光化学原理与应用辐射跃迁-磷光2015- 4-10 终版 已讲
- 格式:pdf
- 大小:1002.50 KB
- 文档页数:62
分子磷光的名词解释分子磷光是指分子在受到激发后产生的荧光现象。
磷光是一种电磁辐射,其能量状态高于发射的光子能量。
分子磷光的现象可在天然和人工材料中观察到,其应用领域广泛,包括荧光标记、医学成像和材料科学等。
一、分子磷光的发现与发展分子磷光的研究始于19世纪。
法拉第最早观察到分子磷光现象,并形成了荧光理论。
20世纪,随着科技的发展,人们开始利用分子磷光进行材料分析与研究。
非线性光学领域的快速发展,尤其是激光技术的应用,极大地推动了分子磷光的研究。
二、分子磷光的原理分子磷光是由于分子受到光照后,能量的吸收和释放而产生的。
当分子受到激发光的能量时,其电子从基态跃迁至激发态。
经过短暂的停留,分子电子会从激发态退回到低能量的振动和转动能级。
在这个过程中,分子通过发射光子释放能量,产生磷光。
三、分子磷光的特性1. 荧光发射光谱:每个分子的磷光具有独特的光谱特征,可以通过光谱技术来分析。
这些特征主要取决于分子的结构,电子能级以及分子之间的相互作用。
2. 磷光寿命:分子磷光的时间跨度可以从纳秒到微秒不等,这种时间尺度广泛应用于荧光定量和时间分辨实验。
3. 磷光量子产率:磷光量子产率是指受激发分子产生磷光的效率,也是研究分子自发辐射的重要参数。
四、分子磷光的应用1. 荧光标记:分子磷光可用于荧光标记生物分子,如蛋白质、核酸等。
通过对分子磷光的观察,可以实现生物分子定量测量和成像。
2. 医学成像:分子磷光在医学成像中具有广泛应用,尤其在肿瘤诊断和药物传递方面。
利用磷光探针标记肿瘤细胞,可以实现对肿瘤的非侵入性检测和成像。
3. 材料科学:分子磷光在材料科学中的应用主要包括发光材料和光学存储器。
分子磷光的调控和改变可以增加材料的光学性能和应用功能。
五、分子磷光的未来发展随着科学技术的不断进步,对分子磷光的研究将不断深入。
分子磷光材料的合成与设计将会变得更加精确和高效。
此外,基于纳米技术和生物技术的分子磷光研究也将成为一个关键的发展方向,广泛应用于荧光探针、生物传感器和纳米电子学等领域。
有机光化学反应及其应用有机光化学反应是指在光的作用下,有机分子发生的化学反应。
光作为一种能量源,具有唯一的性质,可以引发电子激发、单能态和非平衡的电子密度等,从而促使化学反应的进行。
有机光化学反应在合成有机化合物、材料科学、药物研究等领域有着广泛的应用。
本文将介绍有机光化学反应的基本原理和几个重要的应用案例。
一、有机光化学反应的基本原理有机光化学反应的基本原理是光的能量激发和化学反应之间的相互作用。
光的电磁波特性使得它能够提供足够的能量,通过光照射可以改变分子的电荷分布、激发分子内部的共振结构等。
这些能量变化促使有机分子发生电子转移、断裂/形成化学键等变化,从而实现不同的化学反应。
二、有机光化学反应的应用案例1. 光催化合成有机化合物光催化合成是有机光化学反应的重要应用之一。
通过合理选择光催化剂和反应条件,可以实现高效、选择性的有机化合物合成。
例如,光催化还原可以通过光激发还原剂,将有机化合物中的卤素取代为氢原子,实现高效的卤代反应。
此外,光催化微波合成、光催化还原缩合等方法也在有机合成中得到了广泛的应用。
2. 光敏剂在光动力治疗中的应用光敏剂是一类具有光敏性的物质,其被光激发后,可以释放出活性氧或产生化学反应,进而应用于光动力治疗。
光动力治疗是一种新兴的肿瘤治疗方法,通过将光敏剂注射到体内并照射特定波长的光,可以选择性地杀灭肿瘤细胞。
这种治疗方法具有创伤小、毒副作用小等优点,已经广泛应用于临床。
3. 光敏染料在光电子器件中的应用光敏染料是一类在光电子器件中起到接收和转换光信号的重要材料。
它们通过吸收光能激发电子或进行电子转移,实现电流的产生、转换和放大。
目前光敏染料已经广泛应用于光电池、光传感器、光开关等领域。
其中光电池作为一种新型的可再生能源技术,具有非常重要的应用前景。
4. 光热材料在纳米医学中的应用光热材料是一类能够吸收光能并转化为热能的物质。
由于其独特的光热性能,光热材料被广泛应用于纳米医学中的肿瘤治疗、药物释放等领域。
引言:光化学的原理及应用(二)是对光化学这一重要领域的深入探讨,本文将从引言概述、正文内容、总结等方面展开讲述。
光化学作为一门交叉学科,涉及光学、化学、物理等领域,其应用领域广泛,对环境保护、能源开发、生命科学等方面都有重要意义。
概述:正文内容:1.光化学反应的基本原理1.1光激发光激发是光化学反应的起始过程,当分子吸收光子能量时,电子从基态跃迁到激发态。
