多元函数微积分测试题
- 格式:doc
- 大小:172.00 KB
- 文档页数:3
专升本(国家)-专升本⾼等数学(⼀)分类模拟多元函数微积分学(三).doc专升本⾼等数学(-)分类模拟多元函数微积分学(三)⼀、选择题dz1、⼆元函数z=(l+2x)3y ,则⽯等于 ____________A. 3y (l+2x)3y_1 B ? 6y (l+2x) 3y_1C ?(l+2x)3y :Ln(:L+2x)D ? 6y (l + 2x)3ydz2^ 设z=cos (x 3y 2),则⼱,等于 ___________A. 2x 3ysin (x 3y 2) B ? -sin (x'y :) C ? ⼀2x 3ysin (x 3y 2) D ? 3x 2y 2sin (x 3y 2)剽3> z=5xy ,则处 IA ?50B ?25 C. 501n5 D. 251n5] afgQ4、已知f (xy, x+y) =x 3+y 3,则 “⼯°,等于A ? 3y 2-3x-3yB ? 3y 2+3x+3y C. 3x 2-3x-3yD ? 3x?+3x+3y(In y)x dr ⼗亍(In y)^{dy(In yY\n (In y)dz+丄(In y)T }dyC ?(:Lny) x ln (lny) dx+ (lny) x_1dy(In v )JIn (In ^y)dr+ —(In y)T ~[dy D . y6、函数z=x 2+y 3在点(1, -1)处的全微分dz | (i, -i )等于 ____________A. 2dx-3dyB. 2dx+3dyC. dx+dy D ? dx-dyA. (1GW2 B ?5、设⼄=(lny) J 贝Ijdz 等于 _________7、设f(x, 为 _________ y)为⼆元连续函数, p (D )drdy = J dj*jV (x ,5?)dx 则积分区域可以表⽰(L2)等于A.B.c.D?8^设f(x, y)为连续函数,⼆次积分A J^cLrJ f(x.y)dyc.W f(x,y)dx交换积分次序后等于^cU?J^/(jr ,5r)dy (dx|" /(\r^y)dyB.D. J 。
考研数学二(多元函数微积分)模拟试卷17(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.已知(axy3一y2vosx)dx+(1+bysinx+3x2y2)dy为某一函数的全微分,则a,b取值分别为A.一2和2B.2和一2C.一3和3D.3和一3正确答案:B 涉及知识点:多元函数微积分2.设f(x,y)=则f(0,0)点处A.不连续B.偏导数不存在C.偏导数存在但不可微D.偏导数存在且可微正确答案:C 涉及知识点:多元函数微积分3.二元函数f(x,y)在点(x0,y0)处两个偏导数fx’(x0,y0),fy’(x0,y0)存在是f(x,y)在该点连续的A.充分条件而非必要条件B.必要条件而非充分条件C.充分必要条件D.既非充分条件又非必要条件正确答案:D 涉及知识点:多元函数微积分4.二元函数f(x,y)=在点(0,0)处A.连续,偏导数存在B.连续,偏导数不存在C.不连续,偏导数存在D.不连续,偏导数不存在正确答案:C 涉及知识点:多元函数微积分5.考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处两个偏导数存在若用“”表示可由性质P推出性质Q,则有A.B.C.D.正确答案:A 涉及知识点:多元函数微积分6.已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则A.点(0,0)不是f(x,y)的极值点B.点(0,0)是f(x,y)的极大值点C.点(0,0)是f(x,y)的极小值点D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点正确答案:A 涉及知识点:多元函数微积分7.累次积分f(rcosθ.rsinθ)rdr可写成A.B.C.D.正确答案:D 涉及知识点:多元函数微积分8.设f(x,y)连续,且f(x,y)=xy+其中D由y=0,y=x2,x=1所围成,则f(x,y)等于A.xyB.2xyC.D.xy+1正确答案:C 涉及知识点:多元函数微积分9.设平面域由x=0,y=0,x+y=.x+y=1围成.若则A.I1<I2<I3B.I3<I2<I1C.I1<I3<I2D.I3<I1<I2填空题10.设z=,f(u)可导.则正确答案:z 涉及知识点:多元函数微积分11.设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数.则fx’(0,1,一1)=______正确答案:1 涉及知识点:多元函数微积分12.设f(x,y)=xy,则正确答案:xy-1+yxy-1lnx 涉及知识点:多元函数微积分13.设则du|(1,1,1)=_______.正确答案:dx—dy 涉及知识点:多元函数微积分14.设z=z(x,y)由方程x-mz=φ(y一nz)所确定(其中m,n为常数,φ为可微函数),则=______.正确答案:1 涉及知识点:多元函数微积分15.由方程所确定的函数z=z(x,y)在点(1,0,一1)处的全微分dz=______.正确答案:涉及知识点:多元函数微积分16.设f(x,y)=exysinπy+(x一1)arctan则df(1,1)=_____.正确答案:涉及知识点:多元函数微积分17.若z=f(x,y)可微,且则当x≠0时=______正确答案:涉及知识点:多元函数微积分18.交换积分次序正确答案:涉及知识点:多元函数微积分19.交换积分次序20.正确答案:涉及知识点:多元函数微积分21.正确答案:涉及知识点:多元函数微积分22.正确答案:涉及知识点:多元函数微积分23.设区域D为x2+y2≤R2,则正确答案:涉及知识点:多元函数微积分解答题解答应写出文字说明、证明过程或演算步骤。
微积分II (甲)多元函数积分学练习题一、二重积分 1.计算二重积分22d Dx yσ⎰⎰,其中D 是由1,,2y x y x x ===所围成的闭区域. 2.计算二重积分Dxyd σ⎰⎰,其中D 是由直线2y y x ==、和2y x =所围成的闭区域.3. 作出积分区域的图形,交换积分次序,计算10dy ⎰.4.计算二重积分2,{(,)1,02}Dy xd D x y x y σ-=≤≤≤⎰⎰5.用极坐标计算Dσ⎰⎰,其中D 为{}22(,)|4,0,0x y x y x y +≤≥≥.6. 设D 为闭区域22{(,)|2}x y x y y +≤,将二重积分(,)Df x y d σ⎰⎰化为极坐标下的累次积分.7. 设D 为闭区域22{(,)|2,}x y x y x y x +≤≤,将二重积分(,)Df x y d σ⎰⎰化为极坐标下的累次积分.8. 利用二重积分计算由曲面22z x y =+和平面1z =所围成的立体的体积. 9.求由三个坐标面和平面1=+y x 及抛物面z y x -=+622所围立体的体积. 10.求由()π≤≤=x x y 0sin 与0=y 所围的均质薄板的质量中心.二、三重积分 11. 求xydV Ω⎰⎰⎰,其中Ω为1x y +=,1z =与三个坐标面所围成的三棱柱体.12. 求()⎰⎰⎰Ω+++dV z y x 311,其中Ω为三个坐标面与平面1=++z y x 所围成的四面体. 13.计算下列三重积分⎰⎰⎰Ω+dV y x z 22 ,其中Ω由22z x y =+及平面1z =围成. 14. 计算,⎰⎰⎰ΩzdV 其中Ω是由球面4222=++z y x与抛物面z y x 322=+所围成(在抛物面内的那一部分)的闭区域. 15.计算()d V z y x⎰⎰⎰Ω++222,其中Ω是球体1222≤++z y x .16. 计算球体22222a z y x ≤++在锥面22y x z +=上方部分Ω的体积.17.求由曲面)0(2222>=++a az z y x 及222z y x =+(含有z 轴部分)所围成空间的体积.18. 立体Ω是圆柱面122=+y x 内部, 平面2=z 下方, 抛物面221y x z --=上方部分, 其上任一点的密度与它到z 轴之距离成正比(比例系数为K ), 求Ω的质量m .三、曲线积分19. 计算⎰Γxdl ,其中 Γ是由x y =和2x y = 围成的区域的整个边界。
