高等工程数学--矩阵的广义逆
- 格式:pptx
- 大小:1.14 MB
- 文档页数:66
广义逆矩阵
广义逆矩阵是指一个非奇异的复矩阵的逆矩阵,这种逆矩阵可以使得不同的矩阵进行运算。
广义逆矩阵可以分为两类:一类是经典矩阵,即特定的正交矩阵;另一类是非正交矩阵,即一般矩阵。
经典矩阵的广义逆矩阵可以用某种特殊的正交矩阵表示,这种正交矩阵是矩阵的逆,可以使任意矩阵进行运算。
此外,经典矩阵的广义逆矩阵也满足下列几个性质:(1)它是一个对称矩阵;(2)它是一个非奇异矩阵;(3)它的转置是它的逆;(4)它的乘法是广义乘法的结果;(5)它的乘积满足基本乘法定理。
非正交矩阵的广义逆矩阵也有一些和经典矩阵相似的特点:(1)它是一个对称矩阵;(2)它是一个非奇异矩阵;(3)它的转置是它的逆;(4)它的乘法是广义乘法的结果;(5)它的乘积满足基本乘法定理。
然而,经典矩阵和非正交矩阵的广义逆矩阵也有一些不同之处。
例如,非正交矩阵的广义逆矩阵可以使不可逆的矩阵变成可逆的矩阵,而经典矩阵的广义逆矩阵不能实现这一点。
此外,非正交矩阵的广义逆矩阵还具有长时间计算性质,而经典矩阵的广义逆矩阵则不具备这种性质。
上述介绍了广义逆矩阵的定义和特性。
可以看出,广义逆矩阵是一种可以使任意矩阵进行运算的矩阵,它具有很多性质,特别是可以使不可逆的矩阵变成可逆的矩阵,并具有长时间计算性质,所以广义逆矩阵在矩阵数学的应用中非常重要。
总的来说,广义逆矩阵是一种重要的矩阵,它可以使任何类型的矩阵进行计算,具有非常重要的应用价值。
如果我们能够更好地理解它的性质,也许我们就能更好地利用它来解决数学问题。
第八章矩阵的广义逆前言初等变换和标准形初等变换和标准形举例
§8.1 广义逆矩阵减号逆的概念
减号逆存在定理及求法减号逆存在定理及求法续
关于减号逆公式的注一个减号逆确定所有减号逆1减号逆的主要性质续减号逆的主要性质续
减号逆的主要性质续左逆与右逆的概念矩阵左逆与右逆的求法自反广义逆的概念
自反广义逆的存在与唯一性自反广义逆的唯一性自反广义逆与左(右)逆的关系用满秩分解求自反广义逆
自反广义逆的求法自反广义逆的求法续§8.2 伪逆矩阵
伪逆的存在性求伪逆举例
伪逆的唯一性
伪逆的性质
⎞
⎛−101求伪逆举例
§8.3 广义逆与线性方程组
一般矩阵方程有解的条件一般矩阵方程的通解
用减号逆求解相容线性方程组举例相容线性方程组的最小模解0130
−
相容方程组最小模解的充要条件
相容方程组最小模解的充要条件续
求相容方程组最小模解举例
Ax,即‖Ax-b‖>0.
不相容方程组的最小二乘解
R(A)
Ax 0
不相容方程组的最小二乘解举例用广义逆求最小二乘解定义8.3.2:线性方程组Ax=b 的一个最佳最小二乘
矩阵方程的最小二乘解。
求矩阵的广义逆例题简单
假设我们有一个2x2的矩阵A:
\[
A = \begin{bmatrix}
1 & 1 \\
1 & 1 \\
\end{bmatrix}
\]
我们可以计算出这个矩阵的行列式:
\[
\det(A) = |A| = 1(1) - 1(1) = 0
\]
因为行列式为0,所以矩阵A不可逆。
我们称这样的矩阵为奇异矩阵。
那么,矩阵A的广义逆是什么呢?广义逆是一个与方阵的逆相对应的概念,可以应用于任何一个矩阵。
在这个例子中,矩阵A的广义逆可以通过计算伪逆来获得:
\[
A^+ = \frac{1}{\det(A)} \cdot \text{adj}(A)
\]
其中,\(\text{adj}(A)\)表示矩阵A的伴随矩阵。
对于我们的例子,\(\text{adj}(A)\)可以计算如下:
\[
\text{adj}(A) = \begin{bmatrix}
1 & -1 \\
-1 & 1 \\
\end{bmatrix}
\]
然后,我们可以计算广义逆:
\[
A^+ = \frac{1}{\det(A)} \cdot \text{adj}(A) = \frac{1}{0} \cdot \begin{bmatrix}
1 & -1 \\
-1 & 1 \\
\end{bmatrix} = \text{undefined}
\]
由于行列式为0,我们的广义逆的计算结果是未定义的。
这也是为什么奇异矩阵没有逆矩阵或者广义逆的原因。
矩阵的广义逆及其应用摘要:矩阵的广义逆,即Moore-Penrose逆,在众多理论与应用科学领域,例如微分方程、数值代数、线性统计推断、最优化、电网络分析、系统理论、测量学等,都扮演着不可或缺的重要角色。
本文首先介绍了广义逆的定义以及广义逆的性质,主要内容是矩阵广义逆的应用,包括广义逆在分块矩阵理论中的各种应用,广义逆的Cramer法则和广义逆的计算,并对部分理论给出简单的解释,同时加以举例说明。
