悬架定位参数分解
- 格式:pptx
- 大小:1.44 MB
- 文档页数:20
主销后倾:Kingpin Caster主销(Kingpin),是传统汽车上转向轮转向时的回转中心,是一根较粗的销轴。
现在,许多独立悬架的汽车已经没有主销了。
但在车轮定位中,仍然沿用主销这个名词,把它作为转向轮的转向轴线的代名词,认为转向轮在转向时,是以主销为轴线向左右转动的。
所谓主销后倾,是将主销(即转向轴线)的上端略向后倾斜。
从汽车的侧面看去,主销轴线与通过前轮中心的垂线之间形成一个夹角,即主销后倾角。
作用:主销后倾的作用是增加汽车直线行驶时的稳定性和在转向后使前轮自动回正。
作用原理:由于主销后倾,主销(即转向轴线)与地面的交点位于车轮接地点的前面。
这时,车轮因受到地面的阻力,总是被主销拖着前进。
这样,就能保持行驶方向的稳定。
当汽车转弯时,由于离心力的作用,地面对车轮的侧向反力作用在主销的后面,由前悬架在车架上的安装位置来保证。
现代轿车由于采用低压宽幅子午线轮胎,高速行驶时轮胎的变形加大,接地点后移,因此主销后倾角可以减小,甚至为负值(变成主销前倾),以避免由于回正力矩过大而造成前轮摆振。
主销后倾与主销内倾区别:主销后倾如图所示,过车轮中心的铅垂线和真实或假想的转向主销轴线在车辆纵向对称平面的投影线所夹锐角为主销后倾角,向前为负,向后为正。
主销后倾:主销后倾角的存在可使车轮转向轴线与路面的交点在轮胎接地点的前方,可利用路面对轮胎的阻力产生绕主销轴线的回正力矩,该力矩的方向正好与车轮偏转方向相反,使车辆保持直线行驶。
后倾角越大车辆的直线行驶性越好,转向后方向盘的回复性也越好,但主销后倾角过大会使转向变得沉重,驾驶员容易疲劳;主销后倾角过小,当汽车直线行驶时,容易发生前轮摆振,转向盘摇摆不定,转向后转向盘自动回正能力变弱,驾驶员会失去路感;当左右轮主销后倾角不等时,车辆直线行驶时会引起跑偏,驾驶员不敢放松转向盘,难于操纵或极易引起驾驶员疲劳。
四轮定位仪测量主销后倾角的范围为±15°。
悬架的参数计算公式悬架系统是汽车重要的组成部分,它直接影响着汽车的操控性、舒适性和安全性。
悬架系统的设计需要考虑多个参数,其中包括弹簧刚度、阻尼系数、悬架几何参数等。
本文将重点介绍悬架的参数计算公式,帮助读者更好地理解悬架系统的设计原理。
1. 弹簧刚度计算公式。
弹簧刚度是指单位位移下所受的弹簧力,通常用N/mm或N/m来表示。
弹簧刚度的计算公式如下:K = F / δ。
其中,K表示弹簧刚度,F表示弹簧所受的力,δ表示弹簧的变形量。
在实际设计中,弹簧刚度需要根据车辆的质量、悬架的类型和使用环境来确定。
2. 阻尼系数计算公式。
阻尼系数是指单位速度下所受的阻尼力,通常用N/(m/s)来表示。
阻尼系数的计算公式如下:C = F / v。
其中,C表示阻尼系数,F表示阻尼器所受的力,v表示阻尼器的速度。
阻尼系数的大小直接影响着悬架系统的舒适性和稳定性,需要根据车辆的使用环境和悬架的类型来确定。
3. 悬架几何参数计算公式。
悬架几何参数包括悬架的几何结构、悬架的位置和角度等。
这些参数的设计需要考虑车辆的操控性和稳定性。
常见的悬架几何参数包括悬架的下摆臂长度、上摆臂长度、悬架的前后距离等。
这些参数的计算需要结合车辆的设计要求和悬架的类型来确定。
4. 悬架系统的动力学模型。
悬架系统的动力学模型包括悬架的质量、弹簧、阻尼器等参数,可以用来描述悬架系统的运动规律。
常见的悬架系统动力学模型包括单自由度模型、双自由度模型等。
