水箱恒温控制系统的设计
- 格式:doc
- 大小:787.77 KB
- 文档页数:27
恒温水箱系统设计引言:恒温水箱系统是一种常见的热水供应设备,主要用于家庭、学校、酒店等场所的热水供应。
设计一个高效稳定的恒温水箱系统,不仅需要考虑热水的供应和保温效果,还需要将能耗降到最低,提高系统的可靠性和安全性。
本文将从系统的结构、工作原理、控制策略和优化设计等方面进行详细探讨,希望能为恒温水箱系统的设计提供一定参考。
一、系统结构设计1.热水储存槽:热水储存槽是恒温水箱系统的核心组件,主要用于存储热水并保持温度稳定。
槽体材料可选用不导热的材料,内部应进行防腐处理。
由于热水具有膨胀特性,应在槽体设计上考虑到热胀冷缩的因素。
2.加热装置:恒温水箱系统的加热装置可以采用电加热器、太阳能板加热器或燃气加热器等,根据实际情况选择合适的加热源。
加热装置要具有良好的能效和稳定性,确保热水能够快速达到设定温度,并保持稳定。
3.维持温度装置:为了保持热水的恒温性,需要在系统中加入维持温度装置,例如温度传感器和温控器等。
温度传感器用于实时监测热水的温度,而温控器则通过与加热装置进行联动,调节加热功率,控制热水的温度在设定范围内。
二、工作原理1.加热过程:当恒温水箱系统开始工作时,温控器会检测热水的温度,如果低于设定温度,则启动加热装置进行加热。
加热装置向热水储存槽中提供热量,使热水温度逐渐升高,直到达到设定温度为止。
2.储存过程:当热水的温度达到设定温度后,温控器会断开加热装置的供电,停止加热过程。
此时,热水会继续以热胀冷缩的方式保持恒温状态,并由热水储存槽提供热水供应。
3.供水过程:当有需求时,用户可以通过水龙头或其他水位供水装置获取热水。
供水过程中,恒温水箱系统会根据监测到的热水温度实时调节加热装置的功率,确保供水温度保持恒定。
三、控制策略1.开关控制策略:在恒温水箱系统工作过程中,可以采用开关控制策略,即当热水温度低于设定温度时,系统自动启动加热装置进行加热,温度达到设定值后停止加热。
这种控制策略简单易实现,但可能会产生温度波动较大的问题。
基于PLC的热水箱恒温控制系统温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关。
在科学研究和生产实践的诸多领域中, 温度控制占有着极为重要的地位, 特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。
对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。
例如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反应炉等;燃料有煤气、天然气、油、电等。
温度控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。
可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继承计算机、自动控制技术和通信技术为一体的新型自动装置。
它具有抗干扰能力强,价格便宜,可靠性强,编程简单,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。
第一章绪论1.1 引言可编程序控制器(Programmable Controller,简称PLC)是以微处理器为基础,综合了计算机技术、控制技术、通讯技术等高新技术的工业装置。
现代PLC不仅具有传统继电器控制系统的控制功能,而且能扩展输入输出模块,特别是可以扩展一些智能控制模块,构成不同的控制系统,将模拟量输入输出控制和现代控制方法融为一体,实现智能控制、闭环控制、多控制功能一体的综合控制系统。
在工农业生产中,常用闭环控制方式控制温度、压力、流量等连续变化的模拟量,PID控制是常见的一种控制方式。
由于其不需要求出控制系统的数学模型,算法简单、鲁棒性好、可靠性高,在使用模拟量控制器的模拟控制系统和使用计算机(包括PLC)的数字控制系统中得到了广泛的应用。
本文针对恒温水箱温控系统的要求,以PLC为温度控制系统的核心,利用PID控制算法实现水箱的恒温控制。
1.2选题的背景温度是是工业上常见的被控参数之一,特别在冶金、化工、机械制造等领域,恒温控制系统被广泛应用于热水器等一些热处理设备中。
恒温水箱控制系统的设计第一章绪论温度是工业控制对象主要被控参数之一,在温度控制中由于受到温度控制对象特(如惯性大、滞后大、非线性等)的影响使得控制性能难以提高有些工业过程温度控制的不好直接影响着产品的质量,因而设计一种较为理想的温度控制系统非常有价值。