关键词:分块矩阵;广义逆;Moore—Penroce逆;Cramer法则.The generalized inverse matrix and its applicationAbstract: The generalized inverse of matrix, i.e. the inverse of Moore-Penrose, plays an indispensable role in many fields of theories and applied sciences, such as differential equation, numerical algebra, linear statistical inference, optimization, the analysis of electrical network, system theory and surveying, etc.The thesis introduces the definition and the property of the generalized inverse for the first place, and its primary content is the application of generalized inverse matrix including its all kinds of applications in the block matrix theory, its Cramer rule and its calculation. Besides, brief explanations are given to some theories with illustrations.Key words: block matrix; generalized inverse; inverse of Moore-Penrose; Cramer rule.1引言矩阵的广义逆概念是由美国学者E.H.Moore 首先提出的,但在此后的30多年里,矩阵的广义逆很少被人们所注意,直到1955年英国学者R.Penrose 利用四个矩阵方程给出了广义逆矩阵的简洁实用的新定义之后,广义逆矩阵的理论与应用才进入了迅速发展的时期。
广义逆矩阵广义逆矩阵是研究线性代数和数值分析的非常重要的概念,它可以用来求解线性方程组和计算数值解。
本文介绍了广义逆矩阵的基本概念,具体的求解方法和一些相关的典型应用。
1.什么是广义逆矩阵广义逆矩阵(generalized inverse matrix)是一个矩阵的另一种特殊的逆矩阵,它被广泛应用于线性代数和数值分析中。
它是一种概念比较抽象的概念,定义如下:设A是一个n阶矩阵,它具有n个线性无关的列向量,若能够找到一个n阶矩阵G,使其能够满足: GA = AG = A则G称作A的广义逆矩阵。
2.广义逆矩阵的求解广义逆矩阵的求解方法有很多种,其中最常用的方法是Moore-Penrose伪逆矩阵法。
该法是采用矩阵分解的方法,将A分解为三个矩阵:A=L+D+U,其中L为下三角矩阵,D为对角矩阵,U为上三角矩阵,令P=L+D,Q=U+D,则G近似地可求得为:G = P-1Q-1;借助矩阵分解法,可将广义逆矩阵求解问题转化为求普通逆矩阵的问题,可大大简化求解步骤,成为一种非常有效的求解方法。
3.广义逆矩阵的应用广义逆矩阵的应用非常广泛,可以用来求解线性方程组,计算最小二乘法的数值解,解决数据压缩问题等。
(1)求解线性方程组广义逆矩阵可以用来求解线性方程组,若Ax=b,求x,则x=Gb,其中G是A的广义逆矩阵,这就是线性方程组的求解方法。
(2)计算最小二乘法的数值解对于最小二乘问题,若想求解精确的数值最优解,可以采用广义逆矩阵。
先将矩阵A进行矩阵分解,得G,然后将G代入,可以求出相应的数值最优解。
(3)数据压缩广义逆矩阵还可以应用在数据压缩中,可以采用广义逆矩阵加不完全正定矩阵取近似值来压缩数据,这样可以有效减少存储空间,提高计算效率。
综上所述,广义逆矩阵是研究线性代数和数值分析的一个重要概念,求解过程可以采用矩阵分解和不完全正定矩阵等方法,可以用来求解线性方程组,计算最小二乘法的数值解和进行数据压缩等。
矩阵的直积的广义逆类
广义逆矩阵(generalized inverse matrix)是给定矩阵A的一种变体,它是一种可以满足类似于“A·A+ = A+ · A = A”的特殊的可逆矩阵。
例如,如果A是一个m x n的矩阵,它的广义逆可以被表示为:
A+ = (A'A)^-1 A'
其中A'表示A的转置,而(A'A)^-1是A'A的逆。
因此,A+是A的一个
m x m矩阵,并且它可以用来解决形式为: Ax = b 的方程,其中b是
一个m维列向量。
广义逆矩阵的直积是指矩阵A和A+的乘积。
由于A+是A的一个m x
m矩阵,因此A+A是一个m x n矩阵,而AA+是一个n x n矩阵。
矩
阵A+A和AA+都有它们自己的特殊性质:A+A和AA+都是“伪逆”矩阵,它们的所有特征值都为1,而AA+的特征向量是A的列向量,而
A+A的特征向量是A的行向量。
第八章矩阵的广义逆
第八章矩阵的广义逆前言初等变换和标准形初等变换和标准形举例
§8.1 广义逆矩阵减号逆的概念
减号逆存在定理及求法减号逆存在定理及求法续
关于减号逆公式的注一个减号逆确定所有减号逆1减号逆的主要性质续减号逆的主要性质续
减号逆的主要性质续左逆与右逆的概念矩阵左逆与右逆的求法自反广义逆的概念
自反广义逆的存在与唯一性自反广义逆的唯一性自反广义逆与左(右)逆的关系用满秩分解求自反广义逆
自反广义逆的求法自反广义逆的求法续§8.2 伪逆矩阵
伪逆的存在性求伪逆举例
伪逆的唯一性
伪逆的性质
101求伪逆举例
§8.3 广义逆与线性方程组
一般矩阵方程有解的条件一般矩阵方程的通解
用减号逆求解相容线性方程组举例相容线性方程组的最小模解0130
相容方程组最小模解的充要条件
相容方程组最小模解的充要条件续
求相容方程组最小模解举例
Ax,即‖Ax-b‖>0.