这些模型可以用来分析悬架系统的振动特性和响应特性,对悬架系统的设计和优化具有重要的意义。
5. 悬架系统的优化设计。
悬架系统的优化设计需要考虑多个参数的综合影响,包括弹簧刚度、阻尼系数、悬架几何参数等。
优化设计的目标通常包括提高车辆的操控性、舒适性和安全性。
在实际设计中,可以利用计算机辅助设计软件来进行悬架系统的优化设计,通过多次模拟和分析来确定最佳的参数组合。
总结。
悬架系统的设计需要考虑多个参数,包括弹簧刚度、阻尼系数、悬架几何参数等。
后悬架车轮定位参数调整机构分析及设计摘要:车轮定位参数是评价汽车操稳性的重要指标之一,但由于零部件制造公差和装配公差的限制,很难保证生产车辆的车轮定位参数都在合理的范围。
本文主要针对某车型后悬架车轮外倾角和前束角的分析计算,介绍车轮定位参数调整机构的设计原理及调整方法,以使所生产车辆的车轮定位参数都在合理范围。
关键词:车轮定位参数;后悬架;调整机构;原理前言车轮定位参数包括主销后倾角、主销内倾角、外倾角和前束角,其作用是使汽车保持稳定的直线行驶能力和转向轻便,并减少汽车在行驶中轮胎和转向机构零件的磨损。
由于零部件制造公差和装配公差,需要设置车轮参数的调整机构,以保证出厂的车辆车轮定位参数都在合理的范围。
此外,车辆在长时间使用过程中,由于零部件磨损及橡胶件变形,均会引起车轮定位参数的变化,需要有调整机构进行修正。
一般乘用车的后悬架主要调整外倾角和前束角,本文主要就这两个方面进行论述。
1.外倾角和前束角定义外倾角的定义为:车轮中心平面相对铅垂线的夹角,向外倾斜为正,向内倾斜为负,如图1所示:图1外倾角示意图图2前束角示意图前束角定义为:汽车纵向中心平面与车轮中心平面与地面交线的夹角,向内为正,向外为负,如图2所示。
2.车轮定位参数调整机构分析及设计2.1偏心螺栓偏心量选取及评价指标偏心螺栓偏心量应合理选择,过大,容易出现力矩返松,过小,不能满足调整需求。
其评价指标为:偏心螺栓偏心量应能满足克服极限公差后仍可调整0.5°±0.1°,初步选定偏心螺栓的偏心量为5.3mm,如图3所示:图3偏心螺栓偏心量确定及配合孔位尺寸确定偏心螺栓选定之后,应注意与之配合的孔位尺寸的确定,应满足配合孔位的中心距不小于偏心量的2倍,以使偏心螺栓在调整时可以自由旋转,而不至于损伤螺纹。
2.2调整量分析及计算在进行调整量分析之前应先确定车轮设计状态的定位参数。
一般根据设计车轴荷及悬架结构形式在数据库中对比分析确定初步定位参数,然后利用ADAMS 分析软件进行动力学分析确定后悬架设计参数为:外倾角-29′(-0.483°),前束角为14′(0.233°),如图4所示:图4后悬架外倾角和前束角动力学分析在CATIA软件中将后悬架数模按照设计参数进行约束装配,并根据经验初步设定后下控制臂与副车架的连接点为调整点,要求各连接点约束正确,更改调整量后车轮可以随之运动,以便进行外倾角和前束角的测量,如图5所示:图5后悬架车轮定位参数分析模型分别将偏心螺栓调整到最外侧和最内侧,测量外倾角和前束角的变化量,如表1所示:表1因此,外倾角调整量为±0.514°,前束角调整量为±1.178°2.3累计公差分析根据经验确定各零部件制造公差及装配公差,运用蒙特卡洛算法模拟真实装配,进行3DCS偏差仿真分析,得出外倾角及前束角最大累计公差量及影响因素,如图6所示:图6外倾角和前束角累计公差及影响因素分析根据分析结果,外倾角最大累计公差为±0.5°,最敏感影响因素为上控制臂安装点公差;前束角最大累计公差为±0.6°,最敏感影响因素为下控制臂安装点公差。
