高中数学选修1-1知识点及配套练习
- 格式:pdf
- 大小:397.94 KB
- 文档页数:43
数学选修1-1知识点总结导数及其应用一.导数概念的引入 1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x∆→+∆-∆ 例1. 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t(单位:s)存在函数关系2() 4.9 6.510h t t t =-++运动员在t=2s 时的瞬时速度是多少?解:根据定义0(2)(2)(2)lim 13.1x h x h v h x∆→+∆-'===-∆ 即该运动员在t=2s 是13.1m/s,符号说明方向向下2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()n x n f x f x k f x x x ∆→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆ 二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln xf x a a '=6 若()x f x e =,则()x f x e '=7 若()log x a f x =,则1()ln f x x a'=8 若()ln f x x =,则1()f x x '= 导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'= 考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x = ★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( ) 319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是()A.30°B.45°C.60°D.90° ★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用 1.函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.求单调性的步骤:① 确定函数)(x f y =的定义域(不可或缺,否则易致错);② 解不等式'()0'()0f x f x ><或;③ 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能用“”连结。
人教版高中数学选修1-1知识点梳理重点题型(常考知识点)巩固练习全称量词与存在量词【学习目标】1.理解全称量词、存在量词和全称命题、特称命题的概念;2.能准确地使用全称量词和存在量词符号“∀” “∃ ”来表述相关的教学内容;3.掌握判断全称命题和特称命题的真假的基本原则和方法;4. 能正确地对含有一个量词的命题进行否定.【要点梳理】要点一、全称量词与全称命题全称量词全称量词:在指定范围内,表示整体或者全部的含义的量词称为全称量词.常见全称量词:“所有的”、“任意一个”、“每一个”、“一切”、“任给”等.通常用符号“∀”表示,读作“对任意”.全称命题全称命题:含有全称量词的命题,叫做全称命题.一般形式:“对M 中任意一个x ,有()p x 成立”,记作:x M ∀∈,()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:有些全称命题在文字叙述上可能会省略了全称量词,例如:(1)“末位是0的整数,可以被5整除”;(2)“线段的垂直平分线上的点到这条线段两个端点的距离相等”;(3)“负数的平方是正数”;都是全称命题.要点二、存在量词与特称命题存在量词定义:表示个别或一部分的含义的量词称为存在量词.常见存在量词:“有一个”,“存在一个”,“至少有一个”,“有的”,“有些”等.通常用符号“∃ ”表示,读作“存在 ”.特称命题特称命题:含有存在量词的命题,叫做特称命题.一般形式:“存在M 中一个元素0x ,有0()p x 成立”,记作:0x M ∃∈,0()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:(1)一个特称命题中也可以包含多个变量,例如:存在,R R αβ∈∈使sin()sin sin αβαβ+=+.(2)有些特称命题也可能省略了存在量词.(3)同一个全称命题或特称命题,可以有不同的表述要点三、 含有量词的命题的否定对含有一个量词的全称命题的否定全称命题p :x M ∀∈,()p xp 的否定p ⌝:0x M ∃∈,0()p x ⌝;从一般形式来看,全称命题“对M 中任意一个x ,有p (x )成立”,它的否定并不是简单地对结论部分p(x)进行否定,还需对全称量词进行否定,使之成为存在量词,也即“任意,()x M p x ∈”的否定为“0x M ∃∈,0()p x ⌝”.对含有一个量词的特称命题的否定特称命题p :0x M ∃∈,0()p xp 的否定p ⌝:x M ∀∈,()p x ⌝;从一般形式来看,特称命题“0x M ∃∈,0()p x ”,它的否定并不是简单地对结论部分0()p x 进行否定,还需对存在量词进行否定,使之成为全称量词,也即“0x M ∃∈,0()p x ”的否定为“x M ∀∈,()p x ⌝”.要点诠释:(1)全称命题的否定是特称命题,特称命题的否定是全称命题;(2)命题的否定与命题的否命题是不同的.(3)正面词:等于 、 大于 、小于、 是、 都是、 至少一个 、至多一个、 小于等于否定词:不等于、不大于、不小于、不是、不都是、 一个也没有、 至少两个 、 大于等于.