1.1 课题背景自70年代以来,由于工业过程控制的需要特别是在微电子技术和计算机技术的迅猛发展以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速并在智能化、自适应、参数自整定等方面取得成果在这方面以日本、美国、德国、瑞典等国技术领先都生产出了一批商品化的、性能优异的温度控制器及仪器仪表并在各行业广泛应用。
它们主要具有如下的特点:1.适应于大惯性、大滞后等复杂温度控制系统的控制;2.能够适应于受控系统数学模型难以建立的温度控制系统的控制;3.能够适应于受控系统过程复杂、参数时变的温度控制系统的控制;4.这些温度控制系统普遍采用自适应控制、自校正控制、模糊控制、人工智能等理论及计算机技术运用先进的算法适应的范围广泛;5.温控器普遍具有参数自整定功能借助计算机软件技术温控器具有对控制对象控制参数及特性进行自动整定的功能有的还具有自学习功能它能够根据历史经验及控制对象的变化情况自动调整相关控制参数以保证控制效果的最优化;6.温度控制系统具有控制精度高、抗干扰力强、鲁棒性好的特点目前国外温度控制系统及仪表正朝着高精度、智能化、小型化等方面快速发展。
温度控制系统在国内各行各业的应用虽然已经十分广泛但从国内生产的温度控制器来讲总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比仍然有着较大的差距。
目前我国在这方面总体技术水平处于20世纪80年代中后期水平成熟产品主要以"点位"控制及常规的PID控制器为主,它只能适应一般温度系统控制难于控制滞后、复杂、时变温度系统控制,而适应于较高控制场合的智能化、自适应控制仪表国内技术还不十分成熟。
PLC恒温水箱控制系统毕业设计首先,我们将使用一种可编程逻辑控制器(PLC)来实现该系统。
PLC是一种专业设计用于自动化控制系统的计算机硬件设备。
它可以通过逻辑程序对输入信号进行处理,并根据程序中定义的逻辑规则来控制输出信号。
在本设计中,PLC将作为核心控制单元来实现恒温水箱控制。
其次,我们需要设计一个温度传感器来实时监测水箱内的温度。
温度传感器可以通过感知器的温度变化来产生相应的电信号,并将其传递给PLC进行处理。
在设计过程中,我们需要选择一个高精度、可靠性高的温度传感器,以确保控制系统的准确性和稳定性。
接下来,我们需要设计一个恒温控制回路,并将其连接到水箱中的加热器。
该控制回路可以根据PLC传递过来的温度数据,自动调整加热器的工作状态,以维持恒定的水箱温度。
在设计过程中,我们需要充分考虑水箱的体积、加热器的功率和加热时间等因素,以确保系统能够快速响应温度变化,并达到恒温的要求。
此外,为了满足实际生产的需求,我们需要在系统中设置一些安全保护措施。
例如,当水箱内温度超过设定的上限或下限时,PLC应该能够自动切断加热器的供电,以防止温度过高或过低导致的不可逆损坏。
此外,我们还可以设置报警系统,当温度超过安全范围时,发出警报以提醒操作人员及时处理。
最后,我们需要设计一个人机界面(HMI),以便操作人员能够方便地监控和控制系统的运行状态。
HMI应该提供实时的温度显示、温度设定功能以及对加热器工作状态的控制等。
另外,为了便于维护和故障排除,HMI还应提供一些系统参数的查看和修改功能。
综上所述,PLC恒温水箱控制系统是一个涉及多种技术和设备的复杂系统。
在实际的设计和实现过程中,我们需要仔细考虑系统的功能需求、硬件选型、软件编程以及安全保护等方面的问题,以确保系统能够稳定、高效地运行。
通过本篇文章的介绍,相信读者对PLC恒温水箱控制系统的设计和实现有了更深入的了解。
毕业设计(论文)任务书系部自动化工程专业机电一体化技术姓名学号题目基于PLC的热水箱恒温控制设计起迄日期:年月日至年月日设计(论文)地点指导教师专业负责人任务书发放日期:年月日任务书填写要求1、毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在专业的负责人审查、系部领导签字后生效。
此任务书应在毕业设计(论文)开始前一周内填好并发给学生;2、任务书填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系部主管领导审批后方可重新填写;3、任务书内有关“系部”、“专业”等名称的填写,应写中文全称,不能写数字代码。
