2008年临沂市中考数学试题及答案
- 格式:doc
- 大小:188.00 KB
- 文档页数:11
2008年全国中考数学压轴题精选精析(三)27.(08山东滨州)23、(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.BDCA(2)结论应用:①如图2,点M 、N 在反比例函数y=)0(>k xk的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F. 试应用(1)中得到的结论证明:MN ∥EF.y xO NMF E②若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断MN 与E 是否平行.yxO NM(08山东滨州23题解析)23.(1)证明:分别过点C 、D 作.CG AB DH AB ⊥⊥、 垂足为G 、H ,则090.CGA DHB ∠=∠=CG DHABC ABD ∴∴∴∴ 与的面积相等CG=DH四边形CGHD 为平行四边形AB CD.(2)①证明:连结MF ,NE设点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,∵点M ,N 在反比例函数()0ky k x= 的图象上, ∴11x y k =,22x y k =2,ME y NF x OF x ⊥⊥∴= 1轴,轴OE=y112211221122EFM EFN EFM EFN S x y k S x y k S S ∴====∴=由(1)中的结论可知:MN ∥EF 。
②MN ∥EF 。
31(08山东临沂)26.(本小题满分13分) 如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。
⑴求抛物线的解析式;⑵设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由; ⑶若点M 是抛物线上一点,以B 、C 、D 、M 为顶点的四边形是直角梯形,试求出点M 的坐标。
(08山东临沂26题解析)26.⑴∵抛物线与y 轴交于点C (0,3),∴设抛物线解析式为)0(32≠++=a bx ax y ………1分 根据题意,得⎩⎨⎧=++=+-,0339,03b a b a ,解得⎩⎨⎧=-=.2,1b a∴抛物线的解析式为322++-=x x y ………………………………………2分 ⑵存在。
山东省临沂市中考数学真题试卷(版+答案+解析)山东省临沂市中考数学真题试卷(版本+答案+解析)一、选择题1. 下面哪个数是负数?A) -3 B) 0 C) 2 D) 5答案: A) -3解析: 负数是小于零的数,而选项 A) -3 是一个小于零的数。
2. 下面哪个是一个无理数?A) 2 B) 3 C) √5 D) 1/2答案: C) √5解析: 无理数是不能表示为两个整数的比例形式的数,而选项C) √5 是一个无理数。
3. 一个正三角形的内角大小是多少度?A) 60 B) 90 C) 120 D) 180答案: A) 60解析: 一个正三角形的内角相等,那么每个内角为 180 度除以 3,即60 度。
4. 如果 a + b = 10,且 a - b = 2,那么 a 的值是多少?A) 4 B) 5 C) 6 D) 8答案: C) 6解析: 可以通过联立方程组,将两个方程相加消去b,得到2a = 12,因此 a = 6。
5. 若一个矩形的长为 8cm,宽为 4cm,那么它的周长是多少?A) 8cm B) 12cm C) 16cm D) 24cm答案: D) 24cm解析: 矩形的周长可以通过公式周长 = 2(长 + 宽) 计算,代入数值计算得到 2(8 + 4) = 24。
二、填空题1. 在等差数列 1, 4, 7, 10, ... 中,第 10 项是多少?答案: 28解析: 等差数列的通项公式为 an = a1 + (n-1)d,其中 a1 是首项,d是公差,n 是项数。
在该题中,a1 = 1,d = 4-1 = 3,n = 10,代入公式计算得到 a10 = 1 + (10-1)3 = 1 + 27 = 28。
2. 下列选项中,不是平行四边形的是()。
A) 正方形 B) 长方形 C) 菱形 D) 梯形答案: D) 梯形解析: 平行四边形的定义是两组对边平行的四边形,而梯形的定义是至少有一组对边不平行的四边形。
2008年临沂市初中学生学业考试与高中招生考试试题及答案语文一、积累(15分)1.汶川大地震给震区人民带来巨大灾难。
如今灾区人民正进入抚平创伤、重建家园的关键时期,请你给灾区的同学们送上一句话,或表达同情,或鼓舞信心,或抚慰他们受伤的心灵。
力求书写正确、规范、美观。
(2分)2.加点字读音全都相同的一项是()(2分)A.商酌烧灼着迷远见卓识B.喧闹渲染漩涡头晕目眩C.蕴藏酝酿孕育润物无声D.琐屑亵渎交卸一泻千里3.下列每组词语中都有一个错别字,请用横线标出,并将正确字写在方框内。
(2分)A.毛骨竦然合辙押韵鞠躬尽瘁怡然自得B.抑扬顿挫同舟共济美味佳肴多难兴帮C.众志成城油嘴猾舌慷慨大方张皇失措D.风餐露宿相安无事重峦叠障周而复始4.古诗文默写。
(6分)陆游一生作诗近万首,而他总结自己的创作经验却只了了十字:“汝果欲作诗,工夫在诗外。
”后学者普遍认为,这诗外“工夫”主要体现为伟大的爱国思想、宽博的恤民情怀、高尚的道德情操、坚定的理想信念、明晰的责任意识和坚强的民族气节等。
也正是有了这种种诗外的“工夫”,才有了无数启人智慧、教人向善、催人奋进的妙文佳句。
上面画横线的短语分别代表了诗外“工夫”的6个不同角度,请你任选其中5个角度,各默写出一个与其内容相符或相关的古诗文名句。
①爱国思想:②恤民情怀:③道德情操:④理想信念:⑤责任意识:⑥民族气节:5.文学常识及名著知识填空。
(3分)(1)“先生常充左翼先锋,呐喊欲驱长夜黑。
”这是一副纪念联的上联,联中纪念的名人是,他的原名叫。
(2)袁世凯死后,有人拟了这样一副讽骂挽联:“()云:毋人负我,宁我负人,惟公善体斯意;桓温谓:不能留芳,亦当遗臭,后世自有定评。
”其中上联中空缺的即是被后人称为乱世“”(评价性称谓)的(人名)。