多元函数微积分复习题、单项选择题1 •函数f x,y 在点X o , y o 处连续是函数在该点可微分的(B )(A ) 充分而不必要条件; (B ) 必要而不充分条件; (C ) 必要而且充分条件;(D )既不必要也不充分条件•2 •设函数f x,y 在点x o ,y o 处连续是函数在该点可偏导的(D )(A ) 充分而不必要条件; (B ) 必要而不充分条件; (C ) 必要而且充分条件;(D )既不必要也不充分条件•3.函数f x, y 在点x o ,y o 处偏导数存在是函数在该点可微分的(B ).(A ) 充分而不必要条件; (B ) 必要而不充分条件;(C ) 必要而且充分条件;(D )既不必要也不充分条件•4 .对于二元函数z = f (x, y ),下列结论正确的是().CA. 若 Ijm =A )则必有 Iim f (X ) y) = A 且有 Iim f (X ) y) = A;X % X r X Qy >y oy 泌B. 若在(X 0,y °)处'z 和2∙z 都存在,则在点(x °, y °)处z =f (x,y )可微;CX Cy C.若在(x 0,y 0)处和2∙z 存在且连续,则在点(x 0, y 0)处z =f (x,y )可微; CX Cy5. 二元函数Z r f (X,y )在点(X 0,y °)处满足关系().C A. 可微(指全微分存在)二可导(指偏导数存在)=连续; B. 可微=可导=连续;C. 可微二•可导,或可微=连续,但可导不一定连续;D.可导=连续,但可导不一定可微.J4科・6. 向量a =3,7-2, b = 1,2,-1 ,则 aLb = ( A )(A ) 3 (B )-3(C )-2(D ) 2D.若 -2三和:X -2-2:Z α ■y√2 Z5.已知三点 M( 1, 2, 1), A (2, 1, 1), B (2 !, 1, 2),贝U MMAB = ( C)(A) -1 ; (B) 1(C) 0 ;(D) 27—⅛ T6.已知三点M(0, 1, 1), A (2, 2,1), B C 2, 1, 3),则 IMA ABl = ( B)(A) - .2;(B)2、2 (C)一 2 ;(D)-2;7 .设D 为园域x 2寸乞2ax (a 0),化积分 F(x,y)d 匚为二次积分的正确方法r>是D2aa2a : 2a -x 2A. O dx f(x, y)dy0 - _aB.20dxf (x, y)dya2acosθC. Od a f(「cos ),「sinV)JdJ2a cos --ID.2小 O 一 f(τcosγ TSin RTd T^23 ln X8 .设I = j dx 0 f (x, y)dy ,改变积分次序,则I= ____________ ■ Bcos -,9.二次积分『川山f(Pcos^, P s in 日)P d P 可以写成 ____________________ . D 1 y -ydy 0 f(x,y)dx B. 1 1dx 0f(x, y)dyD.10 .设门是由曲面x 2 y^2z 及z =2所围成的空间区域,在柱面坐标系下将三重积分I=川f (x, y, z)dxdydz 表示为三次积分,I= ____________ . CΩP2 (1).A . d r d 「2 f(「cosd 「sin=z)dzj 0J 0』0 ∖ Z2兀 2 £B. d » ! d 「2 f (「cos=,「sin P Z)「dz*0‘0‘0∖ ' , ZA. C.ln3e y 0 dy 0 f(x, y)dx B. ln33dy 0 f(x, y)dx D.ln33dy e yf(x, y)dx3InXI dy 0 f (x, y)dx11今2dy 0 f(x, y)dx1x -x 2dx 0 f (x, y)dyA. C.2兀 2 2C . 0 dr 0 d ;Iff( TCOSd,「sinr, Z) TdZ^2"2兀 2 2D . d d「f(「cosv,「sinv,z) 'dz■ o .0 ■ o11.设L为x0y面内直线段,其方程为贝U P x, y dx =L(A) a(C) 012 .设L为x0y面内直线段,其方程为(A) a(C) 0 L:y=a, c_x_d ,贝U Px, ydy =L(B) C(D) dQQ13.设有级数a U n,则lim Un= 0是级数收敛的心n→c(A) 充分条件;(B) 充分必要条件;(C) 既不充分也不必要条件;(D) 必要条件;QQ14.幂级数' nχnn珀的收径半径R =(A) 3 (B) 0(C) 2 (D) 115.幕级数a -X n的收敛半径R-n三n(A) 1 (B) 0(C) 2 (D) 3OO OO16 .若幕级数a n X n的收敛半径为R ,则7a n X n 2的收敛半径为n =0 n=0(A) R (B) R2(C) 、R (D) 无法求得OO17.若IimU n= 0,则级数X U n ()F n三DA. 收敛且和为B.C. 发散D. 收敛但和不一定为可能收敛也可能发散QQ18.若Vu n为正项级数,则()n =1L : x = a, c^ymd ,(B) C(D) dQQQQC.若V U n 2 ,则VU n 也收敛D.nJ n 二OO19. 设幕级数a C n X n 在点X =3处收敛,则该级数在点x = -1处()An 4A.绝对收敛B. 条件收敛C. 发散D. 敛散性不定20. 级数J Sn 巴(Xn 0),则该级数() Bn4n!A.是发散级数B.是绝对收敛级数 C.是条件收敛级数 D. 可能收敛也可能发散:、填空题1•设 f(χ, y)=sinx+(y-1)ln(χ2+y 2),则 f x '(0,1) = ____________ 1___.2. _______________________________________________ 设 f (x, y )=cosx+ (y -1 $n (χ2 + y 2 ),贝U f x (0,1) = ___________________________ 0 _____ 3•二重积分的变量从直角坐标变换为极坐标的公式是!∣f X, y dxdy = f 'cos[ 's in ; ∣'d d -DD 4 5 68. 设积分区域D 为仁X 2 ∙ y 2乞4 , .. 2dxdy 6-4 .三重积分的变量从直角坐标变换为柱面坐标的公式是 111 f x, y, Z dxdydz : 111 f H cos∖ ? Sin Z ∣ : d 「d 「dzΩΩ5 .柱面坐标下的体积元素_dv = T dd z6 .设积分区域 D : x 2 y 2 -a 2,且 dxdy =9二,则 a = _3DA.若 Iim U n=0,则VU n 收敛n =1B.若VU n 收敛,则u n 2收敛Bn 4nJ若V U n 发散,n 4则 Iim Un=7. 设D 由曲线Q =asin^, = a 所围成, 3则 11dxdy a 24D19. 设f X, y 在[0 , 1]上连续,如果0 f X dx =3,1 1则 0 dx 0 f X f ydy= _______ 9.2 2 219. 积分y dx χe~y dy 的值等于20. 设 D 为园域 χ2+y 2≤a 2,若 川 χ2 + y 2 )dxdy = 8兀,则 a= _________ . 2D21. 设 I=出2dxdydz,其中 0 : x 2 + y 2+z 2 兰 a 2, z^0,则 I= _____________ . → a 3Ω 310. 设L 为连接(1,0)与(0,1)两点的直线段,则XydS= 2 .L设L 为连接(1,0)与(0, 1) 贝U J (x - y )ds = _____L两点的直线段,.012. 等比级数J aq nn =1(a = 0)当 qc1时,等比级数aq n =4收敛.13 .当_P>1—时,o° IP-级数a -P 是收敛的.14.当QQ时,级数V-1心丄是绝对收敛的.n P15 .若 f (X , y) = J χy +∙x则 f χ(2,1)=16.若2f(x, y)=xy 3(X -1)arccos-,贝U f 2x (1,y)=3y 217 .设Z XyI y In XdX XIn Zdy^ydZ Z 18.设 z=y lnx ,则—2 =CXln y(ln y -1) InX2 y X1 .4 尹 - e"4),二、计算题1.求过点-2,0,1 且与平面2x-5y ∙4z -8=0平行的平面方程•解:已知平面的法向量n= (2, -5, 4),所求平面的方程为2( X +2)-5( y -0)+4( Z -1)=0 即 2 X -75y +4z = 02•求经过两点M i ( -1 , -2, 2)和M 2 (3, 0, 1)的直线方程。
