熵权法
- 格式:doc
- 大小:74.00 KB
- 文档页数:2
一、熵权法介绍熵最先由申农引入信息论,目前已经在工程技术、社会经济等领域得到了非常广泛的应用。
熵权法的基本思路是根据指标变异性的大小来确定客观权重。
一般来说,若某个指标的信息熵越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。
相反,某个指标的信息熵越大,表明指标值得变异程度越小,提供的信息量也越少,在综合评价中所起到的作用也越小,其权重也就越小。
二、熵权法赋权步骤1.数据标准化将各个指标的数据进行标准化处理。
假设给定了k个指标,其中。
假设对各指标数据标准化后的值为,那么。
2.求各指标的信息熵根据信息论中信息熵的定义,一组数据的信息熵。
其中,如果,则定义。
3.确定各指标权重根据信息熵的计算公式,计算出各个指标的信息熵为。
通过信息熵计算各指标的权重:。
三、熵权法赋权实例1.背景介绍某医院为了提高自身的护理水平,对拥有的11个科室进行了考核,考核标准包括9项整体护理,并对护理水平较好的科室进行奖励。
下表是对各个科室指标考核后的评分结果。
但是由于各项护理的难易程度不同,因此需要对9项护理进行赋权,以便能够更加合理的对各个科室的护理水平进行评价。
2.熵权法进行赋权1)数据标准化根据原始评分表,对数据进行标准化后可以得到下列数据标准化表表2 11个科室9项整体护理评价指标得分表标准化表根据信息熵的计算公式,可以计算出9项护理指标各自的信息熵如下:表3 9项指标信息熵表根据指标权重的计算公式,可以得到各个指标的权重如下表所示:表4 9项指标权重表3.对各个科室进行评分根据计算出的指标权重,以及对11个科室9项护理水平的评分。
设Z l为第l 个科室的最终得分,则,各个科室最终得分如下表所示表5 11个科室最终得分表。
熵权法算法介绍熵权法是一种多指标综合评价方法,最早由我国学者贾樟柯于1988年提出。
它采用信息熵理论中的熵值概念,将各指标的权重进行分配。
熵权法算法的主要特点是能够在具有不确定性和不完备信息的情况下,更加科学、客观、合理地评估各指标的重要性。
一、熵值概念熵值是指能量散失的程度,即不确定性、混乱程度。
信息熵越大,说明系统的混乱程度越大。
在熵值计算中,熵值越大,对应的指标权重越小。
因此,每个指标的熵值越大,说明该指标在评价体系中的作用越小;反之,熵值越小,说明该指标在评价体系中的作用越大。
二、熵权法算法步骤1. 收集指标数据。
将需要评估的关键指标进行收集,并将其转化为数值形式,方便计算。
2. 计算指标权重。
通过信息熵公式计算每个指标的熵值,并将其与其他指标的熵值比较。
每个指标的权重按照其熵值的大小进行分配。
3. 计算评价结果。
根据指标权重和指标数据,计算出综合评价结果,从而得出最终的评估结论。
三、熵权法算法优缺点优点:1. 熵权法算法能够考虑各指标之间的相互关系,并综合考虑多个指标的作用;2. 熵权法算法可以很好地适应评价对象的特点和不同需求,能够提高评价结果的总体客观性和可信度;3. 熵权法算法适用于具有不确定性和不完备信息的情况下,能够较好地避免主观因素的影响。
缺点:1. 熵权法算法需要进行繁琐的计算过程,相对来说比较复杂;2. 熵权法算法依赖于指标数据的选取和处理,如果数据选取存在偏差,会影响最终评价的结果。
四、熵权法算法应用熵权法算法已经广泛应用于企业综合评价、环境评价、质量控制等领域。
在企业的投资决策、质量管理、市场分析等方面,都有很好的应用效果。
总之,熵权法算法是一种非常有用的多指标综合评价方法,能够在不确定性和不完备信息的情况下,更加科学、客观、合理地评估各指标的重要性。
随着评价体系的深入研究和不断完善,相信熵权法算法在实践中的应用会越来越广泛。
指标权重确定方法之熵权法(计算方法熵权法(Entropy Weighting Method)是一种常用的指标权重确定方法,它通过计算指标数据的熵值来确定指标的权重。
熵值体现了指标数据的离散程度,离散程度越大,熵值越大,即指标的重要性越高。
熵值的计算方法如下:设有n个指标,每个指标有m个样本,设第i个指标的第j个样本为Xij,熵值计算公式为:Ei = - (Xij * ln(Xij))其中,i表示指标的序号,j表示样本的序号,ln表示自然对数。
计算完每个指标的熵值后,进一步对熵值进行归一化处理,得到权重。
具体的计算步骤如下:1.归一化处理:将指标数据进行归一化处理,将其范围限定在(0,1)之间。
2.计算指标熵值:按照上述公式,计算每个指标的熵值。
3.计算指标权重:将每个指标的熵值除以所有指标熵值的和,得到每个指标的权重。
4.权重归一化:对指标权重进行归一化处理,使得所有指标权重的和等于1下面通过一个例子来说明熵权法的计算过程。
假设有3个指标,每个指标有4个样本,指标数据如下:指标1:1,2,3,4指标2:5,6,7,8指标3:10,20,30,40首先进行归一化处理,计算每个指标的最小值和最大值,然后将指标数据进行归一化,得到如下结果:指标1:0.0,0.25,0.5,1.0指标2:0.0,0.2,0.4,1.0指标3:0.0,0.0714,0.2143,1.0接下来计算指标熵值,根据前面的熵值计算公式,计算每个指标的熵值,并取负值,得到如下结果:然后将熵值进行归一化处理,将每个指标的熵值除以所有指标熵值的和,得到如下结果:最后对指标权重进行归一化处理,使得所有指标权重的和等于1,得到最终的权重结果:通过以上计算可以得到每个指标的权重,可以根据权重进行综合评价。
