数据统计分析与数据挖掘PPT课件
- 格式:ppt
- 大小:6.60 MB
- 文档页数:137
大数据分析与挖掘ppt优质版(30张)目录•大数据概述与背景•数据分析基础•数据挖掘技术与方法•大数据在各行各业应用案例•大数据挑战与机遇并存•企业如何布局大数据战略•总结回顾与展望未来发展趋势大数据概述与背景大数据定义及特点定义大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
特点大数据具有数据量大、数据种类多、处理速度快、价值密度低等特点。
大数据产生背景互联网发展随着互联网技术的不断发展和普及,人们产生的数据量呈指数级增长,传统的数据处理方法已经无法满足需求。
物联网兴起物联网技术的兴起使得设备间的连接和数据交互变得更加频繁和复杂,产生了大量的数据。
社交媒体普及社交媒体的普及使得人们更加愿意分享自己的信息和观点,形成了海量的用户生成数据。
大数据发展趋势数据驱动决策未来企业将更加依赖数据进行决策,大数据将成为企业核心竞争力的重要组成部分。
人工智能与大数据融合人工智能技术的发展将促进大数据的自动化处理和分析,提高数据处理效率和准确性。
数据安全和隐私保护随着大数据的广泛应用,数据安全和隐私保护将成为越来越重要的问题,需要采取更加有效的措施来保护用户隐私和数据安全。
跨领域应用拓展大数据将在更多领域得到应用拓展,如医疗、教育、金融等,推动这些领域的数字化转型和创新发展。
数据分析基础结构化数据非结构化数据半结构化数据数据来源数据类型及来源01020304如关系型数据库中的表格数据,具有固定的数据结构和类型。
如文本、图像、音频、视频等,没有固定的数据结构和类型。
如XML 、JSON 等格式的数据,具有一定的数据结构但不完全固定。
包括企业内部数据、公开数据、第三方数据等。
数据预处理与清洗去除重复、无效、错误数据,填充缺失值等。
将数据转换为适合分析的格式和类型,如数值型、类别型等。
消除数据间的量纲差异,使数据具有可比性。