专升本高等数学(一)-多元函数微积分学(一)(总分93,考试时间90分钟)一、填空题1. 求下列函数的定义域..2. 求下列函数的定义域.u=ln(x2-y-1).3. 求下列函数的定义域..4. 求下列函数的定义域..5. 设,则=______.6. 设,则=______.7. 设,则=______.8. 设,则=______.9. 设函数,则=______,=______.10. 设函数,则=______.11. 函数z=ln(1+x2-y2)的全微分dz=______.12. 函数z=x2-2xy+y2的全微分=______.13. =______.14. 若积分区域D是由x=0,x=1,y=0,y=1围成的矩形区域,则=______15. 交换二次积分次序=______.16. 设区域D={(x,y)|x2+y2≤4},则=______.17. 平面上一块半径为2的圆形薄板,其密度函数为1,则这块薄板的质量为______.二、解答题求下列各函数对x,y的偏导数:1. z=ex2+y;2. ;3. z=ln(ln x+ln y);4. ;5. z=sin(x+2y)+2xy;6. z=(xy)μ(其中μ为非零常数).求下列函数的二阶偏导数:7. z=sin xy;8. z=ln(x2+xy+y2).9. 设函数z=ln(1-x+y)+x2y,求.10. 设z=x2y-xy2,x=ucos v,y=usinv,求.11. 设z=arctan xy,y=ex,求.12. 设,x=u-2v,y=2u+v,求.13. 设z=(2x+y)(2x+y),求.14. 设z=f(x2+y2,exy),其中f(u,v)有连续偏导数,求.15. 设,其中φ有连续偏导数,证明.求下列各式确定的隐函数y=f(x)的导数:16. cos y-ex+2xy=0;17. .求下列各式确定的隐函数z=f(x,y)的偏导数:18. x2+y2+z2-3xyz=0;19. .20. 设z=arctan(xy)+2x2+y,求dz.求下列各函数的全微分dz:21. ;22. z=ln(3x-2y+3);23. z=exy(x2+y2);24. z=arctan xy;25. z=xe-xy+sin(xy);26. z=sin(x+y)-x2+y2.27. 设,求28. 设z=f(2x+3y,exy),其中f(u,v)有连续偏导数,求dz.29. 设z=z(x,y)是由方程yz+x2+z=0确定,求dz.30. 设z=f(x,y),由方程x2+y2+z2-4z=0确定,求在点(1,-);(,0);(0,)处的全微分.31. 设z=f(x,y)由方程cos2x+cos2y=1+cos2z所确定,求dz.求下列函数的极值与极值点.32. f(x,y)=4x+2y-x2-y2;33. f(x,y)=e2x(x+y2+2y);34. f(x,y)=y3-x2+6x-12y+5.求下列条件极值.35. 做一个体积为V的无盖的圆柱形桶,试问当桶的高和底面半径各是多少时,可使圆桶所用的材料最省.36. 设生产某种产品的数量Q与所用两种原料A,B的数量x,y间有关系式Q=Q(x,y)=0.005x2y,欲用150元购买原料,已知A,B原料的单价分别为1元,2元,问购进两种原料各多少时,可使生产的产品数量最多?37. 计算二重积分,其中D是由直线y=-1,y=1,x=1及x=2围成的平面区域.38. 计算二重积分,其中D是由曲线y=x2及y=x所围成的平面区域.39. ,其中D是由直线y=x,y=1及y轴所围成的平面区域.40. ,其中D是由直线x=2,y=x及双曲线xy=1所围成的平面区域.41. ,其中D是由直线y=0,,x=2所围成的平面区域.42. ,其中D是由直线y=x,y=2x,x=2,x=4所围成的平面区域.43. 求,其中D是由直线y=x,y轴,y=1所围成的平面区域.44. 将二重积分化为二次积分,其中D是由直线x+y=1,x-y=1,x=0所围成的平面区域.交换下列二次积分次序.45.46. (a>0为常数)47. 计算二重积分试将下列直角坐标系下的二重积分化为极坐标系下的二重积分48.49.计算下列二重积分:50. ,其中D为x2+y2≤a2,x≥0,y≥0所围成的区域;51. ,其中D为x2+y2≤1,x≥0所围成的区域;52. ,其中D为x2+y2≤4,x2+y2≥1,y≤x,y≥0所围成的区域;53. ,其中D为由x2+y2≤R2,x≥0,y≥0所围成的区域;54. ,其中D为以x2+y2=2x为边界的上半圆域.55. 利用重积分求由平面和三个坐标平面所围成的立体的体积(其中a>0,b>0,c>0).56. 利用二重积分求由曲线y=x2与y2=x所围成的面积.57. 求由柱面x2+y2=a2,z=0及平面x+y+z=a所围成的立体的体积.58. 设有平面三角形薄片,其边界线可由方程x=0,y=x及y=1表示,薄片上的点(x,y)处的密度ρ(x,y)=x2+y2,求该三角形薄片的质量.59. 设半径为1的半圆形薄片上各点处的面密度等于该点到圆心的距离,求该薄片的质量.60. 设f(x)在[0,1]上连续,证明61. ,其中D为x2+(y-1)2≤1与x+y≤2所围成的区域.(提示:此题应在直角坐标系下求,先对x积分,积分区域要分块.)。
专升本高等数学(一)-多元函数微积分学(二)(总分:99.98,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:9,分数:18.00)1.设z=ln(x2+y),则等于A. B. C. D(分数:2.00)A.B. √C.D.解析:[解析] 本题主要考查简单二元函数偏导数的计算. [*](答案为B)2.设z=(lny)xy∙ A.xy(lny)xy-1∙ B.(lny)xy lnlny∙ C.y(lny)xy lnlny∙ D.x(lny)xy lnlny(分数:2.00)A.B.C. √D.解析:[解析] 本题主要考查简单二元函数偏导数的计算. [*](答案为C)3.设z=sin(xy2)∙ A.-2xycos(xy2)∙ B.-y2cos(xy2)∙ C.2xycos(xy2)∙ D.y2cos(xy2)(分数:2.00)A.B.C. √D.解析:[解析] 本题主要考查简单二元函数偏导数的计算. [*].(答案为C)4.已知f(xy,x-y)=x2+y2∙ A.2+2y∙ B.2-2y∙ C.2x+2y∙ D.2x-2y(分数:2.00)A. √B.C.D.解析:[解析] 本题主要考查简单二元函数偏导数的计算.f(xy,x-y)=x2+y2=(x-y)2+2xy,f(x,y)=2x+y2,[*],[*].(答案为A)5.函数z=3x2y+2xy3在点(1,1)处的全微分dz|(1,1)等于∙ A.4dx-3dy∙ B.4dx+3dy∙ C.8dx+9dy∙ D.8dx-9dy(分数:2.00)A.B.C. √D.解析:[解析] [*],[*],dz|(1,1)8dx+9dy.(答案为C)6.______∙ A.{(x,y)|x2+y2≤4}∙ B.{(x,y)|x2+y2≤4且x≠0}∙ C.{(x,y)|x2+y2≤4且x≠0,y≠0}∙ D.{(x,y)|x2+y2≤4且y≠0}(分数:2.00)A.B.C. √D.解析:7.______∙ A.{(x,y)|0<x2+y2≤2}∙ B.{(x,y)|0≤x2+y2≤2}∙ C.{(x,y)|0<x2+y2<2}∙ D.{(x,y)|0≤x2+y2<2}(分数:2.00)A. √B.C.D.解析:8.设f(x,y)=,则=______ A. B. C. D(分数:2.00)A.B.C. √D.解析:9.设,则f(x,y)=______A. B. C D.xe x(分数:2.00)A. √B.C.D.解析:二、{{B}}填空题{{/B}}(总题数:13,分数:26.00)10.,则.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] 根据二元函数的定义,函数关系只取决于定义域与对应法则,而与变量所选用的记号无关,如果函数表达式中的第一自变量用记号u表示,第二自变量用记号v表示,则给定的函数对应法则为[*].如果将第一自变量u用[*]替换,第二自变量v用[*]替换,则有 [*]11.f(x,y)=2x2+y2,则f(xy,x2-y2)= 1.(分数:2.00)填空项1:__________________ (正确答案:x4+y4)解析:[解析] f(xy,x2-y2)=2(xy)2+(x2-y2)2=x4+y4.12.f(x+y,x-y)=x2-y2,则f(x,y)=______.(分数:2.00)填空项1:__________________ (正确答案:xy)解析:[解析] 解法Ⅰ (置换法)令[*]解得[*]代入给定函数,则有 [*],因为函数关系与变量所选用的记号无关,再用字母x,y代换字母u,v,则有f(x,y)=xy 解法Ⅱ (拼凑法)由于f(x+y,x-y)=(x+y)(x-y),则有f(x,y)=xy13.f(xy,x-y)=x2+y2+xy,则f(x,y)=______.(分数:2.00)填空项1:__________________ (正确答案:3x+y2)解析:[解析] 由于f(xy,x-y)=x2+y2+xy=(x-y)2+3xy,则有f(x,y)=3x+y2.14.设函数z=x2+ye x.(分数:2.00)填空项1:__________________ (正确答案:2x+ye x)解析:[解析] 本题主要考查计算二元函数的一阶偏导数.[*]=2x+ye x.15.设z=sin(x2y).(分数:2.00)填空项1:__________________ (正确答案:x2cos(x2y))解析:[解析] 本题主要考查计算二元函数的一阶偏导数. [*].16.设z=,则.(分数:2.00)填空项1:__________________ (正确答案:1)解析:[解析] 本题主要考查计算二元函数的一阶偏导数.解法Ⅰ [*],[*].解法Ⅱ 由于是求函数[*]在点(1,0)处对x的偏导数,可先求出z(x,0),即将y=0代入函数[*],可得到关于x的一元函数,然后再求其在x=1处的导数.