有能被4整除的正整数能被2整除”的否定是______.13.已知函数()sin2cos2f x x a x =+,将()f x 的图象向左平移π6个单位长度,所得图象与曲线()y f x =关于原点对称,则()0f =______.14.已知22,e x ⎡⎤∈⎣⎦时,2log 2axx x ax ≥⋅,则正数a 的最大值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.15.记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知πsin sin ,63C C b ⎛⎫+== ⎪⎝⎭,ABC V的面积为.(1)求C ;(2)求ABC V 的周长.16.已知函数()π2sin 43⎛⎫=- ⎪⎝⎭f x x .(1)求()f x 的单调递减区间;(2)若ππ,68x ⎡⎤∈-⎢⎣⎦,求()()23-=+f x y f x 的最大值.17.记锐角ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos 2cos cos c CA b B-=.(1)求B ;(2)延长AC 到D ,使2,15AC CD CBD =∠= ,求tan A .18.已知函数()()2e xf x x a =-.(1)求()f x 的单调区间;(2)设12,x x 分别为()f x 的极大值点和极小值点,记()()()()1122,,,A x f x B x f x .证明:直线AB 与曲线()y f x =交于另一点C .19.已知函数()()sin tan sin 2f x x x x =+-,其中01x <<,(1)证明:21cos 12x x >-;(2)探究()f x 是否有最小值,如果有,请求出来;如果没有,请说明理由.菏泽市2024—2025学年度第一学期期中考试高三数学试题本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ABD 【10题答案】【答案】BCD 【11题答案】【答案】AD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】存在能被4整除的正整数不能被2整除【13题答案】【答案】3-【14题答案】【答案】222log e e 四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.【15题答案】【答案】(1)π3C =(2)10+【16题答案】【答案】(1)π5ππ11π,224224k k ⎡⎤++⎢⎣⎦,()k ∈Z (2)0【17题答案】【答案】(1)45B =(2)2+【18题答案】【答案】(1)单调增区间为()(),2,,a a ∞∞--+,单调减区间为(2,)a a -(2)证明见解析【19题答案】【答案】(1)证明见解析(2)没有,理由见解析。
新高三数学上期中一模试卷附答案一、选择题1.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形 2.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭3.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( ) A .63B .233C .433D .433-4.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .35.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .1406.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310C .12D .7107.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B 相距6013km ,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .3km8.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-9.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6610.设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016·(a 2 013-1)=-1,则下列结论正确的是( ) A .S 2 016=-2 016,a 2 013>a 4 B .S 2 016=2 016,a 2 013>a 4 C .S 2 016=-2 016,a 2 013<a 4 D .S 2 016=2 016,a 2 013<a 411.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --<D .log log c b a a <12.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-二、填空题13.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 14.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.15.在ABC V 中,角A B C ,,所对的边分别为,,a b c ,且满足222sin sin sin sin sin A B C A B +=+,若ABC V 的面积为3,则ab =__16.