学生的“学号”要写全号,不能只写最后2位或1位数字;4、任务书内“主要参考文献”的填写,应按照国标GB 7714-87《文后参考文献著录规则》的要求书写,不能有随意性;5、有关年月日等日期的填写,应当按照国标GB/T 7408-94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。
如“2005年3月14日”或“2005-3-141、本毕业设计(论文)课题应达到的目的:本课题的设计目的在于能够使学生综合运用所学的知识,通过查阅国内外的文献资料,让学生掌握PLC的一些基本应用,使学生的专业知识系统化,掌握常用的设计方法及一般控制系统的设计方法。
2、本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):下图为热水器工作示意图,热水器控制关系有:进水阀YV1在得到进水指令后或水箱处于低水位后自动打开,水箱注满水后自动关闭。
加热器R在水箱里注满水并且温度较低时开始加热,加热到一定温度后停止加热。
出水阀YV2在得到出水指令且水箱内有热水时自动打开,在得到停止出水指令,无热水时或水箱水位较低时自动关闭。
基于PLC的控制恒温水箱的设计摘要:本文基于PLC控制系统,设计并实现了具有恒温功能的水箱。
本系统主要由双控制系统、水温传感器、PID控制算法和温度信号采集模块等组成。
实验结果表明,本设计的水箱控制系统能够稳定并精确地控制水温在设定温度范围内,同时具有智能化、便捷性等优点。
关键词:恒温水箱,PLC,PID控制算法,温度采集模块一、引言恒温水箱作为现代工业生产所必须的一个设备,主要用于物体的冷却、加热或保温等操作。
随着技术的不断发展,人们逐渐意识到,采用传统的控制手段进行温度控制,存在工作量大、控制精度低、智能化程度差等问题。
因此,本文提出了一种基于PLC控制系统的恒温水箱设计,该设计可以实现温度的自动调节和控制,并具有精度高、智能化好等优点,特别适合现代化的工业生产要求。
二、系统硬件设计1. 箱体本设计的水箱主要采用钢材作为箱体,具有一定的机械强度和耐高温性能,能够经受较为严酷的工业环境。
箱体内部设置温度传感器和用于加热和冷却水的进出口。
2. 控制系统本系统主要采用经典的PID控制算法,可根据实时采集的温度信号进行迭代调节,并精确地控制水温在设定范围内。
同时采用PLC作为主控制器,对各种控制动作进行实时监控与处理,并实现数据存储和远程控制等功能。
3. 电气装置本设计中的电气控制图主要包括各种控制开关、接线端子、继电器等。
其中,继电器主要用于控制水箱内部的电热器和冷却机的开关,实现加热或冷却功能。
三、系统软件设计1. PLC程序设计本设计中的PLC程序主要负责接收温度传感器采集的温度信号,并使用PID算法进行控制处理。
具体的控制流程包括:采集温度信号、判断当前温度是否在设定范围内、根据PID算法进行温度调节、输出控制电信号给电热器或冷却机。
2. 控制界面设计本设计中制定了一套友好的控制界面,可以方便地设置水箱的温度范围、工作模式和控制参数等。
同时,该界面还具有一定的数据记录和统计功能,实现了数据的备份和远程监控的便利操作。
水箱恒温控制系统的设计[摘要]恒温控制在工业生产过程中举足轻重,温度的控制直接影响着工业生产的产量和质量。
本设计是基于STC89C521单片机的恒温箱控制系统,系统分为硬件和软件两部分,其中硬件包括:温度传感器、显示、控制和报警的设计;软件包括:键盘管理程序设计、显示程序设计、控制程序设计和温度报警程序设计。
编写程序结合硬件进行调试,能够实现设置和调节初始温度值,进行数码管显示,当加热到设定值后立刻报警。
另外,本系统通过软件实现对按键误差、加热过冲的调整,以提高系统的安全性、可靠性和稳定性。
本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机STC89C52作为主控芯片,数码管作为显示输出,实现了对温度的实时测量与恒定控制。
The Design of Refrigerator Door Shell Shaping ControlSystemAbstract:The system makes use of the single chip STC89C52 as the temperature controlling center, uses numeral thermometer DS18B20 which transmits as 1-wire way as the temperature sensor, through the pressed key, the numerical code demonstrated