(3)“及时雨会神行太保,黑旋风斗浪里白条”是古典名著《水浒传》中以人物绰号组合而成的一个章回目录,其中“及时雨”是,“神行太保”是。
二、古诗文阅读(共15分)阅读下面文言文,做6—10题。
●●●●2008年潍坊市初中学业水平考试数学试题 2008.6注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页,为选择题,36分;第Ⅱ卷8页,为非选择题,84分;共120分.考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、准考证号、考试科目涂写在答题卡上.考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再涂改其它答案.第Ⅰ卷 选择题(共36分)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.) 1.下列运算正确的是( ) A .532x x x −=B .43210()x x x = C .1239()()x x x −÷−=D .33(2)8x x−−=2.下列方程有实数解的是( ) A1=−B .120x ++=C .111xx x =++ D .2230x x −+=3.如图,矩形ABCD 中,AD BC ∥,AD AB =,BC BD =,100A =∠,则C =∠( ) A .80B .70C .75D .604.若2(a +与1b −互为相反数,则1b a−的值为( ) AB1C1D.1−5.某蓄水池的横断面示意图如右图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )6.如图,Rt ABC △中,AB AC ⊥,3AB =,4AC =,P 是BC 上一点,作PE AB ⊥于E ,PD AC ⊥于D ,设BP x =, 则PD PE +=( ) A .35x +B .45x −C .72D .21212525x x− A . B . C .D .D A BA DPBE7.时代中学周末有40人去体育场观看足球比赛,40张票分别为B 区第2排1号到40号.分票采用随机抽取的办法,小明第一个抽取,他抽取的座号为10号,接着小亮从其余的票中任意抽取一张,取得的一张恰与小明邻座的概率是( )A .140B .12 C .139 D .2398.如图,Rt ABC △中,AB AC ⊥,AD BC ⊥,BE 平分ABC ∠,交AD 于E ,EF AC ∥,下列结论一定成立的是( )A .AB BF = B .AE ED =C .AD DC =D .ABE DFE =∠∠9.如图,ABC △内接于圆O ,50A =∠,60ABC =∠,BD 是圆O 的直径, BD 交AC 于点E ,连结DC ,则AEB ∠等于( ) A .70B .110C .90D .12010.已知反比例函数aby x=,当0x >时,y 随x 的增大而增大,则关于x 的方程220ax x b −+=的根的情况是( )A .有两个正根B .有两个负根C .有一个正根一个负根D .没有实数根11.在平行四边形ABCD 中,点1A ,2A ,3A ,4A 和1C ,2C ,3C ,4C 分别是AB 和CD 的五等分点,点1B ,2B 和1D ,2D分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为 1,则平行四边形ABCD 的面积为( ) A .2B .35C .53D .1512.若一次函数(1)y m x m =++的图象过第一、三、四象限,则函数2y mx mx =−( ) A .有最大值4mB .有最大值4m −C .有最小值4m D .有最小值4m −试卷类型:A2008年潍坊市初中学业水平考试数学试题 2008.6第Ⅱ卷 非选择题(共84分)注意事项:1.第Ⅱ卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.分解因式:32627x x x +−= .1 2 3 4EA BD F C14.已知3462(2)x x ++−≤,则1x +的最小值等于 .15.如图,正六边形内接于圆O ,圆O 的半径为10,则圆中阴影部分 的面积为 .16.下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有(2)n n ≥个圆点时,图案的圆点数为n S .按此规律推断n S 关于n 的关系式为: .17.如图,在平面直角坐标系中,Rt OAB △的顶点A的坐标为, 若将OAB △绕O 点逆时针旋转60后,B 点到达B '点,则B '点的坐标是 .三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推算步骤.) 18.(本题满分8分)国际奥委会2003年6月29日决定,2008年北京奥运会的举办日期由7月25日至8月10日推迟到8月8日至24日,原因与北京地区的气温有关.为了了解这段时间北京地区的气温分布状况,相关部门对往年7月25日至8月24日的日最高气温进行抽样,得到如下样本数据:时间段 日最高气温样本数据(单位:℃) 7月25日至8月10日 42 38 36 35 37 38 35 34 33 33 35 33 31 31 29 32 29 8月8日至8月24日 29 32 29 33 33 30 30 30 33 33 29 26 25 30 30 30 30 (1)分别写出7月25日至8月10日和8月8日至24日两时间段的两组日最高气温样本数据的中位数和众数;(2)若日最高气温33℃(含33℃)以上为高温天气,根据以上数据预测北京2008年7月25日至8月10日和8月8日至24日期间分别出现高温天气的概率是多少?(3)根据(1)和(2)得到数据,对北京奥运会的举办日期因气温原因由7月25日至8月10日推迟到8月8日至24日做出解释. 19.(本题满分8分)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化.绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩.并且种植草224n S ==, 338n S ==,4412n S ==,皮面积不少于种植树木面积的32.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.(1)种植草皮的最小面积是多少?(2)种植草皮的面积为多少时绿化总费用最低?最低费用为多少? 20.(本题满分9分)如图,AC 是圆O 的直径,10AC =厘米,PA PB ,是圆O 的切线,A B ,为切点.过A 作AD BP ⊥,交BP 于D 点,连结AB BC ,.(1)求证ABC ADB △∽△;(2)若切线AP 的长为12厘米,求弦AB 的长.21.(本题满分10分)如图,ABCD 为平行四边形,AD a =,BE AC ∥,DE 交AC 的延长线于F 点,交BE 于E 点.(1)求证:DF FE =;(2)若2AC CF =,60ADC =∠,AC DC ⊥,求BE 的长;(3)在(2)的条件下,求四边形ABED 的面积.22.(本题满分11分)一家化工厂原来每月利润为120万元.从今年一月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x 月(112x ≤≤)的利润的月平均值w (万元)满足1090w x =+,第2年的月利润稳定在第1年的第12个月的水平.(1)设使用回收净化设备后的1至x 月(112x ≤≤)的利润和为y ,写出y 关于x 的函数关系式,并求前几个月的利润和等于700万元? (2)当x 为何值时,使用回收净化设备后的1至x 月的利润和与不安装回收净化设备时x 个月的利润和相等?(3)求使用回收净化设备后两年的利润总和.A F EBC23.(本题满分11分)如图,矩形纸片ABCD中,8AB=,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G点在边BC上,10BG=.(1)当折痕的另一端F在AB边上时,如图(1),求EFG△的面积;(2)当折痕的另一端F在AD边上时,如图(2),证明四边形BGEF为菱形,并求出折痕GF的长.24.(本题满分12分)如图,圆B切y轴于原点O,过定点(A−作圆B切线交圆于点P.已知tan3PAB=∠,抛物线C经过A P,两点.(1)求圆B的半径;(2)若抛物线C经过点B,求其解析式;(3)投抛物线C交y轴于点M,若三角形APM为直角三角形,求点M的坐标.ABFE(B) DCG图(1)图(2)GCDFABE(B)H(A)参考答案:一、1 B 2 C 3 C 4 B 5 A 6 ? 7 D 8 A 9 B 10 C 11 C 12 ? 二、13.x(x-3)(x+9); 14.1; 15.100π; 16. S n=4(n-1); 17. 3(,)22; 18.(1)中位数:34,众数:33和35;(将所给数据按顺序排列,中间的一个数是中位数,出现次数最多的数是众数) (2)70.6%,23.5%;(用高温天气的天数除以总天数)(3)7月25日至8月10日70.6%是高温天气,8月8日至24日23.5%是高温天气,高温天气不适宜进行剧烈的体育活动,故北京奥运会的举办日期因气温原因由7月25日至8月10日推迟至8月8日至24日是非常合理的。
山东省临沂市中考数学试卷-解析版一、选择题(本大题共14小题,毎小题3分,共42分)1、(•临沂)下列各数中,比﹣1小的数是()A、0B、1C、﹣2D、2考点:有理数大小比较。
专题:探究型。
分析:根据有理数比较大小的法则进行比较即可.解答:解:∵﹣1是负数,∴﹣1<0,故A错误;∵2>1>0,∴2>1>0>﹣1,故B、D错误;∵|﹣2|>|﹣1|,∴﹣2<﹣1,故C正确.故选C.点评:本题考查的是有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2、(•临沂)下列运算中正确的是()A、(﹣ab)2=2a2b2B、(a+b)2=a2+1C、a6÷a2=a3D、2a3+a3=3a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
分析:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式:两数和的平方等于它们的平方和加上它们积的2倍;同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;根据法则一个个筛选.解答:解:A、(﹣ab)2=(﹣1)2a2b2=a2b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a6÷a2=a6﹣2=a4,故此选项错误;D、2a3+a3=(2+1)a3=3a3,故此选项正确.故选D.点评:此题主要考查了积的乘方,完全平方公式,同底数幂的除法,合并同类项的计算,一定要记准法则才能做题.3、(•临沂)如图.己知AB∥CD,∠1=70°,则∠2的度数是()A、60°B、70°C、80°D、110考点:平行线的性质。
分析:由AB∥CD,根据两直线平行,同位角相等,即可求得∠2的度数,又由邻补角的性质,即可求得∠2的度数.解答:解:∵AB∥CD,∴∠1=∠3=70°,∵∠2+∠3=180°,∴∠2=110°.故选D.点评:此题考查了平行线的性质.注意数形结合思想的应用.4、(•临沂)计算2√12﹣6√13+√8的结果是( ) A 、3√2﹣2√3 B 、5﹣√2 C 、5﹣√3 D 、2√2考点:二次根式的加减法。
2008-2009学年度某某市沂水县九年级期中考试数学试卷一、选择题(在下列各题所给出的四个选项中,只有一个是正确的。