汽车各类悬架系统图解说明独立悬架与非独立悬架示意图13-4所示独立悬架如图4-57(a)所示,其两侧车轮安装于断开式车桥上,两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮。
非独立悬架如图4-57(b)所示。
其两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上。
钢板弹簧13-5钢板弹簧可分为对称式钢板弹簧和非对称式钢板弹簧,对称式钢板弹簧其中心螺栓到两端卷耳中心的距离相等如图(a),不等的则为非对称式钢板弹簧如图(b)。
钢板弹簧在载荷作用下变形,各片之间因相对滑动而产生摩擦,可促使车架的振动衰减,起到减振器的作用扭杆弹簧扭杆弹簧一般用铬钒合金弹簧钢制成。
一端固定在车架上,另一端上的摆臂2与车轮相连。
当车轮跳动时,摆臂绕扭杆轴线摆动,使扭杆产生扭转弹性变形,从而使车轮与车架的联接成为弹性联接。
扭杆的断面形式断面常为圆形,少数是矩形或管形空气弹簧空气弹簧主要用橡胶件作为密闭容器,它分为囊式和膜式两种(如图4-61所示),工作气压为0.5~1Mpa。
这种弹簧随着载荷的增加,容器内压缩空气压力升高,使其弹簧刚度也随之增加,载荷减少,弹簧刚度也随空气压力减少而下降,具有有理想的变刚度弹性特性。
油气弹簧简图油气弹簧以气体(化学性质不太活泼的气体-氮)作为弹性介质,用油液作为传力介质。
简单的油气弹簧(如图4-62(a)所示)不带油气隔膜。
目前,这种弹簧多用于重型汽车,在部分轿车上也有采用的1-活塞杆2-工作缸筒3-活塞4-伸张阀5-储油缸筒6-压缩阀7-补偿阀8-流通阀9-导向座-10-防尘罩11-油封双向作用筒式减振器示意图p314 -4-51横向稳定器的安装13-7copy.gif横向稳定杆由弹簧钢制成,呈扁平的U形,横向安装在汽车前端或后端(有轿的车在前后都装横向稳定器)。
弹性的稳定杆产生扭转内力矩会阻碍悬架弹簧的变形,减少了车身的横向倾斜和横向角振动。
多连杆悬架详解(样例5)第一篇:多连杆悬架详解多连杆悬架详解汽车悬挂系统从最初的非独立悬挂到独立悬挂,然后又从独立悬挂中衍生出麦弗逊,双叉式等繁多的种类,这里我们来介绍独立悬挂中最先进的设计:多连杆悬挂所谓多连杆悬挂,顾名思义就是通过各种连杆配置把车轮与车身相连的一套悬挂机构。
而连杆数量在3根以上才称为多连杆,目前主流的连杆数量为5连杆。
因此其结构要比双叉和麦弗逊复杂很多。
我们知道,双叉悬挂是通过上下两个A字型控制臂对车轮进行定位。
由于A字型控制臂仅能做上下方向的浮动,通过对控制臂长度的设计配置可以达到动态控制车轮外倾角的目的,提高汽车转弯时的操控性能。
但对于转向轮和随动轮来说,仅仅靠控制外倾角来适应弯道所提高的性能显然是有限的。
在四轮定位参数中除了外倾角,还有前束角也是影响弯道操控的重要参数,那么怎么样才能像控制外倾角一样动态控制前束角呢?这一点双叉臂可以做到,但提高的性能非常有限。
虽然双叉臂悬挂在设计上拥有很大的设计自由度,如果要用双叉臂来控制前束,通常的做法就是在A字型控制臂与车身相连的前端连接处装入较柔软的橡胶衬套。
当车辆转弯时由于前后衬套的刚度不同,车轮会向弯道方向改变一定的前束角度,如果这种设计用于后轮,后轮就可在横向力的作用下随动转向,虽然这个转向角度很小,但对性能还是有一定提高的。
通过设计橡胶衬套的刚度能达到一定的可变前束角角度以及随动转向功能,但橡胶衬套的首要任务还是起连接悬挂和隔绝震动的作用,因此刚度不能过低。
这就造成对可变前束以及随动转向的局限性,紧能获得一个很小的角度。