[*],[*].17.函数z=ln(1+x2-y2)的全微分dz=______.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] [*], [*].18.设z=ln(x+y2).(分数:2.00)填空项1:__________________ (正确答案:dx)解析:[解析] 本题主要考查计算二元函数的一阶全微分.解法Ⅰ [*],[*],[*].解法Ⅱ [*],[*].19.设z=x2y+siny.(分数:2.00)填空项1:__________________ (正确答案:2x)解析:[解析] 本题主要考查计算二元函数的二阶混合偏导数. [*].20.函数z=z(x,y)是由方程x2z+2y2z2+y=0确定,则dz=______.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] 两种解法如下.解法Ⅰ (公式法)令F(x,y,z)=x2z+2y2z2+y,分别求出三元函数F(x,y,z)对x,y,z的导数,对其中一个变量求导时,其他两个变量视为常数.[*],[*]解法Ⅱ (直接微分法)将方程两边同时求微分d(x2z)+d(2y2z2)+dy=0,2xdxz+x2dz+4ydy2+4y2zdz+dy=0,经整理,得(x2+4y2z)dz=-2xzdx-(4yz2+1)dy,即[*].21.函数f(x,y)=4(x-y)-x2-y2的极大值点是______.(分数:2.00)填空项1:__________________ (正确答案:8)解析:[解析] 解方程组[*]得驻点(2,-2),计算[*],B2-AC=-4<0,A=-2<0,所以函数的极大值点为(2,-2),极大值为f(2,-2)=8.22. 1.(分数:2.00)填空项1:__________________ (正确答案:{(x,y)|1<x2+y2≤2})解析:三、{{B}}解答题{{/B}}(总题数:1,分数:56.00)求下列二元函数的定义域.(分数:55.98)3.11)__________________________________________________________________________________________ 正确答案:(由于分式函数,要求分式的分母不为零,而对于根式函数,要求偶次方根号下的被开方式必须大于或等于零,则有[*]所以D={(x,y)|0<x2+y2≤4},此函数的定义域是以点(0,0)为圆心,以2为半径的圆周及圆周所围成的不含圆心、不含圆周上及圆周内的y轴部分的有界半开半闭区域(如下图).[*])解析:(2).z=ln(y2-2x+1).(分数:3.11)__________________________________________________________________________________________ 正确答案:(由于对数函数,要求真数式必须大于零,则有y2-2x+1>0,即y2>2x-1.所以D={(x,y)|y2>2x-1},此函数的定义域是以点([*],0)为顶点,以x为对称轴,开口向右的抛物线所围成的左侧无界开区域(如下图).[*])解析:3.11)正确答案:(对于函数arcsinf(x,y),arccosf(x,y),要求|f(x,y)|≤1,则有 [*]即[*] 所以D={(x,y)|-2≤x≤2,-3≤y≤3},此函数的定义域是直线x=-2,x=2,y=-3,y=3所围成的有界闭区域(如下图).[*]) 解析:3.11)__________________________________________________________________________________________正确答案:(要使函数解析式有意义,自变量x,y应同时满足[*]即[*]亦即[*]所以D={(x,y)|y2≤4x,x2+y2<1且x≠0,y≠0},此函数的定义域是抛物线y2=4x和圆x2+y2=1所围成的,但不含原点及抛物线间劣弧段的有界半开半闭区域(如下图).[*])解析:(5).,求 3.11)__________________________________________________________________________________________正确答案:([*], [*].)解析:(6).设z=e u sinv,u=xy,v=x+y 3.11)__________________________________________________________________________________________正确答案:(根据二元复合函数求导的链式法则,有[*]=e xy sin(x+y)y+e xy cos(x+y)=e xy[ysin(x+y)+cos(x+y)],[*]=e xy sin(x+y)x+e xy cos(x+y)=e xy[xsin(x+y)+cos(x+y)].)解析:(7).设z=f(u,v),而u=x2y,,其中f(u,v) 3.11)__________________________________________________________________________________________正确答案:(本题主要考查用二元复合函数的链式法则求偏导数. [*])解析:(8).设z=f(xy,x2+y2),且f 3.11)__________________________________________________________________________________________正确答案:(本题主要考查用二元复合函数的链式法则求偏导数.设z=f(u,v),u=xy,v=x2+y2,[*])解析:(9).设函数z=arctan(xy)+2x2+y,求dz.(分数:3.11)__________________________________________________________________________________________正确答案:(本题主要考查计算二元函数的全微分. [*])解析:(10).dz.(分数:3.11)正确答案:([*])解析:(11).设函数f(u,v)dz.(分数:3.11)__________________________________________________________________________________________ 正确答案:(本题主要考查计算二元复合函数的全微分. [*], [*])解析:(12).设函数z=ln(2-x+y) 3.11)__________________________________________________________________________________________ 正确答案:([*].)解析:(13).设函数z=ln(1-x+y)+x2y 3.11)__________________________________________________________________________________________ 正确答案:([*].)解析:(14).设函数,求 3.11)__________________________________________________________________________________________ 正确答案:([*])解析:(15).设函数z=z(x,y)是由方程x2+y2-xyz2=0 3.11)__________________________________________________________________________________________ 正确答案:(令F(x,y,z)=x2+y3-xyz2,分别求出三元函数F(x,y,z)对x,y,z的导数,对其中一个变量求导时,其他两个变量视为常数.[*])解析:(16).设z=f(x,y)是由方程F(x+mz,y+nz)=0所确定,其中m、n为常数,F(u,v)为可微分函数,数:3.11)__________________________________________________________________________________________ 正确答案:(本题主要考查计算二元函数的偏导数.设 F(u,v)=0,u=x+mz,v=y+nz, [*] [*])解析:(17).设z=z(x,y)是由方程yz+x2+z=0所确定,求dz.(分数:3.11)__________________________________________________________________________________________ 正确答案:(令F(x,y,z)=yz+x2+z,分别求出三元函数F(x,y,z)对x,y,z的导数,对其中一个变量求导时,其他两个变量视为常数.[*])解析:(18).设函数z=z(x,y)是由方程z=x+ye z 3.11)__________________________________________________________________________________________ 正确答案:(令F(x,y,z)=x+ye z-z,[*])解析:。
