110kV新一代智能变电站技术方案介绍
- 格式:ppt
- 大小:295.50 KB
- 文档页数:9
110kV智能变电站技术方案研究作者:郭瑛来源:《城市建设理论研究》2014年第08期摘要:智能变电站是智能电网的基础,是连接发电和用电的枢纽。
以某110KV变电站为模型,研究智能变电站系统配置方案,主要包括主站系统配置方案、间隔层设备配置方案、过程层设备配置方案以及对时系统方案。
本文的研究可为变电站智能化改造以智能变电站的运行维护提供技术支撑。
关键词:110kV智能变电站;技术方案;配置中图分类号: TM411 文献标识码: A1引言智能变电站是智能电网的重要基础和支撑。
设备智能化、通信网络化、模型和通信协议统一化以及运行管理自动化是智能变电站的基本特征。
本文研究的技术方案是以国家电网公司的《智能变电站技术导则》、《智能变电站继电保护技术规范》、《IEC 61850工程应用模型》等标准为设计依据。
根据智能电网功能需求、结合通用设计和“两型一化”标准化建设成果,以信息交互数字化、通信平台网络化和信息共享标准化为基础,严格遵循安全可靠、技术先进、资源节约、造价低廉的原则,实现信息化、自动化、互动化的智能变电站综合自动化系统。
本文以某110KV变电站实际工程为模型研究智能变电站的系统配置方案,该变电站总体工程概况如下:主变:两卷变,本期2台。
电气主接线:110kV户内GIS布置,内桥接线;10kV单母分段接线,开关柜安装。
110kV进线3回,PT间隔2个,分段间隔1个。
10kV出线20回,电容器组4台,所用变2台。
2整体技术方案站控层与间隔层保护测控等设备采用通信协议;间隔层与过程层合并单元通讯规约采用通信协议;间隔层与过程层智能终端采用GOOSE通信协议。
站控层设备、线路、内桥及主变间隔保护和过程层设备采用对时,间隔层常规保护设备采用码对时。
过程层与站控层的独立组网:站控层主要采用双星型100MB电以太网,各小室间交换机通过光纤进行级联;过程层采用单星型光以太网来传输信息。
信息的传输模式:保护装置的跳合闸信号采用光纤点对点方式直接接入就地智能终端;测控装置的开出信息、逻辑互锁信息、断路器机构位置和告警信息以及保护间的闭锁,启动失灵通过GOOSE网络进行传输。
1000kV变电站1000kV交流三相接地开关专用技术规范(范本)智能变电站110kV线路保护(测控)装置技术规范(范本)本规范对应的专用技术规范目录1000kV变电站1000kV交流三相接地开关专用技术规范(范本)智能变电站110kV线路保护(测控)装置技术规范(范本)使用说明1.本技术规范分为通用部分、专用部分。
2.项目单位根据需求选择所需设备的技术规范,技术规范通用部分条款及专用部分固化的参数原则上不能更改。
3.项目单位应按实际要求填写“项目需求部分”。
如确实需要改动以下部分,项目单位应填写专用部分“项目单位技术差异表”并加盖该网、省公司物资部(招投标管理中心)公章,与辅助说明文件随招标计划一起提交至招标文件审查会:1)改动通用部分条款及专用部分固化的参数;2)项目单位要求值超出标准技术参数值;3)需要修正污秽、温度、海拔等条件。
经标书审查会同意后,对专用部分的修改形成“项目单位技术差异表”,放入专用部分中,随招标文件同时发出并视为有效,否则将视为无差异。
4.对扩建工程,项目单位应在专用部分提出与原工程相适应的一次、二次及土建的接口要求。
5.技术规范的页面、标题、标准参数值等均为统一格式,不得随意更改。
6.投标人逐项响应技术规范专用部分中“1 标准技术参数”、“2 项目需求部分”和“3 投标人响应部分”三部分相应内容。
填写投标人响应部分,应严格按招标文件技术规范专用部分的“招标人要求值”一栏填写相应的招标文件投标人响应部分的表格。
投标人填写技术参数和性能要求响应表时,如有偏差除填写“投标人技术偏差表”外,必要时应提供相应试验报告。
7.一次设备的型式、电气主接线和一次系统情况对二次设备的配置和功能要求影响较大,应在专用部分中详细说明。