) 1.下列计算正确的是A .169)16)(9(-⋅-=--B .9454522=+=+ C .)0( 482>=a a a D .724252425242522=-⋅+=-2.若42)4(+=a A ,则AA .42+aB .22+aC .22)2(+aD .22)4(+a3.方程0562=-+x x 的左边配成完全平方所得的方程为A .14)3(2=+x B .14)3(2=-x C .4)3(2=+xD .4)3(2=-x4.某城市2006年底已有绿化面积300公顷,并且绿化面积逐年增加,计划经过两年绿化,到2008年底绿化面积增加到363公顷,设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是A .363)1(300=+xB .363)1(3002=+x C .363)21(300=+xD .300)1(3632=-x5.三角形的两边长分别是3和6,第三边是方程0862=+-x x 的解,则这个三角形的周长是A .11或13B .11和13C .11D .136.下列图形中,既是轴对称图形,又是中心对称图形的是7.一个正三角形绕其旋转中心至少旋转多少度,才能与自身重合A .30°B .60°C .120°D .180°8.已知⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 长的最小值为A .2B .3C .4D .59.两圆的圆心坐标分别是(3,0)和(0,1),它们的半径分别是3和5,则这两个圆的位置关系是 A .相离B .相交C .内切D .外切10.如下图,在△ABC 中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是A .23 B .32 C .2 D .1二、填空题(请将正确的结果直接填写在题中的横线上。
07年至12年临沂中考数学题分类汇总——四边形07年 25.(本小题满分11分)如图1,已知△ABC 中,AB =BC =1,∠ABC =90°,把一块含30°角的直角三角板DEF的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF ),将直角三角板DEF 绕D 点按逆时针方向旋转。
(1)在图1中,DE 交AB 于M ,DF 交BC 于N 。
①证明DM =DN ;②在这一旋转过程中,直角三角板DEF 与△ABC 的重叠部分为四边形DMBN ,请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;(2)继续旋转至如图2的位置,延长AB 交DE 于M ,延长BC 交DF 于N ,DM =DN 是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于M ,DM =DN 是否仍然成立?请写出结论,不用证明。
25、(2008•临沂)已知∠MAN ,AC 平分∠MAN .(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC ;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC ;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC (用含α的三角函数表示),并给出证明.A A AB B BC C CD D D N NE EF E F F M M M 图1 图2 图3 (第25题图)25、(2009•临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.25.(2010临沂。
山东省临沂市中考数学试卷(解析版)一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(山东省临沂市)在实数﹣3,﹣1,0,1中,最小的数是()A.﹣3 B.﹣1 C.0 D.1【分析】根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.【解答】解:∵﹣3<﹣1<0<1,∴最小的是﹣3.故选:A.【点评】此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.2.(山东省临沂市)自10月提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为()A.1.1×103人B.1.1×107人C.1.1×108人D.11×106人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1100万=1.1×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(山东省临沂市)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A.42°B.64°C.74°D.106°【分析】利用平行线的性质、三角形的内角和定理计算即可;【解答】解:∵AB∥CD,∴∠ABC=∠C=64°,在△BCD中,∠CBD=180°﹣∠C﹣∠D=180°﹣64°﹣42°=74°,故选:C.【点评】本题考查平行线的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.4.(山东省临沂市)一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=【分析】根据配方法即可求出答案.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.5.(山东省临沂市)不等式组的正整数解的个数是()A.5 B.4 C.3 D.2【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的整数.【解答】解:解不等式1﹣2x<3,得:x>﹣1,解不等式≤2,得:x≤3,则不等式组的解集为﹣1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选:C.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.6.(山东省临沂市)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m【分析】先证明∴△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.7.