不相容方程组的最小二乘解
R(A)
Ax 0
不相容方程组的最小二乘解举例用广义逆求最小二乘解定义8.3.2:线性方程组Ax=b 的一个最佳最小二乘
矩阵方程的最小二乘解。
第六章广义逆矩阵§6.1 投影矩阵一、投影算子与投影矩阵v设L和M都是C n的子空间,且LÅM=C n.于是任意xÎC n都可唯一分解为x=y+z,yÎL,zÎM,称y是x沿着M到L的投影.v定义将任意xÎC n变为沿着M到L的投影的变换称为沿着M到L的投影算子,记为PL,M ,即PL,Mx=y。
v显然,R(P L,M)=L,N(P L,M)=M.v投影算子P L,M是一个线性算子。
v定义投影算子P L,M在C n的基e1,…,e n下的矩阵称为投影矩阵.记为P。
L,Mv幂等矩阵:A2=Av引理设AÎC n×n是幂等矩阵,则N(A)=R(I-A)。
证明:A2=AÞA(I-A)=OÞ对任意xÎR(I-A),存在yÎC n,x=(I-A)y,必有Ax=0。
故R(I-A)ÌN(A)Þdim R(I-A)£dim N(A)=n-dim R(A)即rank(I-A)£n-rank A。
考虑到I=A+(I-A)Þn£rank A+rank(I-A)有rank(I-A)=n-rank A,使得dim R(I-A)=n-dim R(A)=dim N(A),即得N(A)=R(I-A)。
v定理:P为投影矩阵的充要条件是P为幂等矩阵为投影矩阵,则对任意xÎC n有证明:设P=PL,MP2L,M x = P L,M (P L,M x) = P L,M y = y = P L,M x故P为幂等矩阵。
反之,设P为幂等矩阵n则对任意xÎC有x=x-Px+Px=(I-P)x+Px,其中(I-P)xÎN(P),PxÎR(P),使得C n=N(P)+R(P)。
设zÎN(P)∩R(P),由于N(P)=R(I-P)故存在u,vÎC n使得z=Pu=P2u=P(I-P)v Þz=Pu=(I-P)v=0故N(P)∩R(P)={0}。
§2 矩阵的广义逆一、广义逆矩阵的概念定义1 设任意一个矩阵n m R A ⨯∈,若存在矩阵m n R X ⨯∈,满足 AXA =A (1) XAX =X (2) (AX )T =AX (3) (XA )T =XA (4) 这四个方程中的一个、两个、三个或全部,则称X 为A 的广义逆矩阵。
由上面的定义可知,广义逆矩阵有15C C C C 44342414=+++中之多。
本节介绍应用广泛的减号广义逆和加号广义逆。
定义2 对矩阵n m R A ⨯∈,一切满足方程组A AXA =的矩阵X ,称为矩阵A 的减号逆或g-逆。
记为-A 。
例如,,都是的减号逆。
下面的定理解决了-A 的存在性和构造性问题。
定理1(秩分解) 设A 为n m ⨯矩阵,()rank A r =,若, 或这里P ,Q 分别为n n m m ⨯⨯,的可逆阵,则12221121---⎪⎭⎫ ⎝⎛=P G G G I Q A r (5) 其中222112,,G G G 是相应阶数的任意矩阵。
证明 设X 为A 的广义逆,则有Q O O O I P Q O O O I QXP O O O I P A AXA r r r ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⇔=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⇔O O O I O O O I QXP O O O I r r r 若记则上式,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⇔00000011r I G r I G =⇔11 于是, 12221121--⎪⎪⎭⎫ ⎝⎛=⇔=P G G G I Q X A AXA r 其中222112,,G G G 任意. 证毕.定理1不但表明矩阵的减号逆总是存在的,通常也是不唯一的,而且还给出了计算减号逆的方法。
推论:若A 右逆,则;若A 左逆,则()1112n A Q I G P ---=。
例 1 设, 求-A 。
解 经过初等变换可得 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛00100002100050110010210010010000010000011021001121032I I A 于是,故⎪⎪⎭⎫ ⎝⎛+-+--+--=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=---21121121121121212241251025110211001100210501t t t t t t t t t t t P G I Q A 其中21,t t 是任意数。