目次智能变电站110kV线路保护(测控)装置技术规范(范本)使用说明 (79)1总则 (81)1.1引言 (81)1.2供方职责 (81)2技术规范要求 (81)2.1使用环境条件 (81)2.2保护装置额定参数 (82)2.3装置功率消耗 (82)2.4110kV线路保护(测控)装置总的技术要求 (82)2.5110kV线路光纤差动保护装置具体要求 (87)2.6110kV线路纵联距离保护装置具体要求 (87)2.7110kV线路距离保护装置具体要求 (88)2.8110kV线路电流保护装置具体要求 (88)2.9柜结构的技术要求 (89)2.10智能终端的技术要求说明 (89)3试验 (89)3.1工厂试验 (89)3.2系统联调试验 (89)3.3现场试验 (89)4技术服务、设计联络、工厂检验和监造 (89)4.1技术文件 (89)4.2设计联络会议 (90)4.3工厂验收和现场验收 (91)4.4质量保证 (91)4.5项目管理 (91)4.6现场服务 (91)4.7售后服务 (91)4.8备品备件、专用工具、试验仪器 (92)1000kV变电站1000kV交流三相接地开关专用技术规范(范本)1总则1.1引言提供设备的厂家、投标企业应具有ISO 9001质量保证体系认证证书,宜具有ISO 14001环境管理体系认证证书和OHSAS 18001职业健康安全管理体系认证证书及年检记录,宜具有AAA级资信等级证书、重合同守信用企业证书并具备良好的财务状况和商业信誉。
110kV智能移动变电站设计方案摘要:为满足智能移动变电站的要求,在变电站的主变压器的选型和布置设计上,应设法降低变电所的高度与宽度,尽可能的减少车辆载重。
同时需要保证变压器的固定基础需要与车辆相连,防止车辆在运行时,导致电压器的震动与移位。
此移动式变电站的工作地点一般为野外作业,因此要主要车载的稳定性。
关键词:110kV;移动变电站;设计方案引言智能变电站一体化实际上就是促使变电站二次设备利用自动化控制技术、网络通信技术、微机技术,基于功能重组与完善设计,形成计算机软件与硬件设施设备,从而实现一体化、测量、运行维护的操作管理系统。
随着电力规模逐渐扩大,技术改造与基地建设项目也随之增多,一体化自动验收系统工作量也在不断增加。
其中,智能变电站的监控信息是依据无人值守方式加以收集,其信息量与验收量非常大。
而且智能变电站自动化所对应的是用户终端项目,验收明确要求把运行、协调、调度、计量等作为重要前提。
1智能变电站的优势整个变电站的使用过程和其他传统变电站进行比较的话,可以发现,现如今的智能化变电站能够更加多样的、智能的变化。
通过先进的技术和智能化设备,变电站进一步地将整个系统内的数据监控、控制以及设备故障录波功能。
数字化的智能化变电站是一种新型的变电站,同时集中了许多智能化的优点,将继电保护、安全设备的相关监控统一于一体。
这一点在以往的变电站中,其中系统的硬件配置核心维护是一个重要的点,另一方面还在于信息的交互环节会存在一些无法进行上传的缺点,如此一来就会造成多余的成本浪费。
这些缺点在数字化变电站中得到了很好的解决。
根据相关的分析结果,可以最终得出智能变电站的结构是“三层双网”结构。
通过这种机制可以清晰地分为三层:站控层、间隔层、过程层。
另一方面,双网是站点控制层和处理层的网络,通过它们共享数字信息。
这样分层的主要优点是成功地将智能变电站的信息数字化,然后通过网络传输数字化的信息,实现相关信息的共享。
图2-1-1、110kV数字化变电站结构示意图(GOOSE点对点组网)
图2-1-2、110kV数字化变电站结构示意图(GOOSE交换机组网)此外,若采用区域采样同步(插值同步)方案,则图2-1、图2-2中的采样同步时钟源、采样同步网不存在。
3.3. 校时及采样同步方案
3.3.1. 校时方案
1)监控服务器、运行工作站支持以下方式校时:
l采用SNTP校时。
l来自远动工作站的规约校时。
2)远动工作站支持以下方式校时:
l IRIG-B(DC)校时。
l GPS秒脉冲对时。
l SNTP校时(复用站控层以太网,传输层协议为用户数据报协议UDP)。
l IEEE1588校时(复用站控层以太网,严格按IEEE1588解码)。
l来自调度的规约校时。
3)所有带站控层接口板的装置支持以下方式校时:
l IRIG-B(DC)校时。
l GPS秒脉冲对时。
l SNTP校时(复用站控层以太网,传输层协议为用户数据报协议UDP)。
l IEEE1588校时(复用站控层以太网,严格按IEEE1588解码)。
l来自远动工作站的规约校时。
3.3.2. 采样同步
变电站内的变压器保护、方向距离保护、以及测控计量设备对数据源同步的精度要求为最大为5us(0.1度)。
对于实现不同采集设备的同步,工程应用中通常采用以下两种方案:全站同步时钟源
错误!文档中没有指定样式的文字。
深圳南瑞科技有限公司第11页。
110kV智能变电站设计探讨摘要:文中阐述了110 kv 智能变电站设计要点,并对其过程层、间隔层、站控层的实现进行了详细的描述,进而对110 kv 智能变电站设计方案进行了探讨。
关键词:变电站智能系统控制中图分类号:s611 文献标识码:a 文章编号:前言变电站的智能化采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,一次设备和二次设备间信息传递实现数字化;二次设备间信息交换实现网络化,基本取消控制电缆,选用dl/t860标准统一模型和通信协议,实现站内信息高度集中与共享。