(山东省临沂市)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A.12cm2B.(12+π)cm2C.6πcm2D.8πcm2【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选:C.【点评】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.8.(山东省临沂市)某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有的可能,进而利用概率公式取出答案.【解答】解:如图所示:,一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.45000 18000 10000 5500 5000 3400 3300 1000月收入/元人数 1 1 1 3 6 1 11 1能够反映该公司全体员工月收入水平的统计量是()A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差【分析】求出数据的众数和中位数,再与25名员工的收入进行比较即可.【解答】解:该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工1+1+1+3+6+1+11+1=25人,所以该公司员工月收入的中位数为5000元;由于在25名员工中在此数据及以上的有12人,所以中位数也能够反映该公司全体员工月收入水平;故选:C.【点评】此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.10.(山东省临沂市)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A.= B.=C.= D.=【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.【解答】解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据题意,得:=,故选:A.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.11.(山东省临沂市)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.12.(山东省临沂市)如图,正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是()A.x<﹣1或x>1 B.﹣1<x<0或x>1C.﹣1<x<0或0<x<1 D.x<﹣1或0<x<l【分析】直接利用正比例函数的性质得出B点横坐标,再利用函数图象得出x的取值范围.【解答】解:∵正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.∴B点的横坐标为:﹣1,故当y1<y2时,x的取值范围是:x<﹣1或0<x<l.故选:D.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出B点横坐标是解题关键.13.(山东省临沂市)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1 B.2 C.3 D.4【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,【解答】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选:A.【点评】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.14.(山东省临沂市)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()A.原数与对应新数的差不可能等于零B.原数与对应新数的差,随着原数的增大而增大C.当原数与对应新数的差等于21时,原数等于30D.当原数取50时,原数与对应新数的差最大【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【解答】解:设原数为a,则新数为,设新数与原数的差为y则y=a﹣=﹣易得,当a=0时,y=0,则A错误∵﹣∴当a=﹣时,y有最大值.B错误,A正确.当y=21时,﹣=21解得a1=30,a2=70,则C错误.故选:D.【点评】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.二、填空题(本大题共5小题,每小题3分,共15分)15.(山东省临沂市)计算:|1﹣|=﹣1.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:|﹣|=﹣1.故答案为:﹣1.【点评】本题考查了实数的性质,是基础题,主要利用了绝对值的性质.16.(山东省临沂市)已知m+n=mn,则(m﹣1)(n﹣1)=1.【分析】先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.【解答】解:(m﹣1)(n﹣1)=mn﹣(m+n)+1,∵m+n=mn,∴(m﹣1)(n﹣1)=mn﹣(m+n)+1=1,故答案为1.【点评】本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则,此题难度不大.17.(山东省临沂市)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=4.【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,OB=D,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.【点评】此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.18.