已知实数,x y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为____.17.已知ABC ∆的内角,,A B C 的对边分别为,,a b c .若1c =,ABC ∆的面积为2214a b +-,则ABC ∆面积的最大值为_____. 18.已知三角形中,边上的高与边长相等,则的最大值是__________.19.若原点和点(1,2019)-在直线0x y a -+=的同侧,则a 的取值范围是________(用集合表示).20.在△ABC 中,2BC =,7AC =3B π=,则AB =______;△ABC 的面积是______.三、解答题21.已知等比数列{}n a 的公比1q >,且满足:23428a a a ++=,且32a +是24,a a 的等差中项.(1)求数列{}n a 的通项公式; (2)若1122log ,n n n n n b a a S b b b ==+++L ,求使1·262n nS n ++>成立的正整数n 的最小值.22.已知,,a b c 分别是ABC △的角,,A B C 所对的边,且222,4c a b ab =+-=. (1)求角C ;(2)若22sin sin sin (2sin 2sin )B A C A C -=-,求ABC △的面积.23.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式;(2)设13,n n n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .24.D 为ABC V 的边BC 的中点.222AB AC AD ===. (1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V .25.已知在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin cos 0a B b A -=. (1)求角A 的大小:(2)若25a =,2b =.求ABC V 的面积. 26.围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元).(Ⅰ)将y 表示为x 的函数;(Ⅱ)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.2.D解析:D 【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .3.D解析:D 【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据韦达定理,可得:2123x x a =,x 1+x 2=4a ,那么:1212a x x x x ++=4a +13a. ∵a <0, ∴-(4a +13a )143a a ⨯43,即4a +13a ≤43故1212a x x x x ++的最大值为43. 故选D .点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.4.D解析:D 【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故max 303z =+=,故选D .点睛:本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.5.B解析:B 【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x x =所以1n a n n =+11nn n a =+1121n S n n n n =+-L 11n =+,由1110n S n =+=解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.6.B解析:B 【解析】试题分析: 如下图:由已知,在ABC ∆中,105,45,56ABC ACB BC ∠=∠==o o ,从而可得:30BAC ∠=o 由正弦定理,得:56sin 45AB =o , 103AB ∴=,那么在Rt ADB ∆中,60ABD o ∠=,3sin 60103152AD AB ∴==⨯=o , 即旗杆高度为15米,由3155010÷=,知:升旗手升旗的速度应为310(米 /秒). 故选B .考点:解三角形在实际问题中的应用.7.D解析:D 【解析】 【分析】先判断三角形DAB 为直角三角形,求出BD ,然后推出CBD ∠为直角,可得CD ,进一步可得cos BDF ∠,最后在三角形EDB 中用余弦定理可得BF .【详解】取AB 的中点E ,连DE ,设飞机飞行了15分钟到达F 点,连BF ,如图所示:则BF 即为所求.因为E 为AB 的中点,且120AB km =,所以60AE km =, 又60DAE ∠=o ,60AD km =,所以三角形DAE 为等边三角形,所以60DE km =,60ADE ∠=o ,在等腰三角形EDB 中,120DEB ∠=o ,所以30EDB EBD ∠=∠=o , 所以90ADB ∠=o ,由勾股定理得2BD 22221206010800AB AD =-=-=,所以BD =,因为9030CBE ∠=+o o 120=o ,30EBD ∠=o ,所以CBD ∠90=o ,所以240CD ===km ,所以cos BD BDC CD ∠===, 因为1360904DF km =⨯=, 所以在三角形BDF 中,222222cos 902904BF BD DF BD DF BDF =+-⋅⋅∠=+-⨯⨯g 10800=,所以BF =km .