高等工程数学--矩阵的广义逆
- 格式:pptx
- 大小:1.14 MB
- 文档页数:66
广义逆矩阵
广义逆矩阵是指一个非奇异的复矩阵的逆矩阵,这种逆矩阵可以使得不同的矩阵进行运算。
广义逆矩阵可以分为两类:一类是经典矩阵,即特定的正交矩阵;另一类是非正交矩阵,即一般矩阵。
经典矩阵的广义逆矩阵可以用某种特殊的正交矩阵表示,这种正交矩阵是矩阵的逆,可以使任意矩阵进行运算。
此外,经典矩阵的广义逆矩阵也满足下列几个性质:(1)它是一个对称矩阵;(2)它是一个非奇异矩阵;(3)它的转置是它的逆;(4)它的乘法是广义乘法的结果;(5)它的乘积满足基本乘法定理。
非正交矩阵的广义逆矩阵也有一些和经典矩阵相似的特点:(1)它是一个对称矩阵;(2)它是一个非奇异矩阵;(3)它的转置是它的逆;(4)它的乘法是广义乘法的结果;(5)它的乘积满足基本乘法定理。
然而,经典矩阵和非正交矩阵的广义逆矩阵也有一些不同之处。
例如,非正交矩阵的广义逆矩阵可以使不可逆的矩阵变成可逆的矩阵,而经典矩阵的广义逆矩阵不能实现这一点。
此外,非正交矩阵的广义逆矩阵还具有长时间计算性质,而经典矩阵的广义逆矩阵则不具备这种性质。
上述介绍了广义逆矩阵的定义和特性。
可以看出,广义逆矩阵是一种可以使任意矩阵进行运算的矩阵,它具有很多性质,特别是可以使不可逆的矩阵变成可逆的矩阵,并具有长时间计算性质,所以广义逆矩阵在矩阵数学的应用中非常重要。
总的来说,广义逆矩阵是一种重要的矩阵,它可以使任何类型的矩阵进行计算,具有非常重要的应用价值。
如果我们能够更好地理解它的性质,也许我们就能更好地利用它来解决数学问题。
第八章矩阵的广义逆前言初等变换和标准形初等变换和标准形举例
§8.1 广义逆矩阵减号逆的概念
减号逆存在定理及求法减号逆存在定理及求法续
关于减号逆公式的注一个减号逆确定所有减号逆1减号逆的主要性质续减号逆的主要性质续
减号逆的主要性质续左逆与右逆的概念矩阵左逆与右逆的求法自反广义逆的概念
自反广义逆的存在与唯一性自反广义逆的唯一性自反广义逆与左(右)逆的关系用满秩分解求自反广义逆
自反广义逆的求法自反广义逆的求法续§8.2 伪逆矩阵
伪逆的存在性求伪逆举例
伪逆的唯一性
伪逆的性质
⎞
⎛−101求伪逆举例
§8.3 广义逆与线性方程组
一般矩阵方程有解的条件一般矩阵方程的通解
用减号逆求解相容线性方程组举例相容线性方程组的最小模解0130
−
相容方程组最小模解的充要条件
相容方程组最小模解的充要条件续
求相容方程组最小模解举例
Ax,即‖Ax-b‖>0.
不相容方程组的最小二乘解
R(A)
Ax 0
不相容方程组的最小二乘解举例用广义逆求最小二乘解定义8.3.2:线性方程组Ax=b 的一个最佳最小二乘
矩阵方程的最小二乘解。
求矩阵的广义逆例题简单
假设我们有一个2x2的矩阵A:
\[
A = \begin{bmatrix}
1 & 1 \\
1 & 1 \\
\end{bmatrix}
\]
我们可以计算出这个矩阵的行列式:
\[
\det(A) = |A| = 1(1) - 1(1) = 0
\]
因为行列式为0,所以矩阵A不可逆。
我们称这样的矩阵为奇异矩阵。
那么,矩阵A的广义逆是什么呢?广义逆是一个与方阵的逆相对应的概念,可以应用于任何一个矩阵。
在这个例子中,矩阵A的广义逆可以通过计算伪逆来获得:
\[
A^+ = \frac{1}{\det(A)} \cdot \text{adj}(A)
\]
其中,\(\text{adj}(A)\)表示矩阵A的伴随矩阵。
对于我们的例子,\(\text{adj}(A)\)可以计算如下:
\[
\text{adj}(A) = \begin{bmatrix}
1 & -1 \\
-1 & 1 \\
\end{bmatrix}
\]
然后,我们可以计算广义逆:
\[
A^+ = \frac{1}{\det(A)} \cdot \text{adj}(A) = \frac{1}{0} \cdot \begin{bmatrix}
1 & -1 \\
-1 & 1 \\
\end{bmatrix} = \text{undefined}
\]
由于行列式为0,我们的广义逆的计算结果是未定义的。
这也是为什么奇异矩阵没有逆矩阵或者广义逆的原因。