(山东省临沂市)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.【分析】根据题意作出合适的辅助线,然后根据圆的相关知识即可求得△ABC外接圆的直径,本题得以解决.【解答】解:设圆的圆心为点O,能够将△ABC完全覆盖的最小圆是△ABC的外接圆,∵在△ABC中,∠A=60°,BC=5cm,∴∠BOC=120°,作OD⊥BC于点D,则∠ODB=90°,∠BOD=60°,∴BD=,∠OBD=30°,∴OB=,得OB=,∴2OB=,即△ABC外接圆的直径是cm,故答案为:.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.19.(山东省临沂市)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.【分析】设0.=x,则36.=100x,二者做差后可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设0.=x,则36.=100x,∴100x﹣x=36,解得:x=.故答案为:.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共7小题,共63分)20.(山东省临沂市)计算:(﹣).【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【解答】解:原式=[﹣]•=•=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.(山东省临沂市)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.【分析】(1)根据数据采用唱票法记录即可得;(2)由以上所得表格补全图形即可;(3)根据频数分布表或频数分布直方图给出合理结论即可得.【解答】解:(1)补充表格如下:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图如下:(3)由频数分布直方图知,17≤x<22时天数最多,有9天.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(山东省临沂市)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?【分析】过B作BD⊥AC于D,解直角三角形求出AD=xm,CD=BD=xm,得出方程,求出方程的解即可.【解答】解:工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,理由是:过B作BD⊥AC于D,∵AB>BD,BC>BD,AC>AB,∴求出DB长和2.1m比较即可,设BD=xm,∵∠A=30°,∠C=45°,∴DC=BD=xm,AD=BD=xm,∵AC=2(+1)m,∴x+x=2(+1),∴x=2,即BD=2m<2.1m,∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.【点评】本题考查了解直角三角形,解一元一次方程等知识点,能正确求出BD的长是解此题的关键.23.(山东省临沂市)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.【分析】(1)连接OD,作OF⊥AC于F,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AB,然后利用角平分线的性质得到OF=OD,从而根据切线的判定定理得到结论;(2)设⊙O的半径为r,则OD=OE=r,利用勾股定理得到r2+()2=(r+1)2,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD=OD=,然后根据扇形的面积公式,利用阴影部分的面积=2S△AOD﹣S扇形DOF进行计算.【解答】(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,而OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.24.(山东省临沂市)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.【分析】(1)两人相向而行,当相遇时y=0本题可解;(2)分析图象,可知两人从出发到相遇用1小时,甲由相遇点到B用小时,乙走这段路程用1小时,依此可列方程.【解答】解:(1)设PQ解析式为y=kx+b把已知点P(0,10),(,)代入得解得:∴y=﹣10x+10当y=0时,x=1∴点Q的坐标为(1,0)点Q的意义是:甲、乙两人分别从A,B两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为akm/h,乙的速度为bkm/h由已知第小时时,甲到B地,则乙走1小时路程,甲走﹣1=小时∴∴∴甲、乙的速度分别为6km/h、4km/h【点评】本题考查一次函数图象性质,解答问题时要注意函数意义.同时,要分析出各个阶段的路程关系,并列出方程.25.(山东省临沂市)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【分析】(1)先运用SAS判定△AEG≌Rt△FDG,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【解答】解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠GDE=90°=∠AEB+∠DEG,∴∠EDG=∠DEG,∴DG=EG,∴FG=AG,又∵∠DGF=∠EGA,∴△AEG≌Rt△FDG(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点评】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.26.(1山东省临沂市)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.【分析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=﹣2x+2,根据PD⊥x轴,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.【解答】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴,∴,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【点评】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度及勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.。