要点四、全称命题和特称命题的真假判断①要判定全称命题“x M ∀∈,()p x ”是真命题,必须对集合M 中的每一个元素x ,证明()p x 成立;要判定全称命题“x M ∀∈,()p x ”是假命题,只需在集合M 中找到一个元素x 0,使得0()p x 不成立,即举一反例即可.②要判定特称命题“0x M ∃∈,0()p x ”是真命题,只需在集合M 中找到一个元素x 0,使得0()p x 成立即可;要判定特称命题“0x M ∃∈,0()p x ”是假命题,必须证明在集合M中,使 ()p x 成立得元素不存在.【典型例题】类型一:量词与全称命题、特称命题【全称量词与存在量词395491例1】例1. 判断下列命题是全称命题还是特称命题.(1)∀x ∈R ,x 2+1≥1;(2)所有素数都是奇数;(3)存在两个相交平面垂直于同一条直线;(4)有些整数只有两个正因数.【解析】(1)有全称量词“任意”,是全称命题;(2)有全称量词“所有”,是全称命题;(3)有存在量词“存在”,是特称命题;(4)有存在量词“有些”;是特称命题。
下面是整理后的目录,看起来清楚些(1-6页是数学选修1-1知识总结,7-24页是每一章的训练题ABC ,25-42页是训练题的答案) 目录: 数学选修1-1知识点第一章 常用逻辑用语 [基础训练A 组] 第一章 常用逻辑用语 [综合训练B 组] 第一章 常用逻辑用语 [提高训练C 组] 第二章 圆锥曲线 [基础训练A 组] 第二章 圆锥曲线 [综合训练B 组]第二章 圆锥曲线 [提高训练C 组] 第三章 导数及其应用 [基础训练A 组] 第三章 导数及其应用 [综合训练B 组]第三章 导数及其应用 [提高训练C 组]高二数学选修1-1知识点1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题. 11、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.13、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.14、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.18、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.,即2p AB =. 21、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02pF y P =-+.22、若某个问题中的函数关系用()f x 表示,问题中的变化率用式子()()2121f x f x x x --fx ∆=∆表示,则式子()()2121f x f x x x --称为函数()f x 从1x 到2x 的平均变化率. 23、函数()f x 在0x x =处的瞬时变化率是()()210021limlimx x f x f x fx x x∆→∆→-∆=-∆,则称它为函数()y f x =在0x x =处的导数,记作()0f x '或0x x y =',即()()()0000limx f x x f x f x x∆→+∆-'=∆.24、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.曲线()y f x =在点()()00,x f x P 处的切线的斜率是()0f x ',切线的方程为()()()000y f x f x x x '-=-.若函数在0x 处的导数不存在,则说明斜率不存在,切线的方程为0x x =. 25、若当x 变化时,()f x '是x 的函数,则称它为()f x 的导函数(导数),记作()f x '或y ',即()()()0limx f x x f x f x y x∆→+∆-''==∆.26、基本初等函数的导数公式: ()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=; ()3若()sin f x x =,则()cos f x x '=;()4若()cos f x x =,则()sin f x x '=-; ()5若()x f x a =,则()ln x f x a a '=;()6若()x f x e =,则()x f x e '=; ()7若()log a f x x =,则()1ln f x x a '=;()8若()ln f x x =,则()1f x x'=. 27、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦. 28、对于两个函数()y f u =和()u g x =,若通过变量u ,y 可以表示成x 的函数,则称这个函数为函数()y f u =和()u f x =的复合函数,记作()()y f g x =.复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是x u x y y u '''=⋅.29、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.30、点a 称为函数()y f x =的极小值点,()f a 称为函数()y f x =的极小值;点b 称为函数()y f x =的极大值点,()f b 称为函数()y f x =的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.31、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.32、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.(数学选修1-1)第一章 常用逻辑用语[基础训练A 组] 一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451= C .2210x x +-> D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的 逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真 3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠” D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零, 另一根小于零,则A 是B 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