1.2能量转化电子在激发态具备较高的能量,这部分能量可以被转化为化学能、热能或其他形式的能量,从而推动光化学反应的进行。
1.3化学键断裂和形成在光化学反应中,光激发的分子发生化学键的断裂和形成,从而产生新的物质。
2.光化学反应机理与动力学2.1电子转移反应电子转移反应是光化学反应中常见的一种反应机制,包括光电子转移和化学电子转移两种形式。
2.2自由基反应自由基反应是指光化学反应中涉及到自由基的、传递和消耗等过程,具有较为复杂的反应机理。
3.光化学在环境保护中的应用3.1水处理光化学技术可以利用光能来催化水中有机污染物降解,从而实现水处理和污染物去除。
3.2大气污染控制光化学反应可以参与大气中有机物的降解和氧化过程,从而改善大气质量和减少空气污染物的排放。
4.光化学在能源开发中的应用4.1光电转化光电转化是指将光能转化为电能的过程,其中包括太阳能电池等光电转换器件的设计与制备。
4.2光催化光催化是指利用光能来驱动化学反应的过程,如利用光催化材料来实现水分解产生氢气。
5.光化学在生命科学中的应用5.1光动力疗法光动力疗法是一种通过激活光敏剂来杀灭肿瘤细胞的治疗方法,已在肿瘤治疗中得到广泛应用。
5.2光合作用光合作用是指植物中利用光能将二氧化碳和水转化为有机物质的生物化学过程,是生物界中重要的能量供应方式。
总结:光化学作为一门交叉学科,深入研究了光激发、能量转化、化学键断裂和形成等一系列过程,对科学研究、工业生产、环境改善、能源开发和生命科学等领域都有重要应用。
荧光分析法检测原理及应用举例1荧光定义某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。
可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。
2荧光分类由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。
按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。
3光致荧光机理某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。
分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。
光致荧光的过程按照时间顺序可分为以下几部分。
3.1 分子受激发过程在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。
分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。
跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。
分子跃迁至不稳定的激发态中即为电子激发态分子。
在电子激发态中,存在多重态。
多重态表示为2S+1。
S为0或1,它表示电子在自转过程中,具有的角动量的代数和。
S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态,用S i表示,由此可推出,S即为基态的单重态,S1为第一跃迁能级激发态的单重态,S2为第二跃迁能级激发态的单重态。
S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子在激发态中位于第三振动能级,称为三重态,用T i来表示,T1即为第一激发态中的三重态,T2即为第二激发态中的三重态,以此类推。
简述荧光与磷光的产生原理及应用
简述荧光与磷光的产生原理及应用,并说明有机物结构是如何影响荧光的。
具有荧光性的分子吸收入射光的能量后,其中的电子从基态(通常为自旋单重态)跃迁至具有相同自旋多重度的激发态。
处于各激发态的电子通过振动驰豫、内转移等无辐射跃迁过程回到第一电子激发单重态的最低振动能级。
然后再由这个最低振动能级跃迁回到基态时,发出荧光。
由第一激发单重态的最低振动能级,有可能以系间窜跃方式转至第一激发三重态,再经过振动驰豫,转至其最低振动能级,由此激发态跃回至基态时,便发射磷光。
荧光与磷光的根本区别:荧光是由激发单重态最低振动能层至基态各振动能层间跃迁产生的;而磷光是由激发三重态的最低振动能层至基态各振动能层间跃迁产生的。
荧光主要用于元素及有机化合物的荧光测定,照明,印刷防伪技术,生化和医药方面等。
磷光分析主要用于测定有机化合物,如石油产品、多环芳烃、农药、药物等方面。