故一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B有. 故选D . 【点睛】本题考查了利用余弦定理解斜三角形,属于中档题.8.C解析:C 【解析】很明显等比数列的公比1q ≠,由题意可得:()231113S a q q =++=,①且:()21322a a a +=+,即()211122a q a a q +=+,②①②联立可得:113a q =⎧⎨=⎩或1913a q =⎧⎪⎨=⎪⎩,综上可得:公比q =3或13. 本题选择C 选项.9.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=,所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.10.D解析:D 【解析】∵(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016(a 2 013-1)=-1, ∴(a 4-1)3+2 016(a 4-1)+(a 2 013-1)3+2 016(a 2 013-1)=0, 设a 4-1=m ,a 2 013-1=n , 则m 3+2 016m +n 3+2 016n =0, 化为(m +n )·(m 2+n 2-mn +2 016)=0, ∵2222132?0162016024m n mn m n n ⎛⎫=-++> ⎪⎝⎭+-+,∴m +n =a 4-1+a 2 013-1=0, ∴a 4+a 2 013=2,∴()()1201642013201620162016201622a a a a S ++===.很明显a 4-1>0,a 2 013-1<0,∴a 4>1>a 2 013, 本题选择D 选项.11.D解析:D 【解析】 【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.12.A解析:A 【解析】 【分析】 将代数式21x y+与2x y +相乘,展开式利用基本不等式求出2x y +的最小值8,将问题转化为解不等式()2min 72m m x y +<+,解出即可. 【详解】由基本不等式得()21422448y x x y x y x y x y ⎛⎫+=++=++≥= ⎪⎝⎭,当且仅当()4,0y xx y x y=>,即当2x y =时,等号成立,所以,2x y +的最小值为8. 由题意可得()2min 728m m x y +<+=,即2780m m +-<,解得81m -<<. 因此,实数m 的取值范围是(8,1)-,故选A. 【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.二、填空题13.4【解析】已知等式利用正弦定理化简得:可得可解得余弦定理可得可解得故答案为解析:4 【解析】已知等式2sin sin B A sinC =+,利用正弦定理化简得:2b a c =+,3cos ,5B =∴Q 可得4sin 5B ==,114sin 6225ABC S ac B ac ∆∴==⨯=,可解得15ac =,∴余弦定理可得,2222cos b a c ac B =+-()()221cos a c ac B =+-+=23421515b ⎛⎫-⨯⨯+ ⎪⎝⎭,∴可解得4b =,故答案为4.14.【解析】【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题解析:1,2⎛⎫+∞ ⎪⎝⎭【解析】 【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果 【详解】因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩ 【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.15.4【解析】【分析】由正弦定理化简已知等式可得由余弦定理可得根据同角三角函数基本关系式可得进而利用三角形面积公式即可计算得解【详解】由正弦定理可得即:由余弦定理可得可得的面积为可得解得故答案为4【点睛解析:4 【解析】 【分析】由正弦定理化简已知等式可得222a b c ab +-=,由余弦定理可得cos C ,根据同角三角函数基本关系式可得sin C ,进而利用三角形面积公式即可计算得解. 【详解】222sin sin sin sin sin A B C A B +=+Q ,∴由正弦定理可得,222ab c a b +=+,即:222a b c ab +-=,∴由余弦定理可得,2221cos 222a b c ab C ab ab +-===,可得sin C ==,ABC QV 1sin 24ab C ab ==,∴解得4ab =,故答案为4. 【点睛】本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用,属于中档题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.16.5【解析】【分析】作出不等式组对应的平面区域利用数形结合即可得到z 的最大值【详解】作出实数xy 满足对应的平面区域如图:由z =2x+y 得y =﹣2x+z 平移直线y =﹣2x+z 由图象可知当直线y =﹣2x+解析:5 【解析】【分析】作出不等式组对应的平面区域,利用数形结合即可得到z 的最大值. 