高一选修1-1数学知识点一、直线和平面的坐标系在数学中,我们经常使用直线和平面的坐标系进行分析和计算。
直线坐标系是一种通过坐标来确定点位置的表示方法。
通常我们使用横轴和纵轴构成的直角坐标系。
横轴称为x轴,纵轴称为y 轴。
在二维直角坐标系中,一个点的位置可以用(x, y)表示,其中x为横坐标,y为纵坐标。
平面坐标系同样采用直角坐标系,不同的是在平面上引入了第三个轴,垂直于x轴和y轴的轴称为z轴。
我们可以使用(x, y, z)来表示一个点在三维空间中的位置。
二、集合和函数在数学中,集合是由一些确定的对象组成的整体。
集合可以包含数字、字母、词语等等。
在表示集合时,我们通常使用大括号{},并且将集合中每个元素之间用逗号隔开。
函数是数学中一个非常重要的概念,描述了两个集合之间的关系。
函数将一个集合的每个元素映射到另一个集合的元素。
函数通常用f(x)表示,其中x为输入,f(x)为输出。
函数可以通过图像、表格或公式进行表示和计算。
三、直线和圆的性质直线和圆是我们在几何学中经常遇到的基本图形。
直线是由无限多个点组成的无厚度的线段。
直线具有无限延伸的性质,可以在坐标系中用斜率和截距来表示。
圆是由所有到圆心距离相等的点组成的图形。
圆可以用半径和圆心的坐标来表示。
圆的性质包括直径、弧、切线等。
四、三角函数三角函数是数学中研究角度和三角关系的重要工具。
常见的三角函数包括正弦函数、余弦函数和正切函数。
这些函数可以通过一条直角三角形中的比例定义出来。
在直角三角形中,正弦函数定义为斜边与斜边与对边之间的比值。
余弦函数定义为斜边与斜边与邻边之间的比值。
正切函数定义为邻边与对边之间的比值。
五、导数和微分导数和微分是微积分中的重要概念。
导数描述了函数在某一点的变化率。
它可以通过函数的极限来定义。
如果函数f(x)在某一点x处的导数存在,那么我们可以通过导数求出该点的切线斜率。
微分是导数的一个应用,用于求解函数的极值和函数图像的特征。
下面是整理后的目录,看起来清楚些(1-6页是数学选修1-1知识总结,7-24页是每一章的训练题ABC,25-42页是训练题的答案)目录:数学选修1-1知识点第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组]第三章导数及其应用 [提高训练C组]高二数学选修1-1知识点1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p,则q”,它的逆命题为“若q,则p”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p,则q”,则它的否命题为“若p⌝”.⌝,则q5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p,则q”,则它的否命题为“若q⌝”.⌝,则p()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q⇒,则p是q的充分条件,q是p的必要条件.若p q⇔,则p是q的充要条件(充分必要条件).8、用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作p q∧.当p、q都是真命题时,p q∧是真命题;当p、q两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.11、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.13、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.14、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.18、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.抛物线的“通径”,即2p AB =. 21、焦半径公式:若点()00,x y P 在抛物线()220y p xp =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y p xp =->上,焦点为F ,则02p F x P =-+;若点()00,x y P 在抛物线()220x p yp =>上,焦点为F ,则02p F y P =+; 若点()00,x y P 在抛物线()220x p yp =->上,焦点为F ,则02p F y P =-+. 22、若某个问题中的函数关系用()f x 表示,问题中的变化率用式子()()2121f x f x x x --fx∆=∆表示,则式子()()2121f x f x x x --称为函数()f x 从1x 到2x 的平均变化率.23、函数()f x 在0x x =处的瞬时变化率是()()210021l i m l i m x x f x f x f x x x ∆→∆→-∆=-∆,则称它为函数()y f x =在0x x =处的导数,记作()0f x '或0x x y =',即()()()000l i m x f x x f x f x x∆→+∆-'=∆. 