二次根式及勾股定理单元测试题及答案(最新)
- 格式:doc
- 大小:196.00 KB
- 文档页数:5
2022-2023学年人教版八年级数学下册阶段性(二次根式+勾股定理)综合练习题(附答案)一、选择题(共36分)1.下列式子不是二次根式的是()A.B.C.D.2.在下列长度的各组线段中,能构成直角三角形的是()A.3,5,9B.4,6,8C.1,,2D.3.的化简结果为()A.25B.5C.﹣5D.﹣254.下列根式中,不是最简二次根式的是()A.B.C.D.5.下列运算正确的是()A.B.C.D.6.下列二次根式中,与可以合并的是()A.B.C.D.7.计算3﹣2的结果是()A.B.2C.3D.68.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.D.﹣19.如图,一棵大树被大风刮断后,折断处离地面8m,树的顶端离树根6m,则这棵树在折断之前的高度是()A.18m B.10m C.14m D.24m10.把中根号外面的因式移到根号内的结果是()A.B.C.D.11.如图,矩形ABCD的对角线AC=10,边BC=8,则图中五个小矩形的周长之和为()A.14B.16C.20D.2812.已知,则的值为()A.B.±2C.±D.二、填空题(共18分)。
13.使有意义的x的取值范围是.14.已知Rt△ABC两直角边长为5,12,则斜边长为.15.计算:5÷×所得的结果是.16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为cm2.17.若y=,则x+y=.18.在直线l上依次摆放着七个正方形(如图),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=.三、解答题(共46分)19.计算:(1),(2).20.如图,已知在△ABC中,CD⊥AB于D,AC=12,BC=10,DB=6.(1)求CD的长.(2)求AB的长.21.在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)22.如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=13,DC=12,求四边形ABCD 的面积.23.已知a、b、c满足.(1)求a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由.24.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解答的:∵a===2﹣,∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1.∴2a2﹣8a+1=2(a2﹣4a)+1=2(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:若a=,求4a2﹣8a﹣3的值.参考答案一、选择题(共36分)1.解:A、是二次根式,故本选项不符合题意;B、是二次根式,故本选项不符合题意;C、是二次根式,故本选项不符合题意;D、不是根式,故本选项符合题意.故选:D.2.解:A、∵3+5=8<9,∴不能组成三角形,故A不符合题意;B、∵42+62=52,82=64,∴42+62≠82,∴不能组成直角三角形,故B不符合题意;C、∵12+()2=4,22=4,∴12+()2=22,∴能组成直角三角形,故C符合题意;D、∵()2+()2=8,()2=6,∴()2+()2≠()2,∴不能组成直角三角形,故D不符合题意;故选:C.3.解:=5.故选:B.4.解:因为==2,因此不是最简二次根式.故选:B.5.解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选:C.6.解:A、==2,与不能合并,本选项不符合题意;B、=,与可以合并,本选项符合题意;C、==3,与不能合并,本选项不符合题意;D、==,与不能合并,本选项不符合题意;故选:B.7.解:原式=(3﹣2)=.故选:A.8.解:图中直角三角形的两直角边为1,2,∴斜边长为=,那么﹣1和A之间的距离为,那么a的值是:﹣1,故选:D.9.解:如图:∵BC=8米,AC=6米,∵∠C=90°,∴AB2=AC2+BC2,∴AB=10米,∴这棵树在折断之前的高度是18米.故选:A.10.解:根据被开方数非负数得,﹣>0,解得a<0,﹣a==.故选:A.11.解:∵矩形ABCD的对角线AC=10,BC=8,∴AB===6,由平移的性质可知:五个小长方形的周长和=2×(AB+BC)=2×14=28.故选:D.12.解:∵,∴(x+)2=7∴x2+=5(x﹣)2=x2+﹣2=5﹣2=3,x﹣=±.故选:C.二、填空题(共18分)。
二次根式测试题及答案
一、选择题
1. 以下哪个选项不是二次根式?
A. √3
B. √x
C. √x^2
D. √x^3
答案:D
2. 计算√(4×9)的结果是什么?
A. 6
B. 12
C. √36
D. √4×√9
答案:B
3. 以下哪个表达式等于√(2x)?
A. √2x
B. √x×√2
C. √2×√x
D. √2+√x
答案:C
二、填空题
1. 计算√(25)的结果是______。
答案:5
2. 如果√(a+b) = √a + √b,那么a和b的值分别是______。
答案:0
三、解答题
1. 化简下列二次根式:
√(32) = ______。
答案:4√2
2. 解方程:
√x + 3 = 7。
答案:x = 16
四、证明题
1. 证明√2是一个无理数。
答案:略
五、应用题
1. 一个正方形的面积是50平方厘米,求这个正方形的边长。
答案:边长为√50厘米,即5√2厘米。
六、综合题
1. 一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。
答案:斜边长度为5厘米,根据勾股定理,√(3^2 + 4^2) = √(9
+ 16) = √25 = 5。
七、附加题
1. 如果一个数的平方根等于这个数本身,这个数是多少?
答案:0或1(因为√0 = 0,√1 = 1)
请注意,以上测试题及答案仅供参考,具体题目和答案应根据实际教学大纲和教材内容进行调整。
八年级数学试卷 第 1 页 共 4 页二次根式和勾股定理测试卷(时间90分钟)(满分100分)一、选择题:(每题3分,共30分)(每题只有一个正确答案,请将正确答案序号填入下表)1.若m -3为二次根式,则m 的取值为 ( )A .m ≤3B .m <3C .m ≥3D .m >3 2.下列二次根式中属于最简二次根式的是( ) A . 48 B . 14 C .baD .44+a 3.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .304.若最简二次根式a a 241-+与的被开方数相同,则a 的值为 ( )A .43-=aB .34=a C .a=1 D .a= —15 . 化简)22(28+-得 ( )A .—2B .22-C .2D . 224- 6. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.7. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或258. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )9. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )八年级数学试卷 第 2 页 共 4 页CABDCB A D EF(A )4 cm (B )8 cm (C )10 cm (D )12 cm10.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 二、填空题:(每题4分,共32分)(请将每题正确答案填在下列对应横线上) 11.___________ 12.___________ 13.____________ 14._____________ 15.___________ 16.___________ 17.____________ 18._____________ 11. 如图所示,以Rt ABC 的三边向外作正方形,其面积分别为123,,S S S ,且1234,8,S S S ===则 ;12如图,90,4,3,12C ABD AC BC BD ︒∠=∠====,则AD= ;13、若三角形的三边满足::5:12:13a b c =,则这个三角形中最大的角为 ;14、一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,上午10:00,两小相距 海里。
二次根式单元测试题(卷)经典3套二次根式单元测试题一一、填空题(每题2分,共20分)1、当a=0时,有意义1-a=12、计算:(-3/2)^2=9/432)^2=10241-1/2)×(1+1/2)=3/43、计算:(1)×(-27)=-272)8a^3b^2c=8abc^2×a^2b4、计算:(a>0,b>0,c>0)5、计算:(1)=1/42)=3a/86、如果xy>0,化简-xy^2=-y^2x7、32+42=25,332+442=221,3332+4442= 则33×(32+44)×(42+25)=8、(2-1)2005×(2+1)2006=3×(3^2005)9、观察以下各式:1=2-1。
1/2=3-2。