运行管理实现自动化,智能告警及事故信息综合分析决策、设备状态在线监测系统和程序化控制系统等自动化系统,减少运行维护的难度和工作量。
一、智能变电站与传统变电站的对比智能化的一次设备(如光纤传感器、智能化开关等)、网络化的二次设备、符合iec 61850 标准的通信网络和自动化的运行管理系统,是智能变电站最主要的技术特征。
随着智能化技术日新月异的发展,与传统的变电站相比,智能变电站从以下几个方面发生了较大的变化。
1智能化的一次设备智能化的一次设备主要包括数字互感器和智能断路器。
(1)电子式互感器电子式互感器分为有源与无源2种,其中全光纤电流互感器为无源型,它基于磁光法拉第效应原理,采用光纤作为传感介质,不存在铁磁共振和磁滞后饱和,同时具有频带宽、动态范围大、体积小、重量轻等优点。
(2)智能断路器智能断路器的发展趋势是用微电子、计算机技术和新型传感器建立新的断路器二次系统,开发具有智能化操作功能的断路器。
(3)智能组件智能组件是灵活配置的物理设备,可包含测量单元、控制单元、保护单元、计量单元、状态监测单元中的一个或几个。
测控装置、保护装置、状态监测单元等均可作为独立的智能组件。
智能组件安装方式是外置或内嵌,也可以2 种形式共存。
2网络化的二次设备智能变电站系统网络化的二次设备架构采用三层网络结构:过程层、间隔层、站控层。
国家电网公司110kV标准配送式智能变电站设计技术导则(初稿)上海电力设计院有限公司2012年4月19日目录第三篇 110kV智能变电站 (1)第9章技术方案 (1)9.1 技术方案组合表 (1)9.2二次设备配置方案一览表 (12)第10章通用设备 (26)10.1 一次设备 (26)10.1.1 主变压器主要技术参数及标准化接口 (26)10.1.2 组合电器主要技术参数及标准化接口 (27)10.1.3 断路器主要技术参数及标准化接口 (27)10.1.4 隔离开关及接地开关主要技术参数及标准化接口 (28)10.1.5 电流互感器主要技术参数及标准化接口 (28)10.1.6 电压互感器主要技术参数及标准化接口 (29)10.1.7 并联电容器主要技术参数及标准化接口 (29)10.1.8 避雷器主要技术参数及标准化接口 (30)10.1.9 支柱绝缘子主要技术参数及标准化接口 (30)10.1.10 开关柜主要技术参数及标准化接口 (31)10.1.11 其他设备主要技术参数及标准化接口 (32)10.2 二次设备 (34)10.2.1 测控装置 (34)10.2.2 线路保护 (34)10.2.3 母线保护 (35)10.2.4 母联分段保护 (35)10.2.5 主变保护 (35)10.2.6 故障录波网络报文与暂态故障记录分析装置 (36)10.2.7 备自投装置 (36)10.2.8 合并单元 (37)10.2.9 智能终端 (37)10.2.10 合并单元、智能终端一体化装置 (37)10.2.11 保测一体化装置 (38)10.2.12 网络交换机 (38)10.2.13 数字电能量表计 (39)10.2.14 电能量远方终端 (39)10.2.15 一体化电源监控 (39)第11章技术导则 (39)11.1 概述 (39)11.2电气部分 (40)11.2.1 电气主接线图 (40)11.2.1.2 35kV (40)11.2.1.3 10kV (40)11.2.1.4 主变中性点接地方式 (40)11.2.1.5 无功补偿 (40)11.2.2 电气总平面 (40)11.2.3 配电装置 (41)11.2.4设备安装 (46)11.2.4.1 总的要求 (46)11.2.4.2 变压器安装 (48)11.2.4.2组合电器安装 (51)11.2.4.3 AIS设备的安装 (52)11.2.4.4 电容器安装图 (53)11.2.4.5母线安装 (54)11.2.4.6开关柜的安装 (55)11.2.5 交流站用电系统 (55)11.2.5.1站用电源 (55)11.2.5.2 站用电接线方式 (55)11.2.5.3 站用电负荷的供电方式 (56)11.2.5.4 站用变容量选择 (56)11.2.5.5 站用变压器布置 (56)11.2.5.6 低压电器、导体选择 (57)11.2.5.7 检修电源的配置 (57)11.2.6防雷接地 (57)11.2.6.1 站内防雷 (57)11.2.6.2 站内接地 (59)11.2.7 照明 (60)11.2.7.1 照明种类 (60)11.2.7.2 计算项目及其深度要求 (61)11.2.7.3 