多连杆悬挂就完全解决了这个问题,它通过不同的连杆配置,使悬挂在收缩时能自动调整外倾角,前束角以及使后轮获得一定的转向角度。
其原理就是通过对连接运动点的约束角度设计使得悬挂在压缩时能主动调整车轮定位,而且这个设计自由度非常大,能完全针对车型做匹配和调校。
因此多连杆悬挂能最大限度的发挥轮胎抓地力从而提高整车的操控极限。
悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。
从外表上看,轿车悬架仅是由一些杆、筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。
比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。
比较重要的参数有:1.车轮外倾角前轮外倾角分零外倾角、正外倾角、负外倾角。
如果空车时车轮的安装正好垂直于路面,则满载时车桥因承载变形而可能出现车轮内倾,这样将加速车轮胎的磨损。
另外,路面对车轮的垂直反力沿轮毂的轴向分力将使轮毂压向外端的小轴承,加重了外端小轴承及轮毂紧固螺母的负荷,降低它们的寿命。
因此,前轮有一个外倾角,同时为防止车轮出现过大的不足转向或过度转向趋势,为防止车轮出现过大的不足转向或过度转向趋势,一般希望车轮从满载位置起上下跳动40mm的范围内,车轮外倾角变化在1度左右。
车轮外倾角的变化与悬架的形式有关,车轮外倾角的设置影响到汽车的转向操作性能和直线行驶稳定性能。
汽车作曲线行驶时,车轮随车身一起倾斜,即车身外侧车轮向正的外倾角方向变化,从而降低了其侧偏性能。
为保证轮胎的侧偏性能,悬架设计要求上跳时外倾角向负值变化,下落时向正值变化。
但是从操纵稳定性来讲,要求前悬架设计成上跳时外倾角向增大方向变化,下落时向减小方向变化,后悬架设计成上跳时向减小方向变化,下落时向增大方向变化。
2.主销后倾角主销后倾角是指在车身侧视图主销轴与垂直轴的夹角,正的主销后倾角是指主销顶部向后倾的角度。
主销后倾角的主要作用是使车轮复位以提高车辆直线行驶的稳定性。
当行驶中的汽车遇到外力产生偏离时,后倾角产生回正力矩使车轮自动回复到原来位置。
悬架主要参数的确定一、悬架静挠度悬架静挠度,是指汽车满载静止时悬架上的载荷Fw与此时悬架刚度c之比,即=Fw/c。
汽车前、后悬架与其簧上质量组成的振动系统的固有频率,是影响汽车行驶平顺性的主要参数之一。
因现代汽车的质量分配系数ε近似等于1,于是汽车前、后轴上方车身两点的振动不存在联系。
因此,汽车前、后部分的车身的固有频率n1和n2(亦称偏频)可用下式表示式中,c1、c2为前、后悬架的刚度(N/cm);m1、m2为前、后悬架的簧上质量(kg)。
当采用弹性特性为线性变化的悬架时,前、后悬架的静挠度可用下式表示式中,g为重力加速度(g=981cm/s2)。
将、代入式(6—1)得到分析上式可知:悬架的静挠度直接影响车身振动的偏频n。
因此,欲保证汽车有良好的行驶平顺性,必须正确选取悬架的静挠度。
在选取前、后悬架的静挠度值和时,应当使之接近,并希望后悬架的静挠度比前悬架的静挠度小些,这有利于防止车身产生较大的纵向角振动。
理论分析证明:若汽车以较高车速驶过单个路障,nl/n2<1时的车身纵向角振动要比n1/n2>1时小,故推荐取=(0.8~0.9) 。
考虑到货车前、后轴荷的差别和驾驶员的乘坐舒适性,取前悬架的静挠度值大于后悬架的静挠度值,推荐=(0.6~0.。
为了改善微型轿车后排乘客的乘坐舒适性,有时取后悬架的偏频低于前悬架的偏频。