1/3=4-3利用以上规律计算:1+1/2+1/3+…+1/2007)/[(2+1)+(3+2)+(4+3)+…+(2006+2005 )]=2007/401310、已知x=3+√2,y=3-√2,则(y/x+1)/(x/y+1)=1二、选择题(每题3分,共30分)11、若2x+3有意义,则x≤-3或x≥212、化简(2-a)^2+a^-2的结果是4+2a13、能使等式x/(x-3)=x/x成立的条件是x≠0且x≠314、下列各式中,是最简二次根式的是y/215、已知x+1/x=5那么x-1/x的值是2或-216、如果a^2-2ab+b^2=-1,则a≠b17、已知xy>0,化简二次根式√(x-y^2/x^2)的正确结果为(y/|x|)√(x-y^2)18、如图,Rt△AMC中,∠C=90°,∠AMC=30°,AM∥BN,MN=23cm,XXX=1cm,则AC的长度为3cm。
19、下列说法正确的个数是()①2的平方根是同类二次根式;②2-1与2+1互为倒数;③2^3/2与(2/3)^-2互为倒数;④3√2是同类三次根式。
八年级数学下册《勾股定理》单元测试卷(带答案解析)一、单选题1.如图,在△ABC中,∠C=90°,AC=3,点D在BC上,∠ADC=2∠B,AD=√10,则BC的长为()A. 3√3B. √5+1C. √10−1D. √10+12.下列长度的线段中,能组成直角三角形的一组是()A. 1,√3,2B. 2,3,4C. 4,5,6D. 5,6,73.如图,在ΔABC中,三边a,b,c的大小关系是()A. a<b<cB. c<a<bC. c<b<aD. b<a<c4.下列各组数中,能成为直角三角形的三条边长的是()A. 3,5,7B. 5,7,8C. 4,6,7D. 1,√3,2,则AC的长为()5.如图,点A,B都在格点上,点C在线段AB上,每个小格长度为1,若BC=2√133A. √13B. 4√13C. 2√13D. 3√1336.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B. √2C. 1D. 2−√2A. √227.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 38.等腰三角形的一边长为4,另一边长为6,则这个等腰三角形的面积是()A. 3√7B. 8√2C. 6√7D. 3√7或8√29.如图,一只蚂蚁从长宽高分别是3,2,6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是()A. √61B. 11C. 7D. 810.若一个三角形的三边长分别为a,b,c,满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题11.如图,直角三角形的两直角边长分别为6 cm和8 cm,分别以三边为直径作半圆,则阴影部分的面积为_______________.12.已知直角三角形的三边长分别为6,7,x,则x2=_______________.13.△ABC中,∠C=90°,AB=8,BC=6,则AC的长是 ______.14.如图,在△ABC 中,点D 是BC 上一点,已知:AB =15,AD =12,AC =13,CD =5,则BC 的长为 ______.15.如图,学校有一块长方形花圈,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了 ______步路.(假设2步为1米)16.ΔABC 中,∠ACB =90°,∠BAC =30°,BC =3.以BC 为边作等边ΔBCD ,连接AD ,则AD 的长为____.17.如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =3,则PE 的长是 ______.18.如图,等腰ΔABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则ΔCDF 周长的最小值为______.三 、解答题19.在数轴上表示下列各数,并用“<”连接.−12,0,√3,√−83,(−1)2.20.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC中,AB=AC=2√5,BC=4,求证:△ABC是“奇妙三角形”;(2)在Rt△ABC中,∠C=90°,AC=2√3,若△ABC是“奇妙三角形”,求BC的长.21.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为√13,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点O.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.23.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.BE平分∠ABC交AC于点E.求CE的长.24.如图,矩形ABCD是一个底部直径BC为12cm的杯子的示意图,在它的正中间竖直放一根筷子EG,筷子漏出杯子外2cm,当筷子倒向杯壁时(筷子底端E不动),筷子顶端正好触到杯口,求筷子EG的长度.25.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE= 45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案与解析1.【答案】D;【解析】解:在Rt△ACD中,由勾股定理得:CD=√AD2−AC2=√10−9=1,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=2∠B,∴∠B=∠BAD,∴BD=AD=√10,∴BC=√10+1.故选:D.由勾股定理求出CD=1,再根据∠ADC是△ABD的外角,证出∠B=∠BAD,从而有BD=AD,即可求出BC的长.此题主要考查了勾股定理、三角形外角的性质等知识,利用外角证出∠B=∠BAD是解答该题的关键.2.【答案】A;【解析】解:A、∵12+(√3)2=22,∴能构成直角三角形,故本选项符合题意;B、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;C、∵42+52≠62,∴不能构成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能构成直角三角形,故本选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.此题主要考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答该题的关键.3.【答案】D;【解析】解:根据勾股定理,得a=√1+9=√10;b=√1+4=√5;c=√4+9=√13.∵5<10<13,∴b<a<c.故选:D.先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.此题主要考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.4.【答案】D;【解析】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+(√3)2=22,能构成直角三角形,此选项正确.故选D.分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.此题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.5.【答案】B;【解析】解:∵点A,B都在格点上,点C在线段AB上,每个小格长度为1,∴AB=√62+42=2√13,∵BC=2√133,∴AC=AB−BC=2√13−2√133=4√133,即AC的长为4√133,故选:B.由勾股定理求出AB的长,即可得出结论.此题主要考查了勾股定理,由勾股定理求出AB的长是解答该题的关键.6.【答案】C;【解析】解:过M点作MH⊥AC于H点,∵四边形ABCD是正方形,∴∠HAM=45°.∴ΔHAM是等腰直角三角形,∴HM=√22AM=1.∵CM平分∠ACB,MH⊥AC,MB⊥CB,∴BM=HM=1,∠ACM=∠BCN.∵∠BMN=45°+∠ACM,∠BNM=45°+∠BCM,∴∠BMN=∠BNM.∴BN=BM=1.故选:C.过M点作MH⊥AC于H点,在等腰直角ΔHAM中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM即可.这道题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.7.【答案】B;【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,ΔAOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由ΔAOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;该题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解答该题的关键;8.【答案】D;【解析】该题考查了勾股定理,等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答该题的关键.因为已知长度为4和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当4为底时,其它两边都为6,4、6、6可以构成三角形,底边上的高为√62−22=4√2,∴等腰三角形的面积=12×4×4√2=8√2;②当4为腰时,其它两边为4和6,∵4+4>6,∴4、4、6能构成三角形.