第1节3讲平面汇交力系-力线平移
- 格式:ppt
- 大小:1.87 MB
- 文档页数:76
第四章平面一般力系第一节力得平移定理上面两章已经研究了平面汇交力系与平面力偶系得合成与平衡。
为了将平面一般力系简化为这两种力系,首先必须解决力得作用线如何平行移动得问题。
设刚体得A点作用着一个力F(图4-3(a)),在此刚体上任取一点O。
现在来讨论怎样才能把力F平移到O点,而不改变其原来得作用效应?为此,可在O点加上两个大小相等、方向相反,与F平行得力F′与F〞,且F′=F〞=F(图4-3(b))根据加减平衡力系公理,F、F′与F〞与图4-3(a)得F对刚体得作用效应相同。
显然F〞与F组成一个力偶,其力偶矩为这三个力可转换为作用在O点得一个力与一个力偶(图4-3(c))。
由此可得力得平移定理:作用在刚体上得力F,可以平移到同一刚体上得任一点O,但必须附加一个力偶,其力偶矩等于力F对新作用点O之矩。
顺便指出,根据上述力得平移得逆过程,共面得一个力与一个力偶总可以合成为一个力,该力得大小与方向与原力相同,作用线间得垂直距离为:力得平移定理就是一般力系向一点简化得理论依据,也就是分析力对物体作用效应得一个重要方法。
例如,图4-4a所示得厂房柱子受到吊车梁传来得荷载F得作用,为分析F得作用效应,可将力F平移到柱得轴线上得O点上,根据力得平移定理得一个力F′,同时还必须附加一个力偶(图4-4(b)).力F经平移后,它对柱子得变形效果就可以很明显得瞧出,力F′使柱子轴向受压,力偶使柱弯曲。
第二节平面一般力系向作用面内任一点简化一、简化方法与结果设在物体上作用有平面一般力系F1,F2,…,F n,如图4-5(a)所示。
为将这力系简化,首先在该力系得作用面内任选一点O作为简化中心,根据力得平移定理,将各力全部平移到O点(图4-5(b)),得到一个平面汇交力系F1′,F2′,…,F n′与一个附加得平面力偶系.其中平面汇交力系中各力得大小与方向分别与原力系中对应得各力相同,即F1′=F1,F2′=F2,…,F n′=F n各附加得力偶矩分别等于原力系中各力对简化中心O点之矩,即由平面汇交力系合成得理论可知,F1′,F2′,…,F n′可合成为一个作用于O点得力Rˊ,并称为原力系得主矢(图4-5(c)),即R′=F1′+F2′+…+F n′=F1+F2+…+F n=∑Fi(4-1)求主矢R′得大小与方向,可应用解析法。
第二章平面力系第1节平面汇交力系合成与平衡的几何法若作用在物体上的力,其作用线均分布在同一平面内,则该力系称为平面力系。
若作用在同一平面内的各力作用线均汇交于一点,则该力系称为平面汇交力系。
一、合成的几何法应用力多边形法则,合力矢即是力多边形的封闭边,合力作用线通过力系的汇交点。
如图2-1-1-1所示。
图2-1-1-1若有n个力,则合力矢可以表示为F R = F 1 + F 2 +⋯+ F n = ∑ i=1 n F i二、平衡的几何法平面汇交力系平衡的充要条件是:力多边形自行封闭。
如图2-1-1-2所示。
若矢量表示即为F R =0图2-1-1-2第2节平面汇交力系合成与平衡的解析法一、力在坐标轴上的投影力在坐标轴上的投影等于力的模乘以力与投影轴正向间夹角的余弦,如图2-2-1-1所示,它是一标量,即F x =Fcosθ; F y =Fcosβ力沿坐标轴的分力是一矢量,其合力与分力之间应满足力的平行四边形法则。
如图2-2-1-2所示。
当坐标轴为直角坐标轴时,力沿坐标轴分解的分力可以表示为F x = F x i; F y = F y i合力投影定理:合力在某轴上的投影等于各分力在同一轴上投影的代数和,即F x = ∑ i=1 n F xi ; F y = ∑ i=1 n F yi当投影轴x与y垂直时,其合力的大小与方向为F R = F x 2 + F y 2 , cos( F R ,i)= F x F R ; cos( F R ,j)= F y F R二、合成的解析法当为直角坐标轴时,可按以下方法来合成F R = F x 2 + F y 2 = ( ∑ F xi ) 2 + ( ∑ F yi ) 2cos( F R ,i)= F x F R = ∑ F xi F R ; cos( F R ,j)= F y F R = ∑ F yi F R三、平衡的解析法力系中各力在两个坐标轴上投影的代数和分别等于零,即∑ F x =0; ∑ F y =0上式称为平面汇交力系的平衡方程。
第二章平面力系第一节力线平移定理由力的可传性可知,力可以沿其作用线滑移到刚体上任意一点,而不改变力对刚体的作用效应。
但当力平行于原来的作用线移动到刚体上任意一点时,力对刚体的作用效应便会改变,为了进行力系的简化,将力等效地平行移动,给出如下定理:力的平移定理:作用于刚体上的力可以平行移动到刚体上的任意一指定点,但必须同时在该力与指定点所决定的平面内附加一力偶,其力偶矩等于原力对指定点之矩。
证明:设力F作用于刚体上A点,如下图所示。
为将力F等效地平行移动到刚体上任意一点,根据加减平衡力系公理,在B点加上两个等值、反向的力F′和F",并使F′=F"=F,如图(b)所示。
显然,力F、F′和F"组成的力系与原力F等效。
由于在力系F、F′和F"中,力F与力F"等值、反向且作用线平行,它们组成力偶(F、F")。
于是作用在B 点的力F′和力偶(F、F")与原力F等效。
亦即把作用于A点的力F平行移动到任意一点B,但同时附加了一个力偶,如图(c)所示。
由图可见,附加力偶的力偶矩为m=F•d=m B(F)力的平移定理表明,可以将一个力分解为一个力和一个力偶;反过来,也可以将同一平面内一一个力和一个力偶合成为一个力。
应该注意,力的平移定理只适用于刚体,而不适用于变形体,并且只能在同一刚体上平行移动。
第二节平面任意力系的简化一、平面任意力系向面内任一点简化设刚体受到平面任意力系F1、F2、…、F n的作用,如图。
在力系所在的平面内任取一点O,称O点为简化中心。
应用力的平移定理,将力系中的和力依次分别平移至O点,得到汇交于O点的平面汇交力系F1′、F2′、…、F n′,此外还应附加相应的力偶,构成附加力偶系m O1、m O2、…、m On(图b)。
平面汇交力系中各力的大小和方向分别与原力系中对应的各力相同,即F1′=F1 ,F2′=F2,…,F n′=F n所得平面汇交力系可以合成为一个力R O ,也作用于点O ,其力矢R ′等于各力矢F 1′、 F 2′、…、F n ′的矢量和,即R O =F 1′+ F 2′+…+F n ′=F 1 +F 2 +…+F n =ΣF =R ′R ′称为该力系的主矢,它等于原力系各力的矢量和,与简化中心的位置无关。