24、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.曲线()y f x =在点()()00,x f x P 处的切线的斜率是()0f x ',切线的方程为()()()000yfx f x x x '-=-.若函数在0x 处的导数不存在,则说明斜率不存在,切线的方程为0x x =.25、若当x 变化时,()f x '是x 的函数,则称它为()f x 的导函数(导数),记作()f x '或y ',即()()()0l i m x f x x f x f x y x∆→+∆-''==∆. 26、基本初等函数的导数公式:()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=; ()3若()s i n f x x =,则()c o s f x x '=;()4若()c o s f x x =,则()s i n f x x '=-; ()5若()x f x a =,则()l n xf x a a '=;()6若()x f x e =,则()x f x e '=; ()7若()l o g a f x x=,则()1ln f x x a '=;()8若()l n f x x =,则()1f x x'=. 27、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦; ()2 ()()()()()()fx g x f x g xfx g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x gx g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦. 28、对于两个函数()y f u =和()u g x =,若通过变量u ,y 可以表示成x 的函数,则称这个函数为函数()y f u =和()u f x =的复合函数,记作()()y f g x =. 复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是x u x y y u '''=⋅.29、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.30、点a 称为函数()y f x =的极小值点,()f a 称为函数()y f x =的极小值;点b 称为函数()y f x =的极大值点,()f b 称为函数()y f x =的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.31、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.32、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.(数学选修1-1)第一章 常用逻辑用语[基础训练A 组] 一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0s i n 451= C .2210x x +-> D .梯形是不是平面图形呢? 2.在命题“若抛物线2y a x b x c =++的开口向下,则{}2|0x a x b xc φ++<≠”的 逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真 3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠” D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1Aa Ra ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零, 另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
人教版高中数学选修1-1知识点梳理)巩固练习重点题型(常考知识点命题及其关系【学习目标】1.了解命题、真命题、假命题的概念,能够指出一个命题的条件和结论;2.了解原命题、逆命题、否命题、逆否命题,会分析四种命题的相互关系,能判断四种命题的真假;3.能熟练判断命题的真假性.【要点梳理】要点一、命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.要点诠释:1.不是任何语句都是命题,不能确定真假的语句不是命题,如“x>2”,“2不一定大于3”.2.只有能够判断真假的陈述句才是命题.祈使句,疑问句,感叹句都不是命题,例如:“起立”、“π是有理数吗?”、“今天天气真好!”等.3.语句能否确定真假是判断其是否是命题的关键.一个命题要么是真,要么是假,不能既真又假,模棱两可.命题陈述了我们所思考的对象具有某种属性,或者不具有某种属性,这类似于集合中元素的确定性.要点二、命题的结构命题可以改写成“若p,则q”的形式,或“如果p,那么q”的形式.其中p是命题的条件,q是命题的结论.要点诠释:1.一般地,命题“若p则q”中的p为命题的条件q为命题的结论.2.有些问题中需要明确指出条件p和q各是什么,因此需要将命题改写为“若p则q”的形式.