用途不同的汽车,对平顺性要求不一样。
以运送人为主的轿车对平顺性的要求最高,大客车次之,载货车更次之。
对普通级以下轿车满载的情况,前悬架偏频要求在1.00~1.45Hz,后悬架则要求在1.17~1.58Hz。
原则上轿车的级别越高,悬架的偏频越小。
对高级轿车满载的情况,前悬架偏频要求在0.80~1.15Hz,后悬架则要求在0.98~1.30Hz。
货车满载时,前悬架偏频要求在1.50~2.10Hz,而后悬架则要求在1.70~2.17Hz。
选定偏频以后,再利用式(6—2)即可计算出悬架的静挠度。
悬架系统1.整车有关参数1.1 轴距:L=2610mm1.2 轮距:前轮B1=1530mm后轮B2=1510mm1.3 轴荷(kg)1.4 前后轮空满载轮心坐标(Z向)1.4 前、后悬架的非簧载质量(kg):G u1=108kg G u2=92kg1.5 悬架单边簧载质量(kg)悬架单边簧载质量计算结果如下:前悬架:空载单边车轮簧载质量为M01=(795-108)/2=343.5kg 半载单边车轮簧载质量为 M03=(872-108)/2=382kg满载单边车轮簧载质量为M02=(891-108)/2=391.5kg 后悬架:空载单边车轮簧载质量为M1=(625-92)/2=266.5kg半载单边车轮簧载质量为M3=(773-92)/2=340.5kg满载单边车轮簧载质量为M2=(904-92)/2=406kg2、前悬架布置前悬架布置图见图1图1 T21前悬架布置简图3、前悬架设计计算3.1 前悬架定位参数:3.2 前悬架采用麦弗逊式独立悬架,带稳定杆,单横臂,螺旋弹簧,双向双作用筒式减震器。
(1) 空满载时缓冲块的位置和受力情况 空载时,缓冲块起作用,不受力 满载时,缓冲块压缩量为13.8mm ,(由DMU 模拟得知,DMU 数据引自T21 M2数据)。
根据缓冲块的特性曲线,当缓冲块压缩13.8mm 时,所受的力为:125N (2) 悬架刚度计算螺旋弹簧行程杠杆比:1.06悬架刚度为K 1= ((391.5-343.5)*9.8-125/1.06)/(5-(-15))= 17.62N/mm(3)前螺旋弹簧①截锥螺旋弹簧②螺旋弹簧行程杠杆比:1.06③刚度C1=K1*(1.06)2*0.9=17.62*(1.06)2*0.9=17.81N/mm(4)静挠度和空满载偏频计算空载时挠度 f 1= N 1/K 1=( M 01*9.8)/K 1=(343.5*9.8)/17.81=18.9cm静挠度 f 01= f 1 +(5-(-15))/10=20.9 偏频n: 空载为 Hz f n 15.19.18/5/511=== 满载为 Hz f n 09.19.20/5/50101===结论:前悬架偏频在1.00~1.45Hz 之间,满足设计要求。
汽车悬挂系统按导向机构形式分为两大类汽车各种悬挂系统的优缺点在我们看车买车的过程中经常会在车辆的简介表中见到诸如麦弗逊式,双叉臂式,多连杆式,双连杆式,四连杆式,扭力梁式,拖拽臂式等多种前后悬挂系统。
这些专业名词,看着就让人头晕.有些人索性置之不理,其实汽车悬挂系统是选择汽车极其重要的参考依椐,它决定着汽车的稳定性,舒适性,安全性是汽车关键的部件之一。
简单的来说悬挂系统就是指由车身与轮胎间的弹簧和避震器与车架连接部分组成的整个支持系统。
悬挂系统应有的功能是支持车身,改善驾驶与乘坐的感觉,因为使用不同的悬挂系统,会使驾驶者与乘客在车辆行驶过程中都有不同的感受。