【详解】作出实数x ,y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩对应的平面区域,如图:由z =2x +y 得y =﹣2x +z ,平移直线y =﹣2x +z 由图象可知当直线y =﹣2x +z 经过点A 时,直线y =﹣2x +z 的截距最大.又x 10y --=与20x y -=联立得A (2,1) 此时z 最大,此时z 的最大值为z =2×2+1=5, 故答案为5. 【点睛】本题主要考查线性规划的应用,考查了z 的几何意义,利用数形结合是解决本题的关键.17.【解析】【分析】结合已知条件结合余弦定理求得然后利用基本不等式求得的最大值进而求得三角形面积的最大值【详解】由于三角形面积①由余弦定理得②由①②得由于所以故化简得故化简得所以三角形面积故答案为【点睛 解析:214【解析】 【分析】结合已知条件,结合余弦定理求得π4C =,然后利用基本不等式求得ab 的最大值,进而求得三角形ABC 面积的最大值. 【详解】由于三角形面积2211sin 24a b S ab C +-==①,由余弦定理得221cos 2a b C ab +-=②,由①②得sin cos C C =,由于()0,πC ∈,所以π4C =.故2212cos 22a b C ab +-==,化简得2221ab a b =+-,故222121ab a b ab =+-≥-,化简得222ab +≤.所以三角形面积1122221sin 22S ab C ++=≤⨯⨯=. 故答案为21+. 【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值的方法,属于中档题.18.22【解析】试题分析:由题意得12bcsinA=12a2⇒bcsinA=a2因此ACAB+ABAC+BC2AB ⋅AC=bc+cb+a2bc=b2+c2+a2bc=a2+2bccosA+a2bc=2c 解析:【解析】试题分析:由题意得,因此,从而所求最大值是考点:正余弦定理、面积公式【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.19.或【解析】【分析】根据同侧同号列不等式解得结果【详解】因为原点和点在直线的同侧所以或即的取值范围是或【点睛】本题考查二元一次不等式区域问题考查基本应用求解能力属基本题解析:{|2020a a >或0}a < 【解析】 【分析】根据同侧同号列不等式,解得结果. 【详解】因为原点和点()1,2019-在直线0x y a -+=的同侧,所以(00)(12019)02020a a a -+--+>∴>或0a <,即a 的取值范围是{2020a a 或0}.a <【点睛】本题考查二元一次不等式区域问题,考查基本应用求解能力.属基本题.20.;【解析】试题分析:由余弦定理得即得考点:余弦定理三角形面积公式解析:【解析】试题分析:由余弦定理得22202cos60AC AB BC AB BC =+-⋅,即2174222AB AB =+-⋅⋅,得2230AB AB --=,31()AB ∴=-或舍,011sin 60322222S AB BC =⋅=⨯⨯⨯=考点:余弦定理,三角形面积公式. 三、解答题21.(1)2nn a =;(2)6.【解析】试题分析:(1)求等比数列的通项公式,关键是求出首项和公比,这可直接用首项1a 和公比q 表示出已知并解出即可(可先把已知化简后再代入);(2)求出n b 的表达式后,要求其前n 项和,需用错位相减法.然后求解不等式可得最小值. 试题解析:(1)∵32a +是24,a a 的等差中项,∴()32422a a a +=+, 代入23428a a a ++=,可得38a =,∴2420a a +=,∴212118{20a q a q a q =+=,解之得122a q =⎧⎨=⎩或132{12a q ==,∵1q >,∴122a q =⎧⎨=⎩,∴数列{}n a 的通项公式为2nn a =(2)∵1122log 2log 2?2n n nn n n b a a n ===-,∴()21222?2n n S n =-⨯+⨯++L ,...............①()23121222?2?2nn S n n +=-⨯+⨯+++L ,.............②②—①得()2311112122222?2?222?212nn n n n n nS n n n ++++-=+++-=-=---L∵1·262n n S n ++>,∴12262n +->,∴16,5n n +>>,∴使1·262n n S n ++>成立的正整数n 的最小值为6 考点:等比数列的通项公式,错位相减法.22.(1)3C π=(2 【解析】试题分析:(1)由余弦定理得cos C 值,再根据三角形内角范围求角C ;(2)由正弦定理将条件化为边的关系:2224cos b c a ac A +-=,再根据余弦定理得2a b =,代人解得a =,b =2c =,由勾股定理得2B π=,最后根据直角三角形面积公式得ABC V 的面积.试题解析:解:(1)由余弦定理,得222cos 2a b c C ab +-== 22221222a b ab ab ab +-==,又()0,C π∈,所以3C π=.(2)由()22sin sin sin 2sin2sin B A C A C -=-, 得222sin sin sin 2sin2sin B C A A C +-=, 得222sin sin sin 4sin cos sin B C A A A C +-=,再由正弦定理得2224cos b c a ac A +-=,所以222cos 4b c a A ac+-=.