要点三、四种命题原命题:“若p,则q”;逆命题:“若q,则p”;实质是将原命题的条件和结论互相交换位置;否命题:“若非p,则非q”,或“若⌝p,则⌝q”;实质是将原命题的条件和结论两者分别否定;逆否命题:“若非q,则非p”,或“若⌝q,则⌝p”;实质是将原命题的条件和结论两者分别否定后再换位或将原命题的条件和结论换位后再分别否定.要点诠释:对于一般的数学命题,要先将其改写为“若p,则q”的形式,然后才方便写出其他形式的命题.要点四、四种命题之间的关系四种命题之间的构成关系原命题若p则q 互互互逆为逆否逆命题若q则p互否否命题互为逆否否逆否命题若⌝p则⌝q 四种命题之间的真值关系原命题真真假假逆命题真假真假互逆否命题真假真假若⌝q则⌝p逆否命题真真假假要点诠释:(1)互为逆否命题的两个命题同真同假;(2)互为逆命题或互为否命题的两个命题的真假无必然联系.要点五、反证法:1.反证法是假设结论的否定成立,利用已知条件,经过推理论证得出矛盾,判定结论的否定错误,从而得出要证的结论正确.2.反证法的步骤:(1)假设结论不成立.(2)从假设出发推理论证得到矛盾(3)判定假设错误,肯定结论正确.3.互为逆否命题的两个命题同真同假是命题转化的依据和途径之一,因此在直接证明. 原命题有困难时,可以考虑证明与它等价的逆否命题.要点诠释:反证法是间接证明的重要方法之一.【典型例题】类型一:命题的概念例 1.判断下列语句是否为命题?若是,判断其真假.(1) x > 1 ;(2)当 x = 0 时, x > 1 ; (3) 你是男生吗? (4) 求证: π 是无理数.【思路点拨】依据命题的定义判断。
第一章章末总结知识点一四种命题间的关系命题是能够判断真假、用文字或符号表述的语句.一个命题与它的逆命题、否命题之间的关系是不确定的,与它的逆否命题的真假性相同,两个命题是等价的;原命题的逆命题和否命题也是互为逆否命题.例1判断下列命题的真假.(1)若x∈A∪B,则x∈B的逆命题与逆否命题;(2)若0<x<5,则|x-2|<3的否命题与逆否命题;(3)设a、b为非零向量,如果a⊥b,则a·b=0的逆命题和否命题.知识点二充要条件及其应用充分条件和必要条件的判定是高中数学的重点内容,综合考察数学各部分知识,是高考的热点,判断方法有以下几种:(1)定义法(2)传递法:对于较复杂的关系,常用推出符号进行传递,根据这些符号所组成的图示就可以得出结论.互为逆否的两个命题具有等价性,运用这一原理,可将不易直接判断的命题化为其逆否命题加以判断.(3)等价命题法:对于含有逻辑联结词“非”的充分条件、必要条件的判断,往往利用原命题与其逆否命题是等价命题的结论进行转化.(4)集合法:与逻辑有关的许多数学问题可以用范围解两个命题之间的关系,这时如果能运用数形结合的思想(如数轴或Venn 图等)就能更加直观、形象地判断出它们之间的关系.例2 若p :-2<a<0,0<b<1;q :关于x 的方程x 2+ax +b =0有两个小于1的正根,则p 是q 的什么条件?例3 设p :实数x 满足x 2-4ax +3a 2<0,a<0.q :实数x 满足x 2-x -6≤0或x 2+2x -8>0.且綈p 是綈q 的必要不充分条件,求实数a 的取值范围.知识点三 逻辑联结词的应用对于含逻辑联结词的命题,根据逻辑联结词的含义,利用真值表判定真假.利用含逻辑联结词命题的真假,判定字母的取值范围是各类考试的热点之一.例4 判断下列命题的真假.(1)对于任意x ,若x -3=0,则x -3≤0;(2)若x =3或x =5,则(x -3)(x -6)=0.例5 设命题p :函数f(x)=lg ⎝⎛⎭⎫ax 2-x +116a 的定义域为R ;命题q :不等式2x +1<1+ax 对一切正实数均成立.如果命题p 或q 为真命题,命题p 且q 为假命题,求实数a 的取值范围.知识点四全称命题与特称命题全称命题与特称命题的判断以及含一个量词的命题的否定是高考的一个重点,多以客观题出现.全称命题要对一个范围内的所有对象成立,要否定一个全称命题,只要找到一个反例就行.特称命题只要在给定范围内找到一个满足条件的对象即可.全称命题的否定是特称命题,应含存在量词.特称命题的否定是全称命题,应含全称量词.例6写出下列命题的否定,并判断其真假.(1)3=2;(2)5>4;(3)对任意实数x,x>0;(4)有些质数是奇数.例7已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,并说明理由.(2)若存在一个实数x0,使不等式m-f(x0)>0成立,求实数m的取值范围.章末总结重点解读例1 解 (1)若x ∈A ∪B ,则x ∈B 是假命题,故其逆否命题为假,逆命题为若x ∈B ,则x ∈A ∪B ,为真命题.(2)∵0<x<5,∴-2<x -2<3,∴0≤|x -2|<3.原命题为真,故其逆否命题为真.否命题:若x≤0或x≥5,则|x -2|≥3.例如当x =-12,⎪⎪⎪⎪-12-2=52<3. 故否命题为假.(3)原命题:a ,b 为非零向量,a ⊥b ⇒a·b =0为真命题.逆命题:若a ,b 为非零向量,a·b =0⇒a ⊥b 为真命题.否命题:设a ,b 为非零向量,a 不垂直b ⇒a·b≠0也为真.例2 解 若a =-1,b =12,则Δ=a 2-4b<0,关于x 的方程x 2+ax +b =0无实根,故p ⇒q.若关于x 的方程x 2+ax +b =0有两个小于1的正根,不妨设这两个根为x 1、x 2,且0<x 1≤x 2<1,则x 1+x 2=-a ,x 1x 2=b.于是0<-a<2,0<b<1,即-2<a<0,0<b<1,故q ⇒p.所以,p 是q 的必要不充分条件.例3 解 设A ={x|p}={x|x 2-4ax +3a 2<0,a<0}={x|3a<x<a ,a<0}. B ={x|q}={x|x 2-x -6≤0或x 2+2x -8>0}={x|x<-4或x≥-2}.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件.