熵权法能够充分考虑指标的离散程度,提高了指标权重的准确性,因此被广泛应用于各种指标权重确定的问题中。
【精品】熵权法熵权法是一种基于熵(信息熵或香农熵)的多指标决策方法,该方法可以评估每个指标的重要性,并确定最佳决策方案。
熵在信息论中用来表示数据中的不确定性程度,也可以用来度量指标之间的差异程度,进而确定最优解。
熵权法适用于评估复杂系统的各种指标,并可以帮助决策者在决策过程中更全面、客观地了解系统的状况。
熵权法的基本思想是,在给定的指标集合中选择具有最大差异性的指标作为最佳指标,从而确定系统的最佳状态或最优解。
在熵权法中,通过求解熵值和权重实现了对指标的排序和评价。
具体内容如下:1. 熵值的计算熵值反映了指标之间的差异程度,其值越大,指标之间的差异程度越大,反之则差异程度越小。
在熵权法中,我们需要计算每个指标的熵值,以此来确定每个指标的重要性。
假设有n个样本,m个指标,则第i个指标的熵值可以表示为:$ E_i=-\sum_{j=1}^{n}{p_{ij}\log_2p_{ij}} $其中,$ p_{ij} $表示第i个指标在第j个样本中的比重。
权重是指标在整个指标集合中的重要程度,其越大表示该指标对整个指标集合的影响越大。
在熵权法中,我们需要计算每个指标的权重,以此来评估每个指标的重要性。
其中,$ E_i $为第i个指标的熵值,$ \sum_{j=1}^{m}E_j $为指标集合的熵值之和。
根据以上公式,我们可以计算出每个指标的熵值和权重,并进行指标排序和评价。
3. 实例分析为了更好地理解熵权法的应用,我们可以以某电子产品公司的产品选型为例进行分析。
假设该公司正在开发一款新的产品,并需要在多个指标(如价格、功能、品质、颜色等)之间进行权衡和取舍。
为了确定最佳的决策方案,该公司采用熵权法进行了分析与评价。
下图是该公司对几个主要指标的熵值计算结果:指标 | 价格 | 功能 | 品质 | 颜色-----|-----|-----|-----|-----熵值 | 0.235 | 0.183 | 0.142 | 0.124由上表可知,价格这一指标的熵值最大,说明该指标在整个指标集合中的差异程度最大,因此价格是最重要的一个指标。
基于熵权法评价指标权值的确定
熵权法原理是把评价中各个待评价单元的信息进行量化与综合后的方法;采用熵权法对各因子赋权,可以简化评价过程。
因此,本文采用熵值法对指标的权值进行确定。
首先,由以上四个评价指标,可以得到一个449⨯的原始数据矩阵为:
m
n nm n n n n x x x x x x x x x X ⨯⎥
⎥
⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 2122221
11211 其中,n 为日期,其取值为49天,m 为评价指标,其取值为4,n x x 111~表示排队长,n x x 221~表示逗留时间,n x x 331~表示周转次数,n x x 441~表示病床使用率。
由此,X 矩阵可知。
其次,对指标进行同趋势性变换,建立同正向矩阵;因为以上四个指标在评价时有高优指标和低优指标,其中,高优指标为周转次数和病床使用率,低优指标为排队长和逗留时间;评价时不同指标之间应该具有同趋势性,所以将低优指标化为高优指标即采用倒数法,转化后的矩阵为:
m
n nm n n n n y y y y y y y y y Y ⨯⎥
⎥
⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=
2
1
22221
11211 将该矩阵进行归一化处理,即取Y 矩阵中列向量ij y 与该矩阵中所有元素之和的比值作为归一化结果,其计算公式如下:
),,2,1(,1
m j Y
y z n
i ij
ij
ij ==
∑=
其中,ij z 为归一化后矩阵中的元素;归一化后的矩阵见附录1。
在确定评价指标的熵权值时,本文规定其运算公式如下:
m j z z k x H n
i ij ij j ,,2,1,
ln )(1 =-=∑=
其中,k 为调节系数,n k ln 1=,因此2569.0=k ;ij z 为第i 个评价单元第j 个指标标准化值。
通过计算可得0569.0)(1=x H ;0155.0)(2=x H ;
1549.38)(3-=x H ;8242.4)(4-=x H 。
将评价指标的熵值转化为权重值:
m j x H m x H d m
j j j j ,,2,1,)
()(11 =--=
∑=
其中,10≤≤j d ,∑==m
j j d 1
1;至此,得到权重值,计算得出其权值如表5
所示。
表5.指标的权值
评价指标 排队长 逗留时间 周转次数 病床使用率 权重值 0.0201 0.0210 0.8347 0.1242
最后,确定各评价指标的熵权综合评价值。
将各指标的权值分别与其所对应的指标相乘后求和,其评价模型为:
),,2,1(,
4
1n i z d U j ij j ==∑=
其中,U 表示各评价指标的熵权综合评价函数。
该评价体系可以对病床的安排等作出评价,其评价结果如表6所示。