①又由余弦定理,得222cos 2b c a A bc+-=,②由①②,得22222242b c a b c a bc bc+-+-=,得42ac bc =,得2a b =,联立2242a b ab b a ⎧+-=⎨=⎩,得3a =,3b =.所以222b a c =+.所以2B π=.所以ABC V 的面积11222S ac ===23.(1) 21n a n =- (2) m 的最小值为30. 【解析】试题分析:第一问根据条件中数列为等差数列,设出等差数列的首项和公差,根据题中的条件,建立关于等差数列的首项和公差的等量关系式,从而求得结果,利用等差数列的通项公式求得数列的通项公式,第二问利用第一问的结果,先写出()()3311212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,利用裂项相消法求得数列{}n b 的前n 项和,根据条件,得出相应的不等式,转化为最值来处理,从而求得结果.试题解析:(1)因为{}n a 为等差数列,设{}n a 的首项为1a ,公差为d ()0d ≠,所以 112141,2,46S a S a d S a d ==+=+.又因为124,,S S S 成等比数列,所以()()2111462a a d a d ⋅+=+.所以212a d d =.因为公差d 不等于0,所以12d a =.又因为24S =,所以1a 1,d 2==,所以21n a n =-.(2)因为()()3311212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以311111123352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭L 31312212n T n ⎛⎫=-< ⎪+⎝⎭. 要使20n m T <对所有n N *∈都成立,则有3202m ≥,即30m ≥.因为m N *∈,所以m 的最小值为30.考点:等差数列,裂项相消法求和,恒成立问题.24.(1)=BC 2)20【解析】 【分析】(1)由题意知21AB AC AD ===,.设BD DC m ==,在ADB △与ADC V 中,由余弦定理即可解得m 的值.(2)在ACE △与BCE V 中,由正弦定理,角平分线的性质可得6AE AC BE BC ==.可求BE =,215AE =().利用余弦定理可求cos BAC ∠的值,根据同角三角函数基本关系式可求sin BAC ∠的值,利用三角形的面积公式即可计算得解. 【详解】解:(1)由题意知21AB AC AD ===,.设BD DC m ==.在ADB V 与ADC V 中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.即:212cos 4m m ADB +-∠=,①212cos 1m m ADB ++∠=.②由①+②,得:232m =,所以m =BC = (2)在ACE V 与BCE V 中,由正弦定理得:,sin sin sin sin AE EC BE ECACE EAC BCE CBE==∠∠∠∠,由于ACE BCE ∠=∠,且sin sin BC ACBAC CBA=∠∠,所以AE AC BE BC ==所以BE =,所以215AE =().又222222121cos 22214AB AC BC BAC AB AC +-+-∠===-⋅⨯⨯,所以sin BAC ∠=,所以11211225ACE S AC AE sin BAC =⋅⋅∠=⨯⨯=V (). 【点睛】本题主要考查了余弦定理,正弦定理,角平分线的性质,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 25.(1)4A π=(2)4【解析】分析:(1)利用正弦定理化简已知等式,整理后根据sin 0B ≠求出sin cos 0A A -=,即可确定出A 的度数;(2)利用余弦定理列出关系式,把a ,b ,cosA 的值代入求出c 的值,再由b ,sinA 的值,利用三角形面积公式求出即可.详解:在ABC V 中,由正弦定理得sin sin sin cos 0A B B A -=. 即()sin sin cos 0B A A -=,又角B 为三角形内角,sin 0B ≠, 所以sin cos 0A A -=04A π⎛⎫-= ⎪⎝⎭, 又因为()0,A π∈,所以4A π=.(2)在ABC V 中,由余弦定理得:2222cos a b c bc A =+-⋅,则220442c c ⎛=+-⋅ ⎝⎭.即2160c -=.解得c =-c =所以12422S =⨯⨯=.·点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.26.(Ⅰ)y=225x+2360360(0)xx-〉n(Ⅱ)当x=24m时,修建围墙的总费用最小,最小总费用是10440元.【解析】试题分析:(1)设矩形的另一边长为am,则根据围建的矩形场地的面积为360m2,易得360ax=,此时再根据旧墙的维修费用为45元/m,新墙的造价为180元/m,我们即可得到修建围墙的总费用y表示成x的函数的解析式;(2)根据(1)中所得函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x值试题解析:(1)如图,设矩形的另一边长为a m则45x+180(x-2)+180·2a=225x+360a-360由已知xa=360,得a=,所以y=225x+(2).当且仅当225x=时,等号成立.即当x=24m时,修建围墙的总费用最小,最小总费用是10440元.考点:函数模型的选择与应用。