∴底边上的高为=√42−32=√7,∴等腰三角形的面积=1×√7×6=3√7.2故选D.9.【答案】A;【解析】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(3+2)2+62=61;(2)展开前面上面由勾股定理得AB2=(2+6)2+32=73;(3)展开左面上面由勾股定理得AB2=(3+6)2+22=85.所以最短路径的长为AB=√61(cm).故选:A.把此长方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.此题主要考查了平面展开−最短路径问题及勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.10.【答案】B;【解析】解:∵(a−3)2+√b−4+|c−5|=0,∴a−3=0,b−4=0,c−5=0,解得:a=3,b=4,c=5,则a2+b2=c2,故这个三角形的形状是直角三角形;故选:B.利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值,进而判断出三角形的形状即可.此题主要考查了勾股定理逆定理,关键是掌握两边的平方和等于第三边的平方,这个三角形是直角三角形.11.【答案】24cm2;【解析】略12.【答案】85或13;【解析】略13.【答案】2√7;【解析】解:在Rt△ABC中,∠C=90°,AB=8,BC=6,则AC=√AB2−BC2=√82−62=2√7,故答案为:2√7.根据勾股定理计算即可.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.【答案】14;【解析】解:∵AD=12,AC=13,CD=5,∴AC2=169,AD2+CD2=144+25=169,即AD2+CD2=AC2,∴△ADC为直角三角形,且∠ADC=90°,∴∠ADB=90°,∵AB=15,AD=12,∴BD=√AB2−AD2=√152−122=9,∴BC=BD+CD=9+5=14.故答案为:14.在△ADC中,由三边长,利用勾股定理的逆定理判断出△ADC为直角三角形,可得出AD与BC垂直,在直角三角形ABD中,由勾股定理求出BD,再根据线段的和差关系即可求解.此题主要考查了勾股定理,以及勾股定理的逆定理;熟练掌握勾股定理及逆定理是解本题的关键.15.【答案】4;【解析】解:由勾股定理,得路长=√32+42=5(m),少走(3+4−5)×2=4步,故答案为:4.根据勾股定理,可得答案.此题主要考查了勾股定理,利用勾股定理得出路的长是解题关键.16.【答案】3或3√7;【解析】该题考查了勾股定理、等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质是解答的关键.本题分两种情况,①D在AB边上,由直角三角形的性质解答即可;②D在三角形外面,由等边三角形的性质得出三角形ΔBCE和ΔDCA全等的条件,得出ΔBCE≌ΔDCA,推出BE=AD,由勾股定理得出BE,也就得出AD 了.解:分两种情况:①如图所示:D在AB边上,∵∠ACB=90°,∠BAC=30°,BC=3,∴AD=CD=BC=3;②D在三角形外面,以AC为边做等边ΔACE,连接BE,如图所示:∵ΔBCD和ΔACE是等边三角形,∴BC=DC,CE=CA,∠BCD=∠ACE=60°,∴∠BCE=∠DCA=60°+90°=150°,∴ΔBCE≌ΔDCA,∴BE=AD,∵在RtΔABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,AC=√AB2−BC2=3√3,∵ΔACE为等边三角形,∴∠CAE=60°,AE=3√3,∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∴BE=√AB2+AE2=√62+(3√3)2=3√7,∴AD=BE=3√7,综上所述,AD=3或3√7.故答案为3或3√7.17.【答案】3;【解析】解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.根据角平分线的性质定理可得答案.此题主要考查角平分线的性质定理,熟练掌握角平分线的性质是解题关键.18.【答案】18;【解析】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵1⋅BC⋅AH=120,2∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴ΔCDF周长的最小值为13+5=18;故答案为18.如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;该题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解答该题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:√3≈1.73,√−83=-2,(-1)2=1,在数轴上表示如下:∴√−83<-12<0<(-1)2<√3.; 【解析】根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.此题主要考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件.20.【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB=AC ,AD ⊥BC ,∴BD=12BC=2,由勾股定理得,AD=√AB 2−BD 2=4,∴AD=BC ,即△ABC 是“奇妙三角形”;(2)解:当AC 边上的中线BD 等于AC 时,BC=√BD 2−CD 2=3,当BC 边上的中线AE 等于BC 时,AC 2=AE 2-CE 2,即BC 2-(12BC )2=(2√3)2, 解得BC=4.综上所述,BC 的长是3或4.;【解析】(1)过点A 作AD ⊥BC 于D ,根据等腰三角形的性质求出BD ,根据勾股定理求出AD ,根据“奇妙三角形”的定义证明;(2)分AC 边上的中线BD 等于AC ,BC 边上的中线AE 等于BC 两种情况,根据勾股定理计算.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.21.【答案】null;【解析】解:(1)线段AB的长是:√12+22=√5;故答案为:√5;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=(√5)2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22.【答案】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC=√DE2−CE2=√2.52−0.72=2.4(m),∴CF=DC-DF=2.4-0.4=2(m)在Rt△BCF中,由勾股定理得:CF=√BF2−CF2=√2.52−22=1.5(m),∴BE=BC-CE=1.5-0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.;【解析】由勾股定理得DC=2.4m,再由勾股定理得BC=1.5m,即可得出结论.此题主要考查了勾股定理的应用,解答本题的关键是两次运用勾股定理.23.【答案】解:如图,过E作ED⊥AB于D,∵∠ACB=90°,AB=10,BC=6,∴EC⊥BC,AC=√AB2−BC2=√102−62=8,∵BE平分∠ABC,ED⊥AB,∴CE=DE,在Rt△BDE和Rt△BCE中,{DE=CEBE=BE,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC=6,∴AD=AB-BD=10-6=4,设CE=DE=x,则AE=AC-CE=8-x,在Rt△ADE中,由勾股定理得:42+x2=(8-x)2,解得:x=3,即CE的长为3.;【解析】过E作ED⊥AB于D,由勾股定理得AC=8,再证Rt△BDE≌Rt△BCE(HL),得BD=BC=6,则AD= AB−BD=10−6=4,设CE=DE=x,则AE=AC−CE=8−x,然后在Rt△ADE中,由勾股定理得出方程,解方程即可.此题主要考查了勾股定理、全等三角形的判定与性质以及角平分线的性质等知识,熟练掌握全等三角形的判定与性质,由勾股定理得出方程是解答该题的关键.24.【答案】解:设杯子的高度是x cm,则筷子的高度为(x+2)cm,∵杯子的直径为12cm,∴DF=6cm,在Rt△DEF中,由勾股定理得:x2+62=(x+2)2,解得x=8,∴筷子EG=8+2=10cm.;【解析】设杯子的高度是xcm,则筷子的高度为(x+2)cm,在RtΔDEF中,利用勾股定理列出方程:x2+62=(x+ 2)2,解方程即可.此题主要考查了勾股定理的应用,运用方程思想是解答该题的关键,属于常考题.25.【答案】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.;【解析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD−∠AFE=135°−45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.。