而现在大多数厂家在自己的车型上无论装配什么样的悬挂系统,都通通宣传自己的操控性如何好,乘坐如何舒适,这种宣传也在某种程度使驾驶者产生了误区,出现一些因车辆失控造成的车祸。
一般说来汽车的悬挂系统分为二种即非独立悬挂和独立悬挂,由于人们对车子操控性与乘坐舒适性的要求越来越高,所以非独立悬挂系1统已渐渐淘汰。
定义:1、非独立悬挂系统非独立悬挂系统非独立悬挂系统的结构特点是两侧车轮由一根整体式车架相连,车轮连同车桥一起通过弹性悬挂系统悬挂在车架或车身的下面。
非独立悬挂系统具有结构简单、成本低、强度高、保养容易、行车中前轮定位变化小的优点,但由于其舒适性及操纵稳定性都较差,在现代轿车中基本上已不再使用,多用在货车和大客车上。
2、独立悬挂系统2独立悬挂系统独立悬挂系统是每一侧的车轮都是单独地通过弹性悬挂系统悬挂在车架或车身下面的。
其优点是:质量轻,减少了车身受到的冲击,并提高了车轮的地面附着力;可用刚度小的较软弹簧,改善汽车的舒适性;可以使发动机位置降低,汽车重心也得到降低,从而提高汽车的行驶稳定性;左右车轮单独跳动,互不相干,能减小车身的倾斜和震动。
不过,独立悬挂系统存在着结构复杂、成本高、维修不便的缺点。
3现代轿车大都是采用独立式悬挂系统,按其结构形式的不同,独立悬挂系统又可分为横臂式、纵臂式、多连杆式、烛式以及麦弗逊式悬挂系统等。
悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。
从外表上看,轿车悬架仅是由一些杆、筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。
比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。
比较重要的参数有:1.车轮外倾角前轮外倾角分零外倾角、正外倾角、负外倾角。
如果空车时车轮的安装正好垂直于路面,则满载时车桥因承载变形而可能出现车轮内倾,这样将加速车轮胎的磨损。
另外,路面对车轮的垂直反力沿轮毂的轴向分力将使轮毂压向外端的小轴承,加重了外端小轴承及轮毂紧固螺母的负荷,降低它们的寿命。
因此,前轮有一个外倾角,同时为防止车轮出现过大的不足转向或过度转向趋势,为防止车轮出现过大的不足转向或过度转向趋势, 一般希望车轮从满载位置起上下跳动40mm 的范围内, 车轮外倾角变化在1度左右。
车轮外倾角的变化与悬架的形式有关,车轮外倾角的设置影响到汽车的转向操作性能和直线行驶稳定性能。
汽车作曲线行驶时,车轮随车身一起倾斜,即车身外侧车轮向正的外倾角方向变化,从而降低了其侧偏性能。
为保证轮胎的侧偏性能,悬架设计要求上跳时外倾角向负值变化,下落时向正值变化。
但是从操纵稳定性来讲,要求前悬架设计成上跳时外倾角向增大方向变化,下落时向减小方向变化,后悬架设计成上跳时向减小方向变化,下落时向增大方向变化。
2.主销后倾角主销后倾角是指在车身侧视图主销轴与垂直轴的夹角,正的主销后倾角是指主销顶部向后倾的角度。
主销后倾角的主要作用是使车轮复位以提高车辆直线行驶的稳定性。
当行驶中的汽车遇到外力产生偏离时,后倾角产生回正力矩使车轮自动回复到原来位置。
底盘悬架计算公式底盘悬架是指汽车底盘上支撑车身和悬挂车轮的一系列零部件的总称。
底盘悬架的设计和计算是汽车工程中非常重要的一部分,它直接影响着汽车的操控性、舒适性和安全性。
在底盘悬架的设计和计算中,有一些重要的公式是必不可少的,它们可以帮助工程师们更好地设计和计算底盘悬架系统。
底盘悬架的计算公式涉及到多个方面,包括悬架弹簧的刚度、减震器的阻尼系数、悬架几何参数等。