∴A B ,∴⎩⎪⎨⎪⎧ a≤-4a<0或⎩⎪⎨⎪⎧3a≥-2a<0, 解得-23≤a<0或a≤-4. 故实数a 的取值范围为(-∞,-4]∪⎣⎡⎭⎫-23,0. 例4 解 (1)∵x -3=0,有x -3≤0,∴命题为真;(2)∵当x =5时,(x -3)(x -6)≠0,∴命题为假.例5 解 p :由ax 2-x +116a>0恒成立得 ⎩⎪⎨⎪⎧ a>0Δ=1-4×a×a 16<0,∴a>2. q :由2x +1<1+ax 对一切正实数均成立,令t =2x +1>1,则x =t 2-12, ∴t<1+a·t 2-12, ∴2(t -1)<a(t 2-1)对一切t>1均成立.∴2<a(t +1),∴a>2t +1,∴a≥1. ∵p 或q 为真,p 且q 为假,∴p 与q 一真一假.若p 真q 假,a>2且a<1不存在.若p 假q 真,则a≤2且a≥1,∴1≤a≤2.故a 的取值范围为1≤a≤2.例6 解 (1)3≠2,真命题;(2)5≤4,假命题;(3)存在一个实数x ,x≤0,真命题;(4)所有质数都不是奇数,假命题.例7 解 (1)不等式m +f(x)>0可化为m>-f(x),即m>-x 2+2x -5=-(x -1)2-4.要使m>-(x -1)2-4对于任意x ∈R 恒成立,只需m>-4即可.故存在实数m ,使不等式m +f(x)>0对于任意x ∈R 恒成立,此时,只需m>-4.(2)不等式m -f(x 0)>0可化为m>f(x 0),若存在一个实数x 0,使不等式m>f(x 0)成立, 只需m>f(x)min .又f(x)=(x -1)2+4,∴f(x)min =4,∴m>4.所以,所求实数m 的取值范围是(4,+∞).。
高中数学选修1-1知识点总结第一章:逻辑语 1.四种命题的形式原命题:若 p 则 q 逆命题:若 q 则 p 否命题:若 ¬p 则 ¬q 逆否命题:若¬q 则¬p 结论:互为逆否的两个命题是等价的(1)原命题与逆否命题同真假(2)原命题的逆命题与否命题同真假 2.充分条件与必要条件:若 ,则称p 是q 的充分条件,q 是p 的必要条件 3. 充要条件:(3)若 且 ,则称p 是q 的必要不充分条件。
判别步骤:①找出p 和q ② 考察 p 能否推出q 和 q 能否推出 p判别技巧:推不出的一定能举反例 4.含逻辑联结词“且”“或”的命题真假的判断:确定形式→判断真假①判断p 且q 的真假:一假必假 ②判断p 或q 的真假:一真必真 ③p 与﹁q 的真假相反 5.全称命题 的否定是 特称命题 的否定是 第二章:圆锥曲线方程(一)、椭圆(1)定义:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).22,y x 项中哪个分母大,焦点就在哪一条轴上。
焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 长轴的长=2a 短轴的长=2b焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距()222122F F c c a b ==-p q ⇒q p ⇒p q ⇒q p ⇒q p ⇒(1)若 且,则称p 是q 的充分必要条件,简称充要条件。
数学选修1-1知识点总结导数及其应用一.导数概念的引入 1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x∆→+∆-∆ 例1. 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t(单位:s)存在函数关系2() 4.9 6.510h t t t =-++运动员在t=2s 时的瞬时速度是多少?解:根据定义0(2)(2)(2)lim 13.1x h x h v h x∆→+∆-'===-∆ 即该运动员在t=2s 是13.1m/s,符号说明方向向下2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()n x n f x f x k f x x x ∆→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆ 二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln xf x a a '=6 若()x f x e =,则()x f x e '=7 若()log x a f x =,则1()ln f x x a'=8 若()ln f x x =,则1()f x x '= 导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'= 考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x = ★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( ) 319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是()A.30°B.45°C.60°D.90° ★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用 1.函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.求单调性的步骤:① 确定函数)(x f y =的定义域(不可或缺,否则易致错);② 解不等式'()0'()0f x f x ><或;③ 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能用“”连结。