多元函数微积分学 历年试题1. 二元函数的偏导数1994——2012年共考了22次,考到的概率P=100%,为必考题.(1)(0105)设)(,1=∂∂=yzxy z 则A.x1 B. x 1- C. 21xy D. 21xy - (2)(0114)设=∂∂=)1,1(,xzez xy则(3)(0215)设=∂∂+=xz y x z 则),cos(22(4)(0314)设=∂∂=+)0,0(2,)(yfex f y x 则(5)(0508)设函数)(,=∂∂=+xze z y x 则A. y x e +B. y x ye +C. y x xe +D. y x e y x ++)((6)(0608)设函数)(,=∂∂=xze z xy 则A. xy yeB. xy xeC. xy eD. y e(7)(0708)设函数)(),tan(=∂∂=xzxy z 则A.)(cos 2xy yB. )(cos 2xy xC. )(cos 2xy x -D. )(cos 2xy y - (8)(0808)设函数)(,32=∂∂+=xzy x z 则A. y x 32+B. x 2C. 32+xD.23233y x +(9)(0908)设函数)(),tan(=∂∂=xzxy z 则A.)(cos xy x 2 B. )(cos 2xy x C. )(cos 2xy y D. )(cos 2xy y-(10)(1008)设函数)(,)0,1(2=∂∂=yzxe z y 则A.0B.21C.1D. 2 (11)(1108)设函数)(,33=∂∂+=yz y x z 则A. 23x B. 2233y x + C. 44y D. 23y(12)(1207)设函数)(z),ln(),(=∂∂+=11yy x z 则A.0B.21C. 2lnD. 1 2.全微分1994——2012年共考了14次,考到的概率P=73.7%.(1)(0221)设y x xy z ++=22)sin(,求dz. (2)(0520)设)ln(y x z +=,则全微分dz=. (3)(0620)设y x e z +=2,则全微分dz=.(4)(0719)设y x z =,则dz=.(5)(0820)设),(y x f z =,存在一阶连续偏导数yzx z ∂∂∂∂,,则全微分dz=.(6)(0920)设)ln(2y x z +=,则全微分dz=. (7)(1119)设y e z x +=,则全微分dz=. (8)(1220)设y e x z 2=,则全微分dz=.3.隐函数的导数1994——2012年共考了14次,考到的概率P=73.7%.(1)(0125)设),(y x f z =是由方程x e y xz +=所确定,求.xz∂∂ (2)(0225)设),(y x f z =是由方程xyz z y x =++222所确定,求.yz ∂∂ (3)(0425)设),(y x f z =是由方程z z y x 222=++所确定,求xz∂∂,.y z ∂∂ (4)(0528)设),(y x f z =是由方程x e z y x =++222所确定,求dz .(5)(0628)设),(y x f z =是由方程123=+++x e z y x 所确定的隐函数,求dz . (6)(0724)设),(y x f z =是由方程x e z y x =++所确定的隐函数,求dz . (7)(0824)设),(y x f z =是由方程022=-+z e y x 所确定的隐函数,求.x z∂∂ (8)(1124)设),(y x f z =是由方程0=++z e y x )sin(所确定的隐函数,求.xz ∂∂ 4.二阶偏导1994——2012年共考了12次,考到的概率P=63.2%.(1)(0305)设y x z sin 2+=,则yx z ∂∂∂2等于( )A. y x cos 2+B. y sin -C.2D. 0(2)(0414)设x y z cos =,则=∂∂∂yx z2.(3)(0509)设函数y x z 2=,则yx z∂∂∂2等于( )A. y x +B. xC. yD. x 2(4)(0514)设函数ye x z +=3,则=∂∂)1,1(22xz.(5)(0609)设)cos(y x z +=,则yx z∂∂∂2=( )A. )cos(y x +B. )cos(y x +-C. )sin(y x +D. )sin(y x +-(6)(0709)设函数3)(y x z +=,则yx z∂∂∂2=( )A. )(3y x +B. 32)(y x +C. )(6y x +D. 2)(6y x +(7)(0809)设22y x z =,则22xz∂∂=( )A. 22yB. xy 4C. y 4D. 0(8)(0909)设函数22),(y x u u f z +==且)(u f 二阶可导,则yx z∂∂∂2=( )A. )(4u f ''B. )(4u f x ''C. )(4u f y ''D. )(4u f xy ''(9)(1009)设函数)ln(xy z =,则22y z∂∂=( )A. 21y -B. 21yC. 21xy D. xy 1(10)(1109)设32y x z =,则22xz∂∂=( )A. 32yB. 26xyC. 26yD. xy 12(11)(1109)设2y e z x+=,则22xz∂∂=( )A. y 2B. y e x 2+C. 2y e x +D. x e5.二元函数的无条件极值与条件极值.1994——2012年共考了6次,考到的概率P=31.6%.(1) (0325) 求函数22)(4),(y x y x y x f ---=的极值.(2) (0928). 求函数284222+-++=y x y x z 的极值.(3) (1028) 求二元函数xy y x y x f ++=22),(在条件42=+y x 下的极值. (4) (1020) 函数22)(2y x y x z ---=的驻点坐标为.(5) (1120) 设函数),(y x z z =可微,且)(0,0y x 为极值点,.),(00=∂∂y x xz 则(6) (1228). 求二元函数y y x y x f 222++=),(的极值.。
《多元函数微积分》习题解答第三章-14页精选文档习题3-11、计算下列第二类曲线积分:(1)?-Ldx y x ,)(22L 为抛物线x y =2上由点(0,0)到点(2,4)的一段弧;(2),)()(22?+--+Ly x dyy x dx y x L 为按逆时针方向饶行的圆222a y x =+;(3)?++L xdz zdy ydx ,L 为螺旋线bt z t a y t a x ===,sin ,cos 上由t=0到t=2π的有向弧段;(4)?-+++Ldz y x ydy xdx ,)1(L 为由点(1,1,1)到点(2,3,4)的一段直线;(5),??Ldl F 其中),,(x y F -=L 为由y=x,x=1及y=0所构成的三角形闭路,取逆时针方向;(6)Ldl F ,其中2221y x xe ye F +-=,L 按逆时针方向饶行的圆t a y t a x sin ,cos ==.解(1)化为对x 的定积分,L: x y =2,x 从0到2,所以-Ldx y x )(22=1556)5131()(20534202-=-=-?x x dx x x (2)圆周的参数方程为:t a y t a x sin ,cos ==)20(π≤≤t+--+Ly x dyy x dx y x 22)()( =--+π202)sin ()sin cos ()cos ()sin cos (1t a d t a t a t a d t a t a a =dt t a t a t a t a t a t a a ])cos )(sin cos ()sin )(sin cos [(1202?---+π=ππ212022-=-?dt a a(3)L 的参数方程为:bt z t a y t a x ===,sin ,cos ,t 从0到2π,所以++Lxdz zdy ydx =)(cos )sin ()cos (sin 20t b td a t a btd t a td a ?++π=22022)cos cos sin (a dt t ab t abt t a ππ-=++-? (4)直线的参数方程为:)10(31,21,1≤≤+=+=+=t t z t y t x dt dz dt dy dt dx 3,2,===∴代入 ?-+++Ldz y x ydy xdx )1(=?-+++++++10)]1211(3)21(2)1[(dt t t t t =1376)146(10=+=+?dt t (5)三条直线段的方程分别为y=0,x 从0到1; x=1,y 从0到1; y=x,x 从1到0. 