二次根式及勾股定理习题满分: 时间:一、选择题(每题3分,共30分) 1.2x )A .0x ≥ <0 ≠0 ≤0 2.2(3)- )A .-3 3下列运算正确的是( )2323+= B. 3a-a=3 C. 233= D. ()325a a =4.23 )|A 5 B. 32 C.6 D. 35.下列根式中,最简二次根式是( ) A 4 B.12C. 2xD. 26. 2合并的是( ) A 5 B. 32 C. 6 D. 37.下列计算正确的是( )①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个 8. 一直角三角形的两直角边长分别为3和4.则第三边的长为( ) (A 5 B.7 C. 57 D. 59.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A .4 B. 6 C. 16 D. 55 10. 一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( ) A .10米 B. 15米 米 D. 30米二、填空题(每题4分,共24分) 11.二次根式1x -在实数范围内有意义,则x 的取值范围是 。
12.已知221y x x =-+-+,则y x = 。
13. 把下列二次根式化成最简二次根式 》125= 0.01=14. 如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 。
15. 能够成为直角三角形三条边长的正整数,称为勾股 数.请你写出一组勾股数: 。
16. 若三角形三条边长a 、b 、c 满足2a 512c 130b -+-+-=(),则△ABC 是三角形。
《二次根式》和《勾股定理》综合测试A一、选择(每小题3分,共36分)1.使有意义的x的取值范围是()A. x≥1B. x≥0C. x>1D. x≠12.下列二次根式中能与合并的二次根式是()A. B. C. D.3.以下列各组数为边长的三角形是直角三角形的是()A. 1、2、3B. 9、12、15C. 1、1、D. 6、7、84.如果,那么x取值范围是()A. x≤2B. x<2C. x≥2D. x>25.若是正整数,最小的整数n是()A. 6B. 3C. 48D. 26.下列运算和化简,不正确的是()A. =0.5B.C.D.7.计算﹣的结果正确的是()A. B. C. D. 08.如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的面积是()A. 12B. 13C. 144D. 1949.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m,若公园到超市的距离为500m,则公园在医院的()A. 北偏东75°的方向上B. 北偏东65°的方向上C. 北偏东55°的方向上D. 无法确定10.设,则代数式a2+2a﹣10的值为()A. B. C. ﹣3 D. ﹣411.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A. 8米B. 10米C. 12米D. 14米12.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A. 11cmB. 12cmC. 13cmD. 14cm二、填空(每小题3分,共18分)13.要使式子在实数范围内有意义,则x的取值范围是.14.化简:= .15.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.16.计算:(+)2﹣= .17.有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为.18.如图所示,在高为3m,斜坡长为5m的楼梯表面铺地毯,至少需要地毯米.三、解答(8个小题,共66分)19.(6分)计算:(1);(2)﹣6+2.20.(8分)图①和图②均是边长为1的正方形网络,按要求用实线画出顶点在格点上的图形.(1)在图①中画出一个等腰三角形ABC,使其腰长是;(2)在图②中画出一个正方形ABCD,使其面积是5.21.(8分)计算:5+﹣×+÷.22.(8分)已知:如图,在△ABC,BC=2,S△ABC=3,∠ABC=135°,求AC、AB的长.23.(8分)某居民小区有一块长方形绿地,先进行如下改造:将长方形的长减少米,宽增加米,得到一块正方形绿地,它的面积是原长方形绿地的2倍,求改造后的正方形绿地的边长是多少米?(结果精确到1米)24.(9分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.25.(9分)阅读下列解题过程:,,请回答下列回题:(1)观察上面的解答过程,请直接写出= ;(2)根据上面的解法,请化简:.26.(10分)已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.(1)在图1中,当AB=AD=10m时,△ABD的周长为;(2)在图2中,当BA=BD=10m时,△ABD的周长为;(3)在图3中,当DA=DB时,求△ABD的周长.参考答案一、1. A 2.C 3.B 4.A 5.B 6.D 7.A 8.C 9.B 10.D 11.B 12.C二、13. x>3 14.-1 15.76 16.5 17.或3 18.7三、19. 解:(1)原式=3×5÷=15÷=15.(2)原式=2=220.解:(1)、(2)如图所示:21.解:原式=+﹣+3÷=2﹣1+3=2+2.22.解:如图,过点A作AD⊥BC交CB的延长线于D,在△ABC中,∵S△ABC=3,BC=2,∴AD===3,∵∠ABC=135°,∴∠ABD=180°﹣135°=45°,∴AB=AD=3,BD=AD=3,在Rt△ADC中,CD=2+3=5,由勾股定理得,AC===.23.解:设改造后正方形绿地的边长为a米,则改造前长方形绿地的长为(a+)米,宽为(a﹣)米,由题意得,a2=2(a+)(a﹣),整理,得a2=68,a=2(取正).答:改造后正方形绿地的边长为2米.24.解:如图,连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.25.解:(1)=﹣;(2)+++…++,=﹣1+﹣+﹣+…+﹣+﹣,=﹣1,=10﹣1,=9.26.解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC2+AC2=AD2,即x2+82=(6+x)2,解得;x=,∵AC=8m,BC=6m,∴AB=10m,∴△ABD的周长为:AD+BD+AB=2(+6)+10=(m).。
二次根式与勾股定理测试题一、选择题1. 若为二次根式, 则m 的取值为 ( )A. m ≤3B. m <3C. m ≥3D. m >32. 下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸;⑹)(11>-x x ;⑺322++x x . A. 2个 B. 3个 C. 4个 D. 5个3.当有意义时, a 的取值范围( )A .a ≥2 B .a >2 C .a ≠2 D .a ≠-24. 下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A. 1个B. 2个C. 3个D. 4个 5.对于二次根式, 以下说法不正确的是 ( ) A. 它是一个正数 B. 是一个无理数C. 是最简二次根式 D. 它的最小值是3 6. 把分母有理化后得( )A. B. C. D. 7.下列二次根式中, 最简二次根式是( )A . B . C . D . 8. 化简二次根式得( )A. B. C. D. 309.下列几组数中, 不能作为直角三角形三边长度的是( ) A.1.5, 2, 2.5 B.3, 4, 5 C.5, 12, 13 D.20, 30, 4010、如图, 在Rt△ABC中, ∠B=90°, BC=15, AC=17, 以AB为直径作半圆, 则此半圆的面积为(). A. 16π B. 12π C. 10π D. 8π11.已知直角三角形两边的长为3和4, 则此三角形的周长为().A. 12B. 7+C. 12或7+D. 以上都不对12.如图, 梯子AB靠在墙上, 梯子的底端A到墙根O的距离为2m, 梯子的顶端B到地面的距离为7m, 现将梯子的底端A向外移动到A′, 使梯子的底端A′到墙根O的距离等于3m. 同时梯子的顶端B下降至B′, 则BB′(). A. 小于1m B. 大于1m C. 等于1m D. 小于或等于1m 13.将一根24cm的筷子, 置于底面直径为15cm, 高8cm的圆柱形水杯中, 如图所示, 设筷子露在杯子外面的长度为hcm, 则h的取值范围是().A. h≤17cmB. h≥8cmC. 15cm≤h≤16cmD. 7cm≤h≤16cm14. 、如图, , 且, , , 则线段AE的长为();A. B、 C、 D、(第14题)15.如图, 一块直角三角形的纸片, 两直角边AC=6㎝, BC=8㎝, 现将直角边AC沿直线AD折叠, 使它落在斜边AB上, 且与AE重合, 则CD等于();A.2㎝B.3㎝C.4㎝D.5㎝16、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF ,则△ABE 的面积为( )...A 、6cm2 B 、8cm2C 、10cm2D 、12cm2二、填空题1. 当x___________时, 在实数范围内有意义. 当x 时,式子有意义2. 比较大小: ______;3. ____________;__________.4. 当a=时, 则______;5. 若成立, 则x 满足___________. 6、如图, 矩形零件上两孔中心A 、B 的距离是_____(精确到个位).7、如图, △ABC 中, AC =6, AB =BC =5, 则BC 边上的高AD =______. 7.已知: , 则 。