有机物结构对荧光的影响主要有以下方面:(1)跃迁类型:相对于n-n *跃迁,n - n *跃迁能发出较强的荧光(较大的量子产率)。
(2)共轭效应:增加体系的共轭度,荧光效率一般也将增大。
(3)刚性平面结构:多数具有刚性平面结构的有机分子具有强烈的荧光。
(4)取代基效应:给电子基团使荧光增强,吸电子基团,会减弱甚至会猝灭荧光;卤素取代基随原子序数的增加而荧光降低;取代基的空间障碍对荧光也有影响;立体异构现象对荧光强度有显著的影响。
磷光历史人类认识磷光已很久,在古代,磷光被笼罩上了一层神秘的色彩(如严寒干燥又晴朗无风的冬夜,在坟堆间偶然漂浮的小亮点,被人们认为是鬼火)。
有的宝石在暗处会发光,如1603年,鲍络纳(Bologna)的一个鞋匠发现当地一种石头(含硫酸钡)经阳光照射被移到暗处后,会继续发光。
当时关于磷光的记载中描述:鲍络纳石经阳光照射,须孕育一段时间后才产生光。
经过几个世纪后,人们才弄清楚这一现象的发光原理与发光过程。
1845年,Herschel 报道硫酸奎宁溶液经日光照射后发射出强烈的光。
[2]概述通常发光方式很多,但根据余辉的长短将晶体的发光分成两类:荧光和磷光。
余辉指激发停止后晶体发光消失的时间。
当处于基态的分子吸收紫外-可见光后,即分子获得了能量,其价电子就会发生能级跃迁,从基态跃迁到激发单重态的各个不同振动能级,并很快以振动驰豫的方式放出小部分能量达到同一电子激发态的最低振动能级,然后以辐射形式发射光子跃迁到基态的任一振动能级上,这时发射的光子称为荧光。
荧光也可以说成余辉时间≤10^(-8)s者,即激发一停,发光立即停止。
这种类型的发光基本不受温度影响。
如果受激发分子的电子在激发态发生自旋反转,当它所处单重态的较低振动能级与激发三重态的较高能级重叠时,就会发生系间窜跃,到达激发激发三重态,经过振动驰豫达到最低振动能级,然后以辐射形式发射光子跃迁到基态的任一振动能级上,这时发射的光子称为磷光。
当然,磷光也可以说成余辉时间≥10^(-8)s者,即激发停止后,发光还要持续一段时间。
根据余辉的长短,磷光又可以分为短期磷光(余辉时间≤10^(-4)s)和长期磷光(余辉时间≥10^(-4)s)。
磷光的衰减强烈的受温度影响。
磷光是一种缓慢发光的光致冷发光现象。
当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态(通常具有和基态不同的自旋多重度[1]),然后缓慢地退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段)。
光化学原理课件一、引言光化学原理是研究光与物质相互作用过程中所发生的化学变化的学科。
光化学在自然界和人类生活中扮演着重要角色,如光合作用、太阳能转换、光固化技术等。
本课件旨在介绍光化学的基本原理、光化学反应类型、光化学应用等方面的知识,帮助读者更好地理解和掌握光化学原理。
二、光化学基本原理1. 光的性质光是一种电磁波,具有波动性和粒子性。
根据波长不同,光可以分为紫外光、可见光和红外光。
光的速度、波长和频率之间有一定的关系,即c = λν,其中c为光速,λ为波长,ν为频率。
2. 光的吸收与发射物质对光的吸收和发射是光化学过程的基础。
当光照射到物质表面时,物质分子中的电子吸收光能,从基态跃迁到激发态。
激发态电子不稳定,会通过辐射跃迁或非辐射跃迁回到基态,释放出能量。
这个过程表现为物质的颜色和荧光现象。
3. 光化学反应光化学反应是指在光的作用下,物质发生化学变化的过程。
光化学反应可以分为两类:光合作用和光解作用。
光合作用是指光能转化为化学能的过程,如植物的光合作用;光解作用是指光能导致化学键断裂的过程,如光解水制氢。
三、光化学反应类型1. 直接光化学反应直接光化学反应是指光直接作用于反应物,使其发生化学变化的过程。
例如,光解水制氢、光氧化还原反应等。
2. 间接光化学反应间接光化学反应是指光作用于催化剂或敏化剂,使其激发后引发反应的过程。
例如,光合作用、光催化氧化还原反应等。
3. 光敏化反应光敏化反应是指光激发敏化剂,敏化剂将能量转移给反应物,从而引发化学反应的过程。
光敏化反应在光动力治疗、光催化等领域具有重要意义。
四、光化学应用1. 光合作用光合作用是自然界中最重要的光化学过程,是植物、藻类和某些细菌利用光能将二氧化碳和水转化为有机物和氧气的过程。
光合作用为生物提供了能量和氧气,维持了地球生态系统的平衡。
2. 太阳能转换太阳能转换是指将太阳光能转化为电能或其他形式能量的过程。
太阳能电池、太阳能热利用等技术都是基于光化学原理实现的。