照明标准值 (61)11.2.7.4 供电系统 (62)11.2.7.5 照明和动力设备选择 (63)11.2.7.6 照明开关、插座的选择和安装 (64)11.2.7.7 布置和安装工艺 (64)11.2.8电缆设施及防火 (64)11.2.8.1电缆选型 (64)11.2.8.2电/光缆敷设通道 (66)11.2.8.3敷设方式 (66)11.2.8.4电缆孔、洞的封堵 (70)11.2.9施工图卷册安排 (78)11.3二次系统 (79)11.3.1 总体设计原则 (79)11.3.2 二次设备室及屏(柜)的布置 (79)11.3.2.1 二次设备室的设置及其屏(柜)的布置 (79)11.3.2.2 二次屏(柜)的选择及布置 (80)11.3.3 二次回路设计 (81)11.3.3.1 二次回路的基本要求 (81)11.3.3.2 二次“虚回路”的基本要求 (81)11.3.4 二次网络设计 (82)11.3.4.1 站控层/间隔层网络 (82)11.3.4.2 过程层网络 (82)11.3.5 二次设备的选择及配置 (82)11.3.5.1 控制保护设备 (83)11.3.5.2 小母线 (83)11.3.5.3 端子排 (83)11.3.5.4 虚端子 (84)11.3.5.5 控制电缆 (84)11.3.5.6 光缆和网线 (85)11.3.6 一体化电源 (85)11.3.6.1 直流系统 (85)11.3.6.2 不间断电源系统 (87)11.3.7 时钟同步系统 (87)11.3.8 辅助系统 (87)11.3.8.1 智能辅助控制系统 (87)11.3.9 二次设备接地和抗干扰 (88)11.3.9.1 接地 (89)11.3.9.2 防雷 (89)11.3.9.3 抗干扰 (89)11.3.10 防止质量通病的措施及标准工艺 (90)11.3.10.1 防止质量通病的措施 (90)11.3.10.2 标准工艺 (91)11.3.11施工图卷册安排 (93)11.4土建部分 (93)11.4.1 站址规划 (93)11.4.2 总平面及竖向布置 (94)11.4.2.1 总平面布置 (94)11.4.2.2 竖向布置 (97)11.4.2.3 土(石)方平衡 (97)11.4.3 站内外道路 (98)11.4.3.1 站内外道路平面布置 (98)11.4.3.2 进站道路详图 (98)11.4.3.3 站内道路详图 (100)11.4.4 围墙、大门 (104)11.4.4.1 围墙 (104)11.4.4.2 大门 (109)11.4.5 站区地下管沟 (110)11.4.5.1 站区地下管沟平面布置 (110)11.4.5.2 电缆沟 (110)11.4.5.3 电缆沟沟盖板 (112)11.4.5.4 节点 (112)11.4.6 建筑物 (114)11.4.6.1 建筑总说明 (114)11.4.6.2 建筑门窗 (115)11.4.6.3 地下电缆层平面布置 (115)11.4.6.4 墙体 (115)11.4.6.5 楼、地面 (116)11.4.6.6 屋面 (119)11.4.6.7 楼梯、坡道及散水 (120)11.4.6.8 防水 (121)11.4.6.9 装修工程 (121)11.4.6.10 建筑节能 (122)11.4.6.11 结构 (122)11.4.7 防火墙 (122)11.4.8 构支架 (123)11.4.8.1 构架 (123)11.4.8.2 设备支架 (125)11.4.9 给排水 (125)11.4.9.1 给水 (125)11.4.9.2 排水 (126)11.4.10 消防 (126)11.4.10.1 建筑物消防 (126)11.4.10.2 电缆夹层、电缆隧道消防措施 (127)11.4.10.3 其他 (127)11.4.11 采暖和通风 (127)11.4.11.1 一般要求 (127)11.4.11.2 主变压器室及散热器室通风 (128)11.4.11.3 110kV GIS室通风 (128)11.4.11.4 35(10)kV开关柜室降温通风 (129)11.4.11.5 电容器室和电抗器室通风 (129)11.4.11.6 接地变室通风 (129)11.4.11.7 蓄电池室通风空调 (129)11.4.11.8 电缆夹层通风 (130)11.4.11.9 继电器室等二次设备室空调 (130)11.4.11.10 消防泵房通风 (130)11.4.12 环境保护 (130)11.4.12.1 废水处理 (130)11.4.12.2 噪声控制 (131)11.4.12.3 电磁波辐射及防治 (131)第12章典型图纸 (132)。