二次根式测试题及答案第二十一章二次根式填空题:1.要使根式 x-3 有意义,则字母 x 的取值范围是x≥3.2.当 x>1/2 时,式子 1/(2x-1) 有意义。
3.要使根式 4-3x/(x+2) 有意义,则字母 x 的取值范围是x<4/3.4.若 4a+1 有意义,则 a 能取得的最小整数值是 a=-1/4.5.若 x-√x 有意义,则 x+1=2.6.使等式 x+2x-3=0 成立的 x 的值为 x=3.7.一只蚂蚁沿图 1 中所示的折线由 A 点爬到了 C 点,则蚂蚁一共爬行了 10 cm。
选择题:8.使式子 3x+2 有意义的实数 x 的取值范围是x≥-2/3.9.使式子 (x-1)/(|x|+2) 有意义的实数 x 的取值范围是x≥1 或 x<-2.10.x 为实数,下列式子一定有意义的是 1/(x2-1)。
11.有一个长、宽、高分别为 5cm、4cm、3cm 的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是5√2 cm。
解答题:13.要使下列式子有意义,字母 x 的取值必须满足以下条件:分母不能为 0,即x≠-1 或x≠1/2.分子的平方根存在,即x≥1.14.△ABC 的周长为 12 cm。
15.等面积的正方形的边长为√(π/4) cm。
16.挖去的圆的半径为 b/2a。
17.(1) x=-4 或 x=1/2.(2) y=-2 或 y=-3.18.2006年黄城市的国内生产总值为264亿元,比2005年增长了23%。
问题:(1) 2005年黄城市的国内生产总值是多少亿元(精确到1亿元)?(2) 预计黄城市在2008年的国内生产总值可达到386.5224亿元,那么2006年到2008年的平均年增长率是多少?(下列数据供计算时选用:1.4641=1.21,1.4884=1.22)探究问题:已知实数x、y满足y=x^2-4+(4-x^2)/(x-2)+3,求9x+8y的值。
《二次根式、勾股定理》阶段性检测一、选择题(每题3分,共15分):1.下列根式不是最简二次根式的是( )A B C D2.在下列长度的四组线段中,不能组成直角三角形的是().A.a=9,b=41,c=40 B.a=b=5,C.a:b:c=3:4:5 D.a=11,b=12,c=153)A B C D4)A.x≥0 B.x≥6 C.0≤x≤6 D.x为一切实数5.△ABC中,∠A、∠B、∠C的对边分别是a、b、c,AB=8,BC=15,CA=17,则下列结论不正确的是()A.△ABC是直角三角形,且AC为斜边 B.△ABC是直角三角形,且∠ABC=90°C.△ABC的面积是60 D.△ABC是直角三角形,且∠A=60°二、填空(每空2:1;= ;2.当x 时,是_______.3________.4.长方形的长__________.5.在直角坐标系内,点P(2= .CBA D6.若一个直角三角形的两条边长为5cm ,12cm ,则它的第三条边长为______________. 7.在实数范围内因式分解25x -= . 8.当x 时,()22332x x -=-9、已知322--+-=x x y ,则=y x 。
三、计算(每小题5分,共30分):⑴27×48÷6 ⑵ ()23553- ⑶1121231897233-+- ⑷22122-- ⑸(754321415)3-+÷ ⑹21146229m m m m m m +-四、解答:1.如图,每个小方格的边长都为1.求:⑴图中格点四边形ABCD 的周长;⑵四边形ABCD 的面积.(10分)2.如图,有一块地,已知,AD=4m ,CD=3m ,∠ADC=90°,AB=13m ,BC=12m 。
求这块地的面积。
(8分)ACBD3、如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?(7分)《勾股定理》单元测试题一、 填空题1、 若直角三角形两直角边分别为6和8,则斜边为___________ ;2、能够成为直角三角形三条边长的正整数,称为勾股数。
单元测试卷(内容:二次根式及勾股定理)一.选择题(共14小题)1.下列各式中,正确的是()A.B.C.D.2.下列计算正确的是()A.B.C.D.3.我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,并给出了另外一个证明,下面四幅图中,不能证明勾股定理的是()A.B.C.D.4.如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.公路l走向是南偏西45°B.公路l走向是北偏东45°C.从点P向北走3km后,再向西走3km到达lD.从点P向北偏西45°走3km到达l5.若直角三角形的两边长分别是5和12,则它的斜边长是()A.13B.13或C.D.12或136.如图,直线AO⊥OB,垂足为O,线段AO=3,BO=4,以点A为圆心,AB的长为半径画弧,交直线AO于点C.则OC的长为()A.5B.4C.3D.27.如图,在△ABC中,∠BAC=90°,BC=5,以AB,AC为边作正方形,这两个正方形的面积和为()A.5B.9C.16D.258.如图,在四边形ABCD中,∠DAB=∠BCD=90°,分别以四边形的四条边为边向外作四个正方形,若S1+S4=135,S3=49,则S2=()A.184B.86C.119D.819.已知△ABC的三个内角分别为∠A、∠B、∠C,三边分别为a、b、c,下列条件不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:7B.∠A=∠B﹣∠CC.a:b:c=2:3:4D.b2=(a+c)(a﹣c)10.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.4≤a≤5B.3≤a≤4C.2≤a≤3D.1≤a≤211.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.下列所给数据中,不能判断△ABC 是直角三角形的是()A.a=,b=2,c=1B.∠A﹣∠B=∠CC.(a﹣b)(a+b)=c2D.∠A:∠B:∠C=2:5:812.如图,正方形ABCD的顶点A,D在数轴上,且点A表示的数为﹣1,点D表示的数为0,用圆规在数轴上截取AE=AC,则点E所表示的数为()A.1B.1﹣C.﹣1D.13.如图,在Rt△ABC中,∠B=90°,作AC的中垂线1交BC于点D,连接AD,若AB =3,BC=9,则BD的长为()A.6B.5C.4D.314.若3、4、a为勾股数,则a的值为()A.B.5C.5或7D.5或二.填空题(共4小题)15.若|2017﹣m|+=m,则m﹣20172=.16.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘以同一个适当的代数式,使分母不含根号.例如:,(1)将分母有理化可得;(2)关于x的方程3x﹣=+++…+的解是.17.已知x=+1,y=﹣1,则x2﹣5xy+y2+6=.18.把a中根号外面的因式移到根号内的结果是.三.解答题(共15小题)19.若x,y为实数,且y=++.求﹣的值.20.阅读下列解题过程:===﹣1;===﹣.请回答下列问题:(1)归纳:观察上面的解题过程,请直接写出下列各式的结果.①=;②=;(2)应用:求++++…+的值;(3)拓广:﹣+﹣=.21.已知:a=﹣1,求÷(2﹣)的值.22.阅读材料:把根式进行化简,若能找到两个数m、n,是m2+n2=x且mn=,则把x±2变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简解:∵3+2=1+2+2=12+()2+2×1×=(1+)2∴==1+;请你仿照上面的方法,化简下列各式:(1);(2).23.已知a=,b=,求a2+3ab+b2﹣a+b的值24.计算:(1)÷+2×﹣(2+)2(2)(﹣)﹣2﹣(﹣1)2012×﹣+25.计算:(1)﹣(3+);(2)(+1)(﹣1)+﹣()0.26.计算:(1)(2﹣6+3)÷2;(2)(2+5)(2﹣5)﹣(﹣)2.27.已知x=+,y=﹣,求:(1)+的值;(2)2x2+6xy+2y2的值.28.计算与求值.已知a=,求﹣的值.29.观察下列各式,发现规律:=2;=3;=4;…(1)填空:=,=;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.30.如图,在平静的湖面上,有一支芦苇AB,高出水面部分AC为1米,一阵风吹来,芦苇被吹到一边,芦苇顶端被水面淹没(即AB=DB),一支芦苇移动的水平距离为3米,则湖水深度BC为所少米?31.如图,在△ABC中,∠BAC=90°,AB=15,AC=20,AD⊥BC,垂足为D.(1)△ABC的面积是.(2)求BC、AD的长.32.如图,某人从点A划船横渡一条河,由于水流的影响,实际上岸地点C离欲到达点B 有45m,已知他在水中实际划了75m,求该河流的宽度AB.33.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,AC+BC=,AB=2.(1)求△ABC的面积;(2)求CD的长.。