composite of the man-machine interactive connection ,to realize set and adjust the initial temperature value. After the system works, the digital tube will demonstrate the temperature value, when temperature arriving to the setting value, the buzzer will be work immediately. In addition, the system through the software adjusting to the pressed key error, and the excessively hutting. All of these are in order to enhance the system’s security, reliability and stability.第一章·绪论1.1课题研究的背景温度是工业上常见的被控参数之一,特别是在冶金、化工、建材、食品加工、机械制造等领域,恒温控制系统被广泛应用于加热炉、热处理炉、反应炉等。
在一些温控系统电路中,广泛采用的是通过热电偶、热电阻或PN结测温电路经过相应的信号调理电路,转换成A/D转换器能接收的模拟量,再经过采样/保持电路进行A/D转换,最终送入单片机及其相应的外围电路,完成监控。
但是由于传统的信号调理电路实现复杂、易受干扰、不易控制且精度不高。
本文介绍单片机通过数字温度传感器检测外部温度对水箱进行恒温控制的设计,通过控制继电器的通断,进而控制电炉的加热来实现恒温控制。
因此,本系统采用一种新型的可编程温度传感器(DS18B20),不需复杂的信号处理电路和A/D转换电路就能直接与单片机完成数据采集和处理,实现方便、精度高,可根据不同需要用于各种场合。
在日常生活中,也经常用到电烤箱、微波炉、电热水器、烘干箱等需要进行温度检测与控制的家用电器。
采用单片机实现温度控制不仅具有控制方便、简单、灵活等优点,而且可以大幅度地提高被控温度的技术指标,从而大大提高产品的质量,现以恒温水箱控制系统的设计进行介绍。
1.2 国内外恒温控制技术发展现状及趋势1、国外恒温控制的发展现状及趋势自70年代以来,由于工业过程控制的需要,特别是在微电子技术和计算机技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外恒温控制系统发展迅速,并在智能化,自适应参数的自整定等方面取得了很大的科技成果。
在这方面以日本、美国、德国、瑞典等国技术领先,并且都生产出了一批商品化的性能优异的温度控制器及仪器仪表。
目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。
虽然温度控制系统在国内各行各业的应用已经十分广泛,但从国内生产的温度控制器及技术来讲,其总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。
2、国内恒温控制的发展现状及趋势我国目前在恒温控制技术这方面总体技术水平处于20世纪80年代中后期水平,成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后、复杂、时变的温度系统控制。
在适应于较高控制场合的智能化、自适应控制仪表领域内,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。
因此,我国在恒温控制等控制仪表行业与国外还有着一定的差距。
从过程量的检测角度出发,温度是最常见的过程变量之一,它是一个非常重要的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。
而恒温控制技术在工业领域应用非常广泛,由于其具有工况复杂、参数多变、运行惯性大、控制滞后等特点,它对控制调节器要求较高。
其温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。
尽管恒温控制很重要,但是要控制好温度常常会遇到意想不到的困难。
随着嵌入式系统开发技术的快速发展及其在各个领域的广泛应用,人们对电子产品的小型化和智能化要求越来越高,作为高新技术之一的单片机以其体积小、价格低、可靠性高、适用范围大以及本身的指令系统等诸多优势,在各个领域、各个行业都得到了广泛应用。