所以 ??Ldl F =?--Lxdy ydx-+-+-=0101101xdx xdx dy =0ππππ21)sin (cos )cos (sin )6(202202222022-=-=-=+-+=dt t a d ata t a d a t a dy y x xdx y x y dlF L2、一力场由以横轴正向为方向的常力F 构成,试求当一质量为m 的质点沿圆周222R y x =+按逆时针方向走过第一象限的弧段时,场力所作的功.解:由题意知,场力所作的功为dx F W L=L: 222R y x =+,x 从R 变到0,于是,w=R F dx F dx F R L-==??03、有一平面力场F ,大小等于点(x,y )到原点的距离,方向指向原点.试求单位质量的质点P 沿椭圆12222=+by a x 逆时针方向绕行一周,力F 所作的功.解:),(y x F --=椭圆12222=+by a x 的参数方程为:t b y t a x sin ,cos ==,t 从0到2π所以,2sin 2cos )sin (sin )cos (cos 2022202220=--=--=?=??πππt b t a t db t b t da t a dl F W L4、有一力场F ,其力的大小与力的作用点到xoy 平面的距离成反比且指向原点,试求单位质量的质点沿直线)0(,,≠===c ct z bt y at x 从点),,(c b a 移动到)2,2,2(c b a 时,该场力所作的功.解:),,(222222222zy x z z y x y z y x x z k F ++-++-++-=直线的参数方程为:)0(,,≠===c ct z bt y at x ,t 从1到2所以,cc b a k dttc t b t a t c kt c t b t a dl F W L2ln ))(22221222222222++-=++---=?=??习题3-2答案1、解:记S 在x>0一侧为1S ,在x<0一侧为2S ,在z=h 上的部分为3S ,在z=0上的部分为4S ,在y>0一侧为5S ,在y<0一侧为6S ,则由题有--=-=-=-=-+----+-=+++++=+++=rrrrhD D D S S s s s s hr dy y r h dzy r dy dydzy r dydz y r yyy r dydz y r yy y r zdxdyydzdx xdydz zdxdy ydzdx xdydz xdydz xdydz xdydz xdydz Q yz yz yz 22202222222222221222)(211234π22341234hr dxdy h zdxdy zdxdyydzdx xdydz zdxdy ydzdx xdydz zdxdy zdxdy zdxdy zdxdy Q xyxyD D S S s s s s π===+++++=+++=??同理可得:??+==6523S S hr ydzdx Q π 2、解:(1)由题S y x R z S ,222---=:在xoy 面上的投影区域222:R y x D xy ≤+,()720257022520220222252222222222221052cos sin 42sin 41sin cos R tdt t R drr R r drr R r d dxdy y x R y x dxdy y x R y x zdxdy y x R RD D Sxyxyππθθθθπππ==-=-=--=----=∴(2)()221202222222e e dr e d dxdy y x edxdy y x e r D y x Sz xy-==+=++πθπ(3)将S 分成1s 和2s ,其中1S :z=h ,222h y x ≤+取上侧,2s :22y x z +=,h z ≤≤0x>0取下侧则=+=∴=-++-?-+++-?+--==-=ss s s s s D dxdyy x yx y x y x yx x y x y dxdy y x xy12112)]()()[(,0)(22222222(4)记S 在z=0上的部分为1S ,在x=0上的部分为2S ,在y=0上的部分为3S ,在122=+y x 上的部分为4S ,在22y x z +=上的部分为5S .有321222222=++=++=++S S S ydzdx x xzdydz zdxdy y ydzdx x xzdydz zdxdy y ydzdx x xzdydz zdxdy y.1631111102222102222224π=-+-=-+-=++dz x x x z x dx dxdz x x x z x ydzdx x xzdydz zdxdy y xz D S()()()()()()()81616316)]cos 1(cos 3cos 2[sin cos sin 3cos 2sin 32222122445102244522244222222225ππππθθθθθθθθθθθππ=-=∴-=---=--=--=-+-+++=++原式d r d dr r d dxdy y x x ydxdyy y x x y x x y xy ydzdx x xzdydz zdxdy y xyxyD D S3、解:(1),33233y x z --=35211cos ,521cos ,531cos ,3651,33,232222222 2=???? ????+??? ????+==??? +??? ????+??-==???? ????+??? ????+??-==+??? ????+-=??-=??y z x z y z x z yz y z x z xzy z x z y z x z γβα 原式=()++=++S S dS R Q P dS R Q P 5325253cos cos cos γβα. (2),2,2y yz x x z -=??-=?? 222222222222441111cos 44121cos 44121cos y x y z x z yx y y z x z yz y x x y z x z xz++=+??? ????+=++=+??? ????+??-=++=+??? ????+??-=γβα原式=()++++=++SSdS yx R yQ xP dS R Q P 2244122cos cos cos γβα§3-3格林公式及其应用 1.(1) y e x Q y x P -=-=,2,1,1=??-=??xQy p ,πab dxdy yPx Q D2)(=??-??=??故原式 (2) )2(,)1(--=+=y x Q y x P , y xQ x y p -=??+=??2,1 ,-=--=??-??=yD dx y x dy dxdy y P x Q 101061)1()(故原式(3))(,)(222y x Q y x P +-=+=,x xQy x y p 2),(2-=??+=?? ?????--=--+-=--??-??=101013012311)3()24()(yD y dx y x dy dy y dxdy y P x Q 故原式(4))sin (),cos 1(y y e Q y e P x x --=-=,)sin (,sin y y e xQy e y p x x --=??=?? 而在以)0,(π为起点)0,0(为终点的直线上=---)0,0()0,(0)sin ()cos 1(πdy y y e dx y e xx 所以原式)1(51]202sin 22cos 41[sin 21]sin )sin ([02sin 0ππππe e x e x e dxe x ydy dxe dxdy y e y y e xx x D x x xxx -=?+?+-=?-=-=---=2.4213456,4y y x Q xy x P -=+=-λ,222)1(6,12--=??=??λλx y xQxy y p 因为积分与路径无关,所以xQ y p ??=??,得3=λ -=-+=-++)2,1()0,0(1242442234579)56()56()4(dy y y dx x dy y y x dx xy x 3.(1)y x Q y x p +=+=2,2xQ y p ??==??2,是二元函数u(x,y)(的全微分. y x p x u 2+==??由,得)(221)2(),(2y xy x dx y x y x u ?++=+=? y y y x Q yu y x y u =+==??+=??)('2)('2??得,及由C y y +=221)(?,故C y xy x y x u +++=2221221),((2)x y Q x y x p 2cos 3cos 3,cos 3sin sin 4-==xQy x x y p ??==??3cos cos sin 12,是二元。
《多元函数微分法及其应用》单元测试题(一)
单元测试题试题
【注1】本次测试主要内容为高等数学教材中多元函数微分学章节的主要内容,建议自己在
草稿纸上动手做完以后再参见下面给出的参考答案!