《勾股定理》与《二次根式》综合测试题A卷(100分)一.选择题(本大题共10个小题,每小题3分,共30分).1.使x-3有意义的x的取值范围是(C)A.x>3 B.x<3 C.x≥3 D.x≠3分析:根据被开方数是非负数解之.解:由题意,得x-3≥0,解得x≥3.2.在-38,3,0.6·,π,3.10这六个数中,无理数有(A)A.2个B.3个C.4个D.6个分析:根据无理数的定义进行判断.解:-38,3,0.6·,π,3.10这六个数,无理数为3,π.判断一个数是否为无理数,不能只看形式,要看化简结果.3.有下列说法:(1)-3是9的平方根;(2)7是(-7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有(C)A.1个B.2个C.3个D.4个分析:根据平方根与立方根的定义即可求出答案.解:(1)-3是81的平方根,(1)正确;(2)7是(-7)2的算术平方根,(2)正确;(3)27的立方根是3,(3)错误;(4)1的平方根是±1,(4)正确;(5)0的算术平方根是0,(5)错误.4.估计31-2的值应在(B)A.2和3之间B.3和4之间C.4和5之间D.5和6之间分析:估算出31在5和6之间,即可解答.解:∵5<31<6,∴3<31-2<4.5.满足下列条件的△ABC,不是直角三角形的是(D)A.b2-c2=a2B.a︰b︰c=3︰4︰5C.∠C=∠A-∠B D.∠A︰∠B︰∠C=9︰12︰15分析:根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.解:b2-c2=a2,则b2=a2+c2,∴△ABC是直角三角形;a︰b︰c=3︰4︰5,设a=3x,b=4x,c=5x,a2+b2=c2,∴△ABC是直角三角形;∠C=∠A-∠B,则∠B=∠A+∠C,∠B=90°,∴△ABC是直角三角形;∠A︰∠B︰∠C=9︰12︰15,设∠A,∠B,∠C分别为9x,12x,15x,则9x+12x+15x=180°,解得,x=5°,则∠A,∠B,∠C分别为45°,60°,75°,∴△ABC不是直角三角形.6.若a,b为实数,且|a+1|+b-1=0,则-(-ab)2020的值是(C)A.1 B.2020 C.-1 D.-2020分析:根据绝对值和算术平方根的非负性求出a,b的值,再代入求出即可.解:∵|a+1|+b-1=0,∴a+1=0,b-1=0,∴a=-1,b=1,∴-(-ab)2020=-[-(-1)×1)]2020=-1.7.当x=3+1时,式子x2-2x+2的值为(C)A.3+2 B.5 C .4 D.3分析:根据完全平方公式以及二次根式的运算法则即可求出答案.解:当x=3+1时,x-1=3,∴原式=x2-2x+1+1=(x-1)2+1=3+1=4.8.如图所示,数轴上表示3,13的对应点分别为C,B,点C是AB的中点,则点A表示的数是(C)A.-13 B.3-13 C.6-13 D.13-3分析:点C是AB的中点,设A表示的数是c,则13-3=3-c,即可求得c的值.解:点C是AB的中点,设A表示的数是c,则13-3=3-c,解得:c=6-13.9.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,则(a+b)2的值为(C)A.13 B.19 C.25 D.169分析:根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13-1)=25.10.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是(C)A.B.C.D.分析:过C作CD⊥AB于D,依据AB=6,AC=8,可得CD≤8,进而得到当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC的面积最大.解:如图,过C作CD⊥AB于D,∵AB=6,AC=8,∴CD≤8,∴当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC的面积最大,∴BC=62+82=10,∴四个三角形中面积最大的三角形的三边长分别为6,8,10.二.填空题(本大题共5个小题,每小题4分,共20分).11.(1)8的算术平方根是22,(2)3-0.064=-0.4.12.如图,在数轴上点A表示的实数是-5.分析:根据勾股定理,可得圆的半径,根据圆的性质,可得答案.66861286108688解:如图,由勾股定理,得OB =OC 2+BC 2=12+22=5, 由圆的性质,得OA =OB =5, ∴点A 表示的实数是-5.13.若最简二次根式1+a 与4-2a 是同类二次根式,则a = 1 .分析:直接利用最简二次根式以及同类二次根式的性质得出关于a 的等式求出答案. 解:∵最简二次根式1+a 与4-2a 能进行加法运算, ∴1+a =4-2a ,解得:a =1.14.直角三角形两条直角边的长分别为5,12,则斜边长为 13 ,斜边上的高为6013. 分析:可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可. 解:由勾股定理可得:AB 2=52+122,则AB =13, 直角三角形面积S =12×5×12=12×13×CD ,可得:斜边的高CD =6013.15.已知a =3-2,b =3+2,求a 2+b 2的值为 10 . 分析:把已知条件代入求值.解:原式=(3-2)2+(3+2)2=5-26+5+26=10. 三.解答题(本大题共5个大题,共50分). 16.(16分)计算 (1)12-613+48;(2)2320×(-1348)÷223. (3)2|1-6|+(3+2)(2-3)+(3-2)2+(-2π)0. 解:(1)原式=23-23+43=43; (2)原式=-(23×13)20×48×38=-29360=-29×610=-4310;(3)原式=26-2+4-3+3-26+2+1=5.17.(8分)已知5a -1的算术平方根是3,3a +b -1的立方根为2. (1)求a 与b 的值; (2)求2a +4b 的平方根.解:(1)由题意,得5a -1=32,3a +b -1=23, 解得a =2,b =3.(2)∵2a +4b =2×2+4×3=16, ∴2a +4b 的平方根±16=±4.18.(8分)已知2+3的小数部分为m ,2-3的小数部分为n ,求3(m +n )2020的值. 解:∵1<3<4,∴1<3<2.∴m =2+3-3=3-1,n =2-3-0=2-3, ∴(m +n )2020=12020=1,∴3(m +n )2020=1.19.(8分)定义:如图,点M ,N 把线段AB 分割成AM ,MN ,NB ,若以AM ,MN ,NB 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点.(1)已知M,N把线段AB分割成AM,MN,NB,若AM=1.5,MN=2.5,BN=2,则点M,N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.解:(1)是.理由:∵AM2+BN2=1.52+22=6.25,MN2=2.52=6.25,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形,∴点M、N是线段AB的勾股分割点.(2)设BN=x,则MN=24-AM-BN=18-x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(18-x)2=x2+36,解得x=8;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=36+(18-x)2,解得x=10,综上所述,BN=8或10.20.(10分)已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长;(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.(1)如图1,证明:∵∠DAE=∠BAC,∴∠DAE+∠CAE=∠BAC+∠CAE,即∠DAC=∠BAE.在△ACD与△ABE中,⎩⎪⎨⎪⎧AD =AE ,∠DAC =∠BAE ,AC =AB ,∴△ACD ≌△ABE (SAS ), ∴CD =BE ; (2)连接BE ,∵CD 垂直平分AE ,∴AD =DE , ∵∠DAE =60°,∴△ADE 是等边三角形, ∴∠CDA =12∠ADE =12×60°=30°,∵△ABE ≌△ACD ,∴BE =CD =4,∠BEA =∠CDA =30°, ∴BE ⊥DE ,DE =AD =3, ∴BD =5;(3)如图,过B 作BF ⊥BD ,且BF =AE ,连接DF , 则四边形ABFE 是平行四边形, ∴AB =EF ,设∠AEF =x ,∠AED =y , 则∠FED =x +y ,∠BAE =180°-x ,∠EAD =∠AED =y ,∠BAC =2∠ADB =180°-2y ,∠CAD =360°-∠BAC -∠BAE -∠EAD =360°-(180°-2y )-(180°-x )-y =x +y , ∴∠FED =∠CAD , 在△ACD 和△EFD 中,⎩⎪⎨⎪⎧AC =FE ,∠FED =∠CAD ,AD =ED ,∴△ACD ≌△EFD (SAS ), ∴CD =DF , 而BD 2+BF 2=DF 2, ∴CD 2=BD 2+4AH 2.B 卷(50分)一、选择题(每小题4分,共20分)21.已知一个正数的两个平方根分别为2m-6和3+m,则这个正数是16,326m+1=3.分析:根据题意得出方程2m-6+3+m=0,求出m,最后,再代入计算即可.