1.3 课题目的及意义随着社会的发展,科技的进步,以及测温仪器在各个领域的运用,智能化已经成为现在温度测量的主流发展方向。
温度是科学技术中最近本的物理量之一,物理、化学、生物等学科都离不开温度的测量。
在工业生产和实验研究中,温度常常是表征对象和过程的重要参数之一。
例如,某些化学反应要在适当的温度下进行一定的时间才能出现反应现象;分馏的操作也是要有苛刻的温度环境才能正常进行以免产生杂质;生物工程中的培养基的培养等。
此课题的恒温水箱主要是用于实验室的化学反应,对温度的环境要求比较苛刻,对温度控制的先决条件是必须能够精确地掌握实时温度。
通过对恒温水箱的设计,不仅能够满足实验室的实验需求,同时也是让自己对protel等专业软件在电路设计及仿真、51单片机的开发编程又一个深入的学习。
同时也让自己对开发一个完整的系统有了一个更加深入的认识。
1.4 技术要求1.4.1 本设计的主要功能(1)可以对温度进行自由设定,但必须在0~100℃内,设定时可以实时显示出设定的温度值。
(2)根据设定的温度值与实际检测的温度值之差来采取不同的加热制冷方式。
(3)能够保持实时显示水温,显示位数4位,分别为百位、十位、个位和小数位(但由于规定不超过70度,所以百位也就没有实现,默认的百位是不显示的)。
1.4.2 本设计的技术指标(1)可以对温度进行自由设定,并能用液晶显示,显示最小区分度为0.1°C。
(2)可以测量并显示水的温度测量误差在±0.5°C内。
(3)水温控制系统应具有全量程(10°C-70°C)内的升温、降温功能。
第2章 系统方案选择和工作原理2.1 系统综述本文所要研究的课题是基于单片机控制的水箱恒温控制系统 主要是介绍了对水箱温度的测控,实现了温度的实时显示及控制。
用DS18B20、STC89C52单片机及LCD 的硬件电路完成对水温的实时检测及显示,由DS18B20检测炉内温度 并在LCD1602中显示。
控制器是用STC89C52单片机,根据设定的算法计算出控制量,根据控制量通过控制固态继电器的导通和关闭从而控制电阻丝的导通时间,以实现对水温的控制。
DS18B20可直接将温度转化成串行数字信号供微机处理。
而且每片DS18B20都有唯一的产品号,可以一并存入其ROM 中,以便在构成大型温度测控系统时在单线上挂接任意多个DS18S20芯片。
从DS18S20读出或写入DS18S20信息仅需要一根口线 其读写及其温度变换功率来源于数据总线,该总线本身也可以向所挂接的DS18B20供电,故不需要额外电源。
同时DS18B20能提供九位温度读数,它无需任何外围硬件即可方便地构成温度检测系统。
本设计主要实现温度测控,温度显示,温度门限设定,超过设定的门限值时自动启动相应的功能。
2.2各模块电路的方案选择及论证根据题目的基本要求,设计任务主要设计一个水温测控系统,控制水箱中水的温度,选择合适的控制规律,使水箱中水的温度按预定规律变化,并且能够进行越限报警。
可通过键盘,显示电路设定目标温度、控制参数、运行等。
2.2.1 系统硬件、软件总框图 单片机按键电路温度采集电路晶振电路复位电路降温电路升温电路LCD 显示电路报警电路图2-2-1 温度控制系统硬件设计方框图温度控制系统的主程序温度采集子程序键盘扫描子程序显示子程序温度比较执行部分子程序报警子程序图2-2-2 温度控制系统软件设计方框图2.3 方案论证2.3.1 温度传感器的选择方案一:采用热敏电阻,可满足40~90℃的测量范围,但热敏电阻精度、重复性、可靠性都比较差,其测量温度范围相对较小,稳定性较差,不能满足本系统温度控制的范围要求。
方案二:采用温度传感器铂电阻 Pt1000。
铂热电阻的物理化学性能在高温和氧化性介质中很稳定,它能用作工业测温元件,且此元件线性较好。
在 0—100 摄氏度时,最大非线性偏差小于 0.5 摄氏度。
铂热电阻与温度关系是,Rt = R0(1+At+Bt*t);其中 Rt 是温度为 t 摄氏度时的电阻;R0 是温度为 0 摄氏度时的电阻;t 为任意温度值,A,B 为温度系数。
方案三:采用模拟温度传感器AD590K,AD590K具有较高精度和重复性(重复性优于0.1℃),其良好的非线性可以保证优于±0.1℃的测量精度。
但其测量的值需要经过运算放大、模数转换再传给单片机,硬件电路较复杂,调试也会相对困难,所以本系统不宜采用此法。
方案四:采用数字温度传感器DS18B20,DS18B20提供九位温度读数,测量范围-55℃~125℃,采用独特1-WIRE 总线协议,只需一根口线即实现与MCU 的双向通讯,具有连接简单,高精度,高可靠性等特点。