【注2】参考解题过程不一定是最简单的,或者最好的,并且有时候可能还有些许小错误!
希望在对照完以后,不管是题目有问题,还是参考解答过程有问题,希望您能不吝指出!
如果您有更好的解题思路与过程,也欢迎通过后台或邮件以图片或Word文档形式发送给我
们,我们将尽可能在第一时间推送和大家分享,谢谢!
单元测试题参考答案
相关推荐
更多测试与练习请参见“高数线代”菜单下的“大纲总结公式练习”选项中“综合练习”列表的总列
表,或者直接进入相应课程的内容导航列表中查看!。
第八章 多元函数微积分试题三一、填空题(2⨯10=20分)1. 母线平行于Y 轴,且通过曲线⎩⎨⎧2x 2+y 2+z 2=16x 2-y 2+z 2=0的柱面方程是 。
[解析]:方程不含y 时,表示母线平行于Y 轴的柱面。
消去y 2得到3x 2+2z 2=16,为所求的柱面方程2. 设(x,y)≠(0,0)时,f(x,y)=(x 2-y 2)-sin2xyx 2+y 2, 则 f(x+y,x-y)= 。
[解析]:f(x+y,x-y)= ((x+y)2-(x-y)2)-sin 2(x+y)(x-y) (x+y)2+(x-y)2 = 4xy-sin 2(x 2-y 2)(x 2+y 2)3. 设f(x,y)= ⎩⎪⎨⎪⎧xy x 2+y 2 当x 2+y 2≠00 当x 2+y 2=0,则 f x '(0,0)= 。
[解析]: f 'x (x 0,y 0)= lim ∆x →0f(∆x+x 0,y 0)-f(x 0,y 0)∆x , f x '(0,0)= lim ∆x →0f(∆x,0)-f(0,0)∆x = lim ∆x →00-0∆x =0 4. 设z=f[x,g(x,y)], y=φ(x),f, g, φ 均为可微函数,则dzdx= 。
[解析]:根据复合函数求导数规则,dzdx = f '1 +f '2 (g 'x +g 'y •φ')5. 已知 xlny+ylnz+zlnx = 1,则∂z ∂x •∂x ∂y •∂y∂z= 。
[解析]:根据隐函数求导数规则,∂z ∂x •∂x ∂y •∂y ∂z = (- F 'x F 'z )•(- F 'y F 'x )•(- F 'zF 'y ) = -16. 设z=f (arctan y x ),f 为可微函数,且f '(x)=x 2, 则 ∂z∂x |(1,1) = 。
多元函数微分学单元测试题一、填空题(每小题4分,共16分)1、 设u=22444y x x x -+,则=∂∂22x u2、 函数z=ln (x ·lny )的定义域为3、 设u=22y x x +,则在极坐标下,=∂∂θu4、 设f (x ,y )=()⎪⎩⎪⎨⎧=∙≠∙000sin 12y x y x y x xy ,则()='1,0x f二、单项选择题(每题4分,共16分)1、设函数z=1-22y x +,则点(0,0)是函数z 的( )A 、极小值点且是最小值点B 、极大值点且是最大值点C 、极小值点但非最小值点D 、极大值点但非最大值点2、设f (x ,y )=arcsin x y,则()1,2x f '=( )A 、-41B 、41C 、-21D 、213、0)(0,0/=y x z x 和()0,0y x z y '=0是函数z=z (x ,y )在点(0,0y x )处取得极值的()A 、必要条件而非充分条件B 、充分条件而非必要条件C 、充要条件D 、既非必要也非充分条件4、曲线⎩⎨⎧=++=--020z y x z y x 在点(0,1,-1)处的法平面方程为( ) A 、x+y+z=0 B 、y+z=0C 、y-z-2=0D 、x+y=0三、解答下列各题(每题7分,共28分)1、求函数z=()x y x sin sin ++的驻点。
2、设函数z=z (x ,y ),由z+x=dt e xy t ⎰-02所确立,试求x z ∂∂,yz ∂∂3、求极限lim 0→→y x ()xy y x y x sin 11232+-5、 求函数u=32z xy 在点(1,1,1)处方向导数的最大值与最小值四、(9分)设f(x,y)=y e x cos ,g(x,y)=y e x sin ,证明:()()()y x f y x g y x f 2,2,,22=-五、(9分)将已知正数a 分成两个正数x 、y 之和,使得q p y x 为最大,其中p 、q 是已知的正数六、(10分)横截面为长方形的半圆柱形的张口仪器,使其表面积等于s ,当仪器的长度与断面半径个为多少时,有最大体积?七、(12分)设z=xy+f (x+y ,x-y ),而x=ln (s+t ),y=2s-3t,其中f 具有连续偏导数,求sz ∂∂答案:一、1、12228y x - 2、x>0,y>1或x<0,0<y<1 3、-sin θ 4、1 二、B A D C三、1、略 2、略 3、-21 4、当{}3,2,11410-=l 时,l u ∂∂取最小值14-=g 四、略 五、当q p aq y q p ap x +=+=,时,q p y x 的值最大 六、当R=ππs h s 332,3=时,仪器有最大体积 七、略。
多元函数 重积分复习一、客观题: 1.判断1).已知),(2),(),(lim ),(0b a f xb x a f b x a f b a x f x x '=--+∂∂→存在,则 ( )2).若二元函数),().(),(),(0000y x P y x f z y x P y x f z 在点的两个偏导数存在,则在点==可微。
( )3).若二元函数的两个偏导在点不可微,则在点),().(),(),(0000y x P y x f z y x P y x f z ==不存在。
数yzx z ∂∂∂∂, ( ) 2.选择题1). 函数),(y x f 在),(00y x 处可微分,是),(y x f 在),(00y x 处连续的_________条件.A . 充分条件 B. 既充分又必要条件 C . 必要条件 D. 既非充分又非必要条件2).''x 00y0000f(x ,y )=0,f(x ,y )=0是函数f(x,y)在点(x ,y ) 取得极值的________. A. 必要条件 B. 充分条件C. 充分必要条件D. 既非充分又非必要条件 3).设函数),(y x f z =在(0,0)处存在偏导数,且,0)0,0(,0)0,0(,0)0,0(===f f f y x 那么 。
A. ),(lim 0y x f y x '→→ 必定存在 B .),(y x f 在(0,0)处必连续C. 0=dz D .0,0),(lim 22==+→→dz yx y x f y x 则若3.填空题1).设,1sin)1()1cos(),(2y x y y x y x f --+-=则=∂∂)1,(x xf __________..2).交换积分顺序⎰⎰-122),(y ydx y x f dy=___________ .二、 求多元函数的定义域例1求z =解:10210x y x y --≥⎧⎨+-≥⎩ {}(,)121D x y x y x y =+≤+≥且例2求ln()z y x =-+解: ,x y 须满足2222000101y x y x x x x y x y ->>⎧⎧⎪⎪≥⇒≥⎨⎨⎪⎪-->+<⎩⎩三 多元函数的偏导数 1. 多元函数偏导数的定义 2. 多元函数偏导数的计算(1) 由偏导数的定义可知,求偏导数仍是求一元函数的导数问题,即(,)(,)((,)(,)(x d d f x y f x y y f x y f x y dx dy==y 这时不变);这时x 不变). (2) 求函数偏导数时,一般用一元函数的求导公式和求导法则。