解:∵一个正数的两个平方根分别为2m-6和3+m,∴2m-6+3+m=0,解得:m=1,∴这个正数为(2m-6)2=16,326m+1=327=3.22.构造如图所示的图形推算可得5+1>10 (填“>”或“<”或“=”).(其中∠C=90°,BC=3,D在BC上,且BD=AC=1.)解:∵∠C=90°,BC=3,BD=AC=1,∴CD=2,AD=DC2+AC2=5,AB=AC2+BC2=10,∴BD+AD=5+1,又∵△ABD中,AD+BD>AB,∴5+1>10.23.在实数范围内,若y=|x|-2+2-|x|2-x-3x+1,则y2020+x的个位数字是9.解:由题意可得:|x|-2=0,2-x≠0,解得:x=-2,则y=7,∵71=7,72=49,73=343;74=2401;75=16807,∴个位数每4个一循环,∵2020÷4=505,∴y2020的个位数字是:1,∴y2018+x的个位数字是:9.24.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=3-1.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=2AB=2,BF=AF=22AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF=AD2-AF2=3,∴CD=BF+DF-BC=1+3-2=3-1.25.若117-122的整数部分为a,小数部分为b,那么a2-ab+b2的值为47-182.解:117-122=117-272=1(3-22)2=13-22=3+22(3-22)(3+22)=3+22,∵1<2<2,∴2<22<4,∴5<3+22<7,∴a=5,b=3+22-5=22-2,∴a2-ab+b2=52-5(22-2)+(22-2)2=25-102+10+8-82+4=47-182.二、解答题(共30分)26.(8分)已知12+1=2-1(2+1)(2-1)=2-1,13+2=3-2(3+2)(3-2)=3-2,…,(1)从计算结果中找出一般规律:1n+1+n=;(2)比较大小:32-1719-32(填“>”、“=”或“=”);(3)若实数x,y满足(x+x2+2020)(y+y2+2020)=2020,求x2-3xy-4y2的值.解:(1)n+1-n;(2)>;(3)∵(x+x2+2020)(y+y2+2020)=2020,∴(x+x2+2020)(y+y2+2020)(x-x2+2020)=2020(x-x2+2020),(x+x2+2020)(y+y2+2020)(y-y2+2020)=2020(y-y2+2020),∴(y+y2+2020)[x2-(x2+2020)]=2020(x-x2+2020),(x+x2+2020)[(y2-(y2+2020)]=2020(y-y2+2020),∴-2020(y+y2+2020)=2020(x-x2+2020),-2020(x+x2+2020)=2020(y-y2+2020),∴-y-y2+2020=x-x2+2020,-x-x2+2020=y-y2+2020,∴-y-x=x+y,∴y=-x.∴原式=x2+3x2-4(-x)2=0.27.(10分) 勾股定理的证明:把两个全等的直角三角形如图1放置,其三边长分别为a、b、c.显然,∠DAB=∠B=90°,AC⊥DE.用a、b、c分别表示出梯形ABCD、四边形AECD、△EBC的面积,得S梯形ABCD=12a(a+b),S△EBC=12b(a-b),S四边形AECD=12c2,探究这三个图形面积之间的关系,得12a(a+b)=12b(a-b)+12c2,化简,可得到勾股定理a2+b2=c2.勾股定理的运用:(1)如图2,铁路上A、B两点(看作直线上的两点)相距40千米,C、D为两个村庄(看作两个点),AD ⊥AB ,BC ⊥AB ,垂足分别为A 、B ,AD =25千米,BC =16千米,则两个村庄的距离为 41 千米(直接填空);(2)在(1)的背景下,若AB =40千米,AD =24千米,BC =16千米,要在AB 上建造一个供应站P ,使得PC =PD ,请用尺规作图在图2中作出P 点的位置并求出AP 的距离.知识迁移:借助上面的思考过程与几何模型,求代数式x 2+9+(16-x )2+81的最小值(0<x <16). 解:【证明】 S 梯形ABCD =12a (a +b ),S △EBC =12b (a -b ),S 四边形AECD =12c 2,则它们满足的关系式为:12a (a +b )=12b (a -b )+12c 2故答案为:12a (a +b ),12b (a -b ),12c 2,12a (a +b )=12b (a -b )+12c 2.【运用】(1)如图2①,连接CD ,作CE ⊥AD 于点E , ∵AD ⊥AB ,BC ⊥AB , ∴BC =AE ,CE =AB ,∴DE =AD -AE =25-16=9千米,∴CD =DE 2+CE 2=92+402=41(千米), ∴两个村庄相距41千米. 故答案为:41. (2)如图2②所示:设AP =x 千米,则BP =(40-x )千米, 在Rt △ADP 中,DP 2=AP 2+AD 2=x 2+242, 在Rt △BPC 中,CP 2=BP 2+BC 2=(40-x )2+162, ∵PC =PD ,∴x 2+242=(40-x )2+162, 解得x =16, 即AP =16千米. 【知识迁移】:如图3,代数式x 2+9+(16-x )2+81的最小值为:(9+3)2+162=20.28.(12分)定义:如图(1)△ABC 中,M 是BC 的中点,P 是射线MA 上的点,设APPM =k ,若∠BPC =90°,则称k 为勾股比.(1)如图(1),过B 、C 分别作中线AM 的垂线,垂足为E 、D .求证:CD =BE . (2)①如图(2),当k =1,且AB =AC 时,AB 2+AC 2= 2.5 BC 2(填一个恰当的数).②如图(1),当k =1,△ABC 为锐角三角形,且AB ≠AC 时,①中的结论还成立吗?若成立,请写出证明过程;若不成立,也请说明理由;③对任意锐角或钝角三角形,如图(1)、(3),请用含勾股比k 的表达式直接表示AB 2+AC 2与BC 2的关系(写出锐角或钝角三角形中的一个即可). (1)证明:∵M 是BC 的中点, ∴BM =CM ,∵BE ⊥AM 于E ,CD ⊥AM 于D , ∴∠E =∠CDM =90°, 在△BME 和△CMD 中,,∴△BME ≌△CMD (AAS ), ∴CD =BE ;(2)①AB 2+AC 2=2.5BC 2. 理由如下:∵AM 是△ABC 的中线, ∴PM =BM =CM =12BC ,∵k =1,∴AP =PM , ∴AM =2PM =BC ,在Rt △ABM 中,AB 2=AM 2+BM 2=BC 2+14BC 2=54BC 2,在Rt △ACM 中,AC 2=AM 2+CM 2=BC 2+14BC 2=54BC 2,∴AB 2+AC 2=54BC 2+54BC 2=2.5BC 2;即AB 2+AC 2=2.5BC 2;②结论仍然成立.设EM =DM =a ,则AE =AM +a ,AD =AM -a ,在Rt △ABE 中,AB 2=AE 2+BE 2=(AM +a )2+BE 2=AM 2+2AM •a +a 2+BE 2, 在Rt △ACD 中,AC 2=AD 2+CD 2=(AM -a )2+CD 2=AM 2-2AM •a +a 2+CD 2, ∴AB 2+AC 2=2AM 2+(a 2+BE 2)+(a 2+CD 2), ∵BE ⊥AM 于E ,CD ⊥AM 于D , ∴∠E =∠CDM =90°,∴a 2+BE 2=BM 2=14BC 2,a 2+CD 2=CM 2=14BC 2,∴AB 2+AC 2=2AM 2+12BC 2,∵APPM=1,∴AP =PM , ∵∠BPC =90°,AM 是△ABC 的中线,∴PM =12BC ,若△ABC 是锐角三角形,则AM =AP +PM =PM +PM =(1+1)PM =BC , ∴AB 2+AC 2=2×BC 2+12BC 2=52BC 2,即AB 2+AC 2=2.5BC 2;③结论:锐角三角形:AB 2+AC 2=k 2+2k +22BC 2,钝角三角形:AB 2+AC 2=k 2-2k +22BC 2,理由如下:设EM =DM =a ,则AE =AM +a ,AD =AM -a ,在Rt △ABE 中,AB 2=AE 2+BE 2=(AM +a )2+BE 2=AM 2+2AM •a +a 2+BE 2, 在Rt △ACD 中,AC 2=AD 2+CD 2=(AM -a )2+CD 2=AM 2-2AM •a +a 2+CD 2, ∴AB 2+AC 2=2AM 2+(a 2+BE 2)+(a 2+CD 2), ∵BE ⊥AM 于E ,CD ⊥AM 于D , ∴∠E =∠CDM =90°,∴a 2+BE 2=BM 2=14BC 2,a 2+CD 2=CM 2=14BC 2,∴AB 2+AC 2=2AM 2+12BC 2,∵APPM=k ,∴AP =kPM , ∵∠BPC =90°,AM 是△ABC 的中线,∴PM =12BC ,若△ABC 是锐角三角形,则AM =AP +PM =kPM +PM =(k +1)PM =k +12BC ,第 1 页 共 10 页 ∴AB 2+AC 2=2×(k +12BC )2+12BC 2=k 2+2k +22BC 2, 即AB 2+AC 2=k 2+2k +22BC 2; 若△ABC 是钝角三角形,则AM =PM -AP =PM -kPM =(1-k )PM =1-k 2BC , AB 2+AC 2=2×(1-k 2BC )2+12BC 2=k 2-2k +22BC 2, 即AB 2+AC 2=k 2-2k +22BC 2.。