中考临沂数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是正整数?A. -1B. 0C. 0.5D. 2答案:D2. 计算下列哪个表达式的结果是负数?A. 3 - (-2)B. (-3) - 2C. 4 × (-1)D. 5 ÷ (-1)答案:C3. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C4. 以下哪个选项是二次根式?A. √4B. √(-1)C. √(0)D. √(2x+1)答案:D5. 以下哪个选项是单项式?A. 3x^2 - 2x + 1B. 5x^2C. 2x/3D. x^2 + 3x答案:B6. 以下哪个选项是多项式?A. 2xB. 3x^2 + 4x - 5C. 7D. x^3 - 2x^2 + x - 1答案:D7. 以下哪个选项是等腰三角形的内角和?A. 90°B. 180°C. 360°D. 540°答案:B8. 以下哪个选项是等边三角形的边长?A. 3, 4, 5B. 5, 5, 5C. 2, 3, 4D. 6, 8, 10答案:B9. 以下哪个选项是直角三角形的斜边?A. 3, 4, 5B. 5, 12, 13C. 7, 24, 25D. 9, 12, 15答案:C10. 以下哪个选项是圆的面积公式?A. πr^2B. 2πrC. πdD. πd^2 / 4答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 一个数的绝对值是8,那么这个数可以是________或________。
答案:8或-813. 一个等腰三角形的底角是45°,那么顶角是________。
答案:90°14. 一个直角三角形的两条直角边分别是3和4,那么斜边是________。
答案:515. 一个圆的半径是2,那么它的周长是________。
1 2008年临沂市中考数 学 试 题 一、选择题(共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的。
1.-31的倒数是( )
A. -3 B. 3 C. 31 D. -31 2.在今年四川汶川地震抗震救灾过程中,国内外社会各界纷纷伸出援助之手,截止5月30日12时,共收到各类捐赠款物折合人民币约399亿元,这个数据用科学记数法表示为( ) A. 3.99×109元 B. 3.99×1010元 C. 3.99×1011元 D. 399×102元 3.下列各式计算正确的是( )
A. 53232aaa B. xyxyxy332
C. 53282bb D. 65632xxx 4.下列各图中,∠1大于∠2的结果是( )
5.计算29328的结果是( ) A. 22 B. 22 C. 2 D. 223 6.化简121112aaaa的结果是( ) A. 1a B. 11a C. aa1 D. 1a 7.若不等式组1472,03xxax的解集为0x,则a的取值范围为( ) A. a>0 B. a=0 C. a>4 D. a=4
12A12
B
1
2D
1
2
C 2
8.“赵爽弦图”是由于四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示)。小亮同学随机地在大正方形及其内部区域投针,若直角三角形的两条直角边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是( )
A. 31 B. 41
C. 51 D. 55 9.如图是一个包装盒的三视图,则这个包装盒的体积是( ) A. 1000π㎝3 B. 1500π㎝3 C. 2000π㎝3 D. 4000π㎝3 10.下列说法正确的是( ) A.随机事件发生的可能性是50%。 B.一组数据2,3,3,6,8,5的众数与中位数都是3。 C.“打开电视,正在播放关于奥运火炬传递的新闻”是必然事件。
D.若甲组数据的方差31.02=甲S,乙组数据的方差02.02=乙S,则乙组数据比甲组数据稳定。 11.如图,菱形ABCD中,∠B=60°,AB=2,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为( )
A. 32
B. 33 C. 34 D. 3 12.如图,直线)0(kkxy与双曲线xy2交于A、B两点,若A、B两点的坐标分别为
A11,yx,B22,yx,则1221yxyx与2y的值为( ) A. -8 B. 4 C. -4 D. 0
13.如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB交于点E,若AD=2,BC=6,
则⌒DE的长为( )
第8题图 FAGHD
EBC
第9题图 主视图 20cm左视图 20cm俯视图
第11题图 FADEB
C第12题图
AyOBx
第13题图 AMDEBC 3
A. 23 B. 43 C. 83 D. 3 14.如图,已知正三角形ABC的边长为1,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是( )
二、填空题(共5小题,每小题3分,共15分)把答案填在题中横线上。 15.分解因式:39aa=___________.