下面将分别介绍这些方面的计算公式。
1. 悬架弹簧的刚度计算公式。
悬架弹簧的刚度是指弹簧在单位位移下所受的力,它是悬架系统中非常重要的参数。
悬架弹簧的刚度可以通过以下公式计算:K = F / δ。
其中,K表示弹簧的刚度,单位是N/m;F表示弹簧所受的力,单位是N;δ表示弹簧的位移,单位是m。
2. 减震器的阻尼系数计算公式。
减震器的阻尼系数是指减震器在单位速度下所受的阻尼力,它也是悬架系统中非常重要的参数。
减震器的阻尼系数可以通过以下公式计算:C = F / v。
其中,C表示减震器的阻尼系数,单位是N/(m/s);F表示减震器所受的阻尼力,单位是N;v表示减震器的速度,单位是m/s。
3. 悬架几何参数的计算公式。
悬架几何参数包括悬架的几何中心高度、悬架的偏距、悬架的角度等,这些参数对悬架系统的性能有着重要的影响。
悬架几何参数可以通过以下公式计算:H = (h1 + h2) / 2。
其中,H表示悬架的几何中心高度,单位是m;h1表示悬架的左侧几何中心高度,单位是m;h2表示悬架的右侧几何中心高度,单位是m。
通过以上的公式,工程师们可以更好地设计和计算底盘悬架系统,从而使汽车具有更好的操控性、舒适性和安全性。
当然,底盘悬架的设计和计算并不仅仅局限于上述的公式,还需要考虑到车辆的整体结构、悬架材料的选择、悬架零部件的制造工艺等多个方面的因素。
因此,在实际的工程设计中,工程师们需要综合考虑这些因素,才能设计出性能更优越的底盘悬架系统。
除了上述的公式外,底盘悬架的设计和计算还需要进行大量的仿真分析和试验验证。
车辆底盘的悬挂系统参数车辆的底盘悬挂系统是保证行车平稳性和乘客舒适度的重要组成部分。
悬挂系统的参数对于车辆的操控性能和驾驶感受有着直接影响。
本文将详细介绍车辆底盘悬挂系统的参数,包括弹簧刚度、减震器设置、悬挂高度和悬挂类型等。
一、弹簧刚度弹簧刚度是悬挂系统中最重要的参数之一。
它指的是在单位位移下,弹簧对于外部力所产生的反作用力的大小。
弹簧刚度越大,车辆在行驶过程中的起伏变化越小,悬挂系统对于颠簸路段的响应能力越好。
一般来说,越高级的车辆所采用的弹簧刚度越大,提供更好的行驶质感和操控性能。
二、减震器设置减震器是悬挂系统中的重要组成部分,其参数设置直接影响着车辆的舒适性和悬挂系统的稳定性。
减震器设置包括阻尼力和回复力两方面。
阻尼力指的是减震器对于弹簧压缩和伸展过程中的减震能力,决定了车辆在不同路况下的阻尼强度。
回复力则是减震器在压缩后回复到原始位置的能力,影响着车辆的稳定性和悬挂系统的响应速度。
合理的减震器设置能够提供良好的平稳性和悬挂控制,使行车更加稳定和舒适。
三、悬挂高度悬挂高度是指车辆离地面的距离,也是悬挂系统中的重要参数之一。
悬挂高度的设置直接影响着车辆的通过性和稳定性。
较高的悬挂高度在通过不平路面时会有更好的通过性,但会增加车辆的重心高度,降低行驶稳定性。
较低的悬挂高度则可以提供更好的操控性能和行驶稳定性,但容易造成底盘部件的损坏。
车辆制造商会根据车型的用途和性能要求来合理设置悬挂高度,以达到最佳的平衡。
四、悬挂类型悬挂系统有多种类型,常见的包括独立悬挂、非独立悬挂和半独立悬挂等。
独立悬挂是指每个车轮都有独立的悬挂装置,可以独立运动。
非独立悬挂是指左右两个车轮之间通过横梁或弹簧连接,悬挂运动不独立。
半独立悬挂则是介于独立悬挂和非独立悬挂之间。
不同类型的悬挂系统对于车辆的行驶性能和操控感受有着不同的影响。
独立悬挂可以提供更好的悬挂控制和操纵性能,而非独立悬挂则相对简单和便宜,适用于经济型车辆。