《二次根式-勾股定理》综合测试题一、选择题(每题4分,共32分)1.若a 是二次根式,则a 的值不可以是( ).A .4B .91C .1.0D .﹣22.下列各根式中,最简二次根式是( ).A .a 8B .61C .222b a +D .b a 223.下列各组能组成直角三角形的是( ).A .4、5、6B .13、14、15C .11、12、15D .8、15、17 4.若直角三角形的两条边长分别是5和12,则第三边为( ).A .13 B.119 C.13或119 D.不能确定 5.在△ABC 中,若C 31B 21A ∠=∠=∠,则它的三条边之比为( ).A.1∶1B.1∶2C.1∶4∶1 6.已知23+=a ,23-=b ,则22b a +的值为( ).A .34B .14C .14D .3414+7.在平面直角坐标系中,点P (3,4)到原点的距离为( ). A.3 B.4 C.5 D.7 8.下列定理中,没有逆定理的是( ).A.两直线平行,内错角相等B.直角三角形两锐角互余C.对顶角相等D.同位角相等,两直线平行二、填空题(每题3分,共18分)9.若x x -=-3)3(2,则x 的取值范围为____________. 10. 若等边三角形的边长为2cm ,则它的面积为____________.11.木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面____________.(填“合格”或“不合格” )12.如图所示,在Rt △ACB 中,∠C=90°,AB=27,AC=17,若以Rt △ACB 的三边向外作正方形,则阴影部分的面积为________.13.一只蚂蚁从边长为4cm 的正方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是__________cm.14.如图,数轴上点A 所表示的数为_________.三、解答题(共70分) 15.(12分)计算: (1)()⎪⎪⎭⎫⎝⎛--+6815.024 (2) )52)(32(-+(3)3)154276485(÷+- (4))625()23(2+-16.(8分)计算:(1)()202123)325()33(--+-- (2) ()()202120213232322181+-+--+AB.. 第13题图12 1AB第14题图A CB第12题图17.(5分)先化简,再求值:1231621222+-+÷-+-+x x x x x x x ,其中2=x .18.(5分)若c b a ,,为△ABC 的三边,化简:()()22a c b c b a -+---.19.(8分)如图,每个小方格都是边长为1的正方形,求图中格点四边形ABCD 的周长和面积.20.(6分)如图,由于受大风的影响,一棵树在离地面2.5m 处(A )折断,树顶落在离树干底部(C )6m 处(B ),求这棵树在折断前的高度.DCABABC21.(8分)如图,有一底面直径为5cm 的圆柱体玻璃杯,将一根吸管竖直放在玻璃杯内,则吸管比玻璃杯长出5cm ,若如图斜放在玻璃杯内,则吸管比玻璃杯长出4cm ,问:吸管的长度是多少?22.(10分)如图所示,有一块不规则空地,∠ADC =90°,AD =12m ,CD =9m ,AB =39m ,BC =36m ,求这块空地的面积.23.(8分)长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按下图方式折叠,折痕为EF ,若使点B 与点D 重合,则点E 在AB 的什么位置.A B CDEFC ′。
二次根式及勾股定理测试题及答案 一、填空题:(每小题2分,共20分) 1.等式2)1(-x =1-x 成立的条件是_____________. 2.当x ____________时,二次根式32-x 有意义.
3.比较大小:3-2______2-3.
4.计算:2
2)21
()21
3(-等于__________. 5.计算:92131·311
4a =______________. a o b 6.实数a 、b 在数轴上对应点的位置如图所示:则3a -2)43(b a -=______________.
7、等腰三角形的腰长为13,底边长为10,则顶角的平分线为__
8、一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__ .
9、一个直角三角形的三边长的平方和为200,则斜边长为_________________
10、如图7,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B
是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁
沿着台阶面爬到B 点最短路程是 .
二、选择题:(每小题3分,共18分)
11、已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )
A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
12、下列变形中,正确的是………( )
(A )(23)2=2×3=6 (B )2)52
(-=-5
2 (C )169+=169+ (D ))4()9(-⨯-=49⨯
13、下列各式中,一定成立的是……( )
(A )2)(b a +=a +b (B )22)1(+a =a 2
+1 (C )12-a =1+a ·1-a (D )b a =b 1ab
14、若式子12-x -x 21-+1有意义,则x 的取值范围是………………………( )
(A )x ≥21 (B )x ≤21 (C )x =2
1 (D )以上都不对
15、当a <0,b <0时,把b
a 化为最简二次根式,得…………………………………( ) (A )a
b b 1 (B )-ab b 1 (C )-ab b
-1 (D )ab b 16、当a <0时,化简|2a -2a |的结果是………( )
(A )a (B )-a (C )3a (D )-3a
三、化简求值(每小题6分,共18分)
17.已知a =
21,b =41,求b a b --b a b +的值.
18.已知x =
251-,求x 2-x +5的值.
19.已知y x 2-+823-+y x =0,求(x +y )x 的值.
四、解答题(每小题8分,共64分)
20、如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
21、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
小河
22. “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?
23. 小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个
矩形鱼池的周长,你能帮助小明算一算吗?
24.印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:
“平平湖水清可鉴,面上半尺生红莲;
出泥不染亭亭立,忽被强风吹一边,
渔人观看忙向前,花离原位二尺远;
能算诸君请解题,湖水如何知深浅?”
请用学过的数学知识解答这个问题.
25.如图,
A 城气象台测得台风中心在A 城正西方向320km 的
B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.
(1
) A 城是否受到这次台风的影响?为什么?
(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?
观测点 小汽车 E A
B
附加题
四、创新探索题
一只蚂蚁如果沿长方体的表面从A 点爬到B ’点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm 、宽为1cm 、高为4cm.
一、填空(每小题2分,共20分
1、x ≤1.
2、≥23.3.<.4、23.5、92a a .6、6a -4b .7、12 8、120 9、10 10、25
二、选择题:(每小题3分,共18分)
11、D 12、D .13、B .14、C .15、B .16、D . 三、化简求值:(每小题6分,共18分)
17. 【解】原式=)
)(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2. 当a =21,b =41时,原式=412141
2-⨯
=2. 18.【解】∵ x =2
51-=4525-+=25+. ∴ x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45. 19【解】∵ y x 2-≥0,823-+y x ≥0,
而 y x 2-+823-+y x =0,
∴ ⎩⎨⎧=-+=-.
082302y x y x 解得 ⎩⎨⎧==.12y x ∴ (x +y )x =(2+1)2=9.
四、解答题(每小题8分,共64分)
20、17km 21、23cm 22、20=v 米/秒=72千米/时>70千米/时,超速。
23、矩形周长为28米。
24、4
15;25、(1)作AP ⊥BD ,求出AP =160<200,会受影响。
(2)以A 为圆心,以200为半径画弧交BF 于C 、D ,连结AC ,可求出CD =240千米,受影响时
间为6小时。
附加题:分三种情况讨论,最短距离是5 cm.。