16.已知x、y满足方程组,42,52yxyx则x-y的值为________. 17.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为________. 18.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长________. 19.如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积Sn=________。 三、开动脑筋,你一定能做对!(本大题共3小题,共20分) 20.(本小题满分6分) 某油桃种植户今年喜获丰收,他从采摘的一批总质量为900千克的油桃中随机抽取了10个油桃,称得其质量(单位:克)分别为: 106,99,100,113,111,97,104,112,98,110。 ⑴估计这批油桃中每个油桃的平均质量; ⑵若质量不小于110克的油桃可定为优级,估计这批油桃中,优级油桃占油桃总数的百分之几?达到优级的油桃有多少千克?
第14题图 FAGE
BC
A xy
O43
x
y
O43
B x
yO43
C x
y
O43
D
第18题图 FADOEBC
B1
B2
A1
A
OB
第19题图 4
21.(本小题满分7分) 如图,□ABCD中,E是CD的延长线上一点,BE与AD交于
点F,CDDE21。 ⑴求证:△ABF∽△CEB; ⑵若△DEF的面积为2,求□ABCD的面积。
22.(本小题满分7分) 在某道路拓宽改造工程中,一工程队承担了24千米的任务。为了减少施工带来的影响,在确保工程质量的前提下,实际施工速度是原计划的1.2倍,结果提前20天完成了任务,求原计划平均改造道路多少千米?
第21题图 FA
D
E
BC 5 四、认真思考,你一定能成功!(本大题共2小题,共19分)
23.(本小题满分9分) 如图,Rt△ABC中,∠ACB=90°,AC=4,BC=2,以AB上的一点O为圆心分别与均AC、BC相切于点D、E。 ⑴求⊙O的半径; ⑵求sin∠BOC的值。
24.(本小题满分10分) 某商场欲购进A、B两种品牌的饮料500箱,此两种饮料每箱的进价和售价如下表所示。设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元。 ⑴求y关于x的函数关系式? ⑵如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润。(注:利润=售价-成本) 品牌 A B 进价(元/箱) 55 35 售价(元/箱) 63 40
第23题图 ADOEBC 6
五、相信自己,加油呀!(本大题共2小题,共24分) 25.(本小题满分11分) 已知∠MAN,AC平分∠MAN。 ⑴在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC; ⑵在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; ⑶在图3中: ①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=____AC; ②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=____AC(用含α的三角函数表示),并给出证明。
第25题图 AMNDB
CAMNDBC
AMNDBC 7
26.(本小题满分13分) 如图,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3)。 ⑴求抛物线的解析式; ⑵设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由; ⑶若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标。
第26题图 x
yAMP
D
OB
C 8
参考答案及评分标准: 一、ABDBA,DBCCD,BCAC;
二、15.a(3+a)(3-a);16.1;17.10%;18.613;19.22n。 三、开动脑筋,你一定能做对!(本大题共3小题,共20分) 20.解:⑴)110981121049711111310099106(101x105
(克)„„„„„„„„„„„„„„„„„„„„„„„„2分 由此估计这一批油桃中,每个油桃的平均质量为105克;„„„„3分
⑵%40%100104,„„„„„„„„„„„„„„„„5分 360%40900(千克)
估计这一批油桃中优级油桃占总数的40%,其质量为360千克„„„„6分 21.解:⑴证明:∵四边形ABCD是平行四边形, ∴∠A=∠C,AB∥CD, ∴∠ABF=∠CEB, ∴△ABF∽△CEB. „„„„„„„„„„„„„„„2分 ⑵∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥=CD, ∴△DEF∽△CEB,△DEF∽△ABF,„„„„„3分 ∵CDDE21,
∴912ECDESSCEBDEF,412ABDESSABFDEF,„„„„4分 ∵2DEFS, ∴18CEBS,8ABFS,„„„„„„„„„„„„„„6分 ∴16DEFBCEBCDFSSS四边形, ∴24816ABFBCDFABCDSSS四边形四边形.„„„„7分 22.设原计划平均每天改造道路x千米,,根据题意,得„„„„1分 202.12424xx„„„„„„„„„„„„„„„„„„„„„4分
解这个方程,得x=0.2„„„„„„„„„„„„„„„„„„6分