- 1 -第八章多元函数微积分习题一一、填空题1. 设f(x,y)=x-3y. ,则f(2,-1)=_______,f(-1,2)=________x2+y2_______. 2. 已知f(x,y)=2x2+y2+1,则f(x,2x)=__________二、求下列函数的定义域并作出定义域的图形 1.z=3. z=y-x 2. z=-x+-y 4-x2-y24. z=log2xy习题二一、是非题1. 设z=x+lny,则2∂z1=2x+ ()∂xy2. 若函数z=f(x,y)在P(x0,y0)处的两个偏导数fx(x0,y0)与fy(x0,y0)均存在,则该函数在P点处一定连续()3. 函数z=f(x,y)在P(x0,y0)处一定有fxy(x0,y0)=fyx(x0,y0) ()xy⎧,x2+y2≠0⎪4. 函数f(x,y)=⎨x2+y2在点(0,0)处有fx(0,0)=0及⎪0,x2+y2=0⎩fy(0,0)=0 ()5. 函数z=x2+y2在点(0,0)处连续,但该函数在点(0,0)处的两个偏导数zx(0,0),zy(0,0)均不存在。
()二、填空题- 2 -1. 设z=lnx∂z∂z,则=___________;∂x∂yy2x=2y=1=___________;2. 设f(x,y)在点(a,b)处的偏导数fx(a,b)和fy(a,b)均存在,则limh→0f(a+h,b)-f(a,b-2h)=_________.h2xy+sin(xy);x2+ey三、求下列函数的偏导数:1. z=x3y-y3x+1;2. z=3. z=(1+xy)y;4. z=lntanx; y5. u=xy2+yz2+zx2∂2z∂2z∂2z四、求下列函数的2,和:∂x∂y2∂x∂y3241. z=x+3xy+y+2;2. z=xy五、计算下列各题1. 设f(x,y)=e-sinx(x+2y),求fx(0,1),fy(0,1);∂2z2. 设f(x,y)=xln(x+y),求2∂x六、设z=ln(x+y),证明:x1313∂2z,2x=1∂yy=2∂2z,x=1∂x∂yy=2.x=1y=2∂z∂z1+y=. ∂x∂y3习题三一、填空题2xy_____. 1.z=xy+e在点(x,y)处的dz=__________ 2.z=xx+y_____. 在点(0,1)处的dz=__________- 3 -3.设z=f(x,y)在点(x0,y0)处的全增量为∆z,全微分为dz,则f(x,y)在点(x0,y0) 处的全增量与全微分的关系式是__________________.二、选择题1.在点P处函数f(x,y)的全微分df存在的充分条件为()A、f的全部二阶偏导数均存在B、f连续C、f的全部一阶偏导数均连续D、f连续且fx,fy均存在2.使得df=∆f的函数f为()A、ax+by+c(a,b,c为常数)B、sin(xy)C、e+eD、x2+y22三、设z=xy,当∆x=0.1,∆y=0.2时,在(1,2)点处,求∆z和dz。
第七、八、九章 多元函数微积分 复习测试题
一、单项选择题(每题2分)
1、在空间直角坐标系中,1=y 表示( )。
A 、垂直于x 轴的平面
B 、垂直于y 轴的平面
C 、垂直于z 轴的平面
D 、直线 2、用平面1=z 截曲面2
2
y x z +=,所得截线是( )。
A 、圆
B 、直线
C 、抛物线
D 、双曲线 3、下列关于二元函数的说法正确的是( )。
A 、可偏导一定连续
B 、可微一定可偏导
C 、连续一定可偏导
D 、连续一定可微
4、设3
2
y xy x z +-=,则=∂∂∂y
x z
2( )。
A 、y 612+- B 、x - C 、y - D 、1- 5.若函数),(y x z z =的全微分y y x x y z d sin d cos d -=,则二阶偏导数y x z
∂∂∂2=( )
A .y sin -
B .x sin
C .x cos
D . y cos 6、函数x x y y x f 2),(2
2
+-=在驻点(1,0)处( )
A .取极大值
B .取极小值
C .无极值
D .无法判断是否取极值 7.若函数),(y x f z =的一阶偏导存在,且
y y f xy x
z
==∂∂),0(,2,则=),(y x f ( )
A .y x 2
B .2
xy C .y y x +2
D .y xy +2
8、设20,10:x y x D ≤≤≤≤;则下列与
⎰⎰D
dxdy 的值不相等的是( )。
A 、
⎰1
2
dx x
B 、⎰
1
dy y C 、⎰-1
)1(dy y D 、⎰⎰1
2
x dy dx
9、二次积分dy y x x dx x ⎰
⎰
-+240
2220
转化为极坐标下的二次积分为( )
A 、dr r d ⎰⎰20
32
cos θθπ B 、dr r d ⎰⎰
2
22
cos θθπ
C 、
dr r d ⎰⎰
20
30
cos θθπ
D 、dr r d ⎰⎰2
20
cos θθπ
10、x y x D ≤≤≤||,10:,则二重积分=⎰⎰D
dxdy ( )。
A 、
⎰
10
ydy
B 、
⎰
10
xdx
C 、
⎰
-11
ydy
D 、
⎰
10
2xdx
二、填空题(每空3分)
11、0242
2
2
=+++-z z y x x 的图形是球心为
的球面。
12、点(1,-2,3)关于原点(0,0,0)相对称的点的坐标为 。
13、2
2
),(y
xy x xy y x f +-=-,则=),(y x f 。
14、设函数)1ln(y x z +=,则其微分=dz 。
15、
=→y
x y x 1
sin
lim )
0,0(),( 。
16、交换积分顺序
=⎰⎰
dy y x f dx x 10
2),( 。
三、解答题(每题6分)
17、设函数),(y x f z =由方程0222=+-+-z z xy y x 确定,求x z ∂∂,y
z ∂∂。
18、设)2ln(y x x z -=,求(1)x z ∂∂,y z
∂∂,dz ;(2)22y z ∂∂,y x z ∂∂∂2。
19.设函数()y y x f z ,-=,其中f 有二阶连续偏导,求y
x z y z x z ∂∂∂∂∂∂∂2,,. 20、求函数)1(22+--=x y x e z x 的极值。
21、要造一个体积为常数V 的长方体箱子,问其长宽高为多少时,用料最省?
22、计算
dxdy x x D
⎰⎰sin ,其中:D 由x y =和2
x y =所围成图形 23、 计算二重积分⎰⎰=D y x xy I d d ,其中D 是由直线y =x ,y =5x ,x =1所围成的平面区域.
24、计算二次积分⎰⎰
+=
1 0
1
3
11
y dx x dy I .
四、证明题 25、证明:y
x y
x y x +-→→0
0lim
不存在(本题4分) 26.设函数f (u )可导,)(x
y
f z =,证明: 0=∂∂+∂∂y z y x z x .(本题5分)
27、证明:)1(2
1
10
1
2
-=
⎰⎰
e dx e dy y
x (本题5分)
五、选作题(每题10分)
28、设函数f (u )具有二阶连续导数,而)sin (y e f z x
=满足z e y
z
x z x 22222=∂∂+∂∂,求f (u ) 。
29、设函数f (x )在区间[0,1]上连续,并设A dx x f =⎰1
)(,求
⎰⎰
1
10
)()(x
dy y f x f dx 。