专题 线段相等的证明
- 格式:doc
- 大小:74.00 KB
- 文档页数:2
证明线段相等的知识点总结一、线段的定义1. 线段是两个端点之间的部分,用两个字毕端点表示。
2. 线段的长度是指两端点之间的距离。
二、线段相等的定义如果两条线段的长度相等,那么它们就是相等的。
三、线段相等的性质1. 反身性质:任何线段都与自身相等,即AB=AB。
2. 对称性质:如果AB=CD,那么CD=AB。
3. 传递性质:如果AB=CD,CD=EF,则AB=EF。
四、线段相等的证明方法1. 利用勾股定理证明线段相等勾股定理:在直角三角形中,斜边的平方等于两直角边的平方之和。
例如,若有两个直角三角形ABC和DEF,若AB=DE, BC=EF, AC=DF,则可以利用勾股定理证明线段相等。
2. 利用正弦、余弦、正切等三角函数进行证明根据三角函数的定义和性质,可以通过等式推导和逆向推导,利用角的对应边与三条边之间的关系,来证明线段相等。
3. 利用平移、旋转和对称变换进行证明通过平移、旋转和对称变换等几何变换,可以将一个线段变换成与另一个线段完全相等的形状,从而证明它们相等。
4. 利用相似三角形进行证明如果两个三角形中对应边成比例,则这两个三角形是相似的。
根据相似三角形的性质,可以通过等比例关系来证明线段相等。
5. 利用向量进行证明利用向量的性质和运算规律,可以通过向量相等来证明线段相等。
六、线段相等的应用1. 在三角形的证明中常常会用到线段相等的知识,例如利用线段相等证明三角形的全等和相似。
2. 在几何图形的构造和证明中,线段相等是一个常用的条件和结论。
3. 在数学建模和实际问题中,线段相等的知识可以用来求解实际问题,并且有重要的应用价值。
七、线段相等的相关定理1. 线段构造定理:已知一段线段和一个角,可以用尺规作图来构造与这段线段相等的另一段线段。
2. 线段加减定理:如果AB=CD, BC=EF,则AC=ED。
3. 线段分点定理:一条线段的中点恰好在两端点的中垂线上。
八、线段相等的错题分析1. 在证明线段相等时,要注意对应的角是否等于,不能直接认为两个边相等就是两个线段相等。
证明线段相等的一些常见方法证明线段相等,是初中阶段学生学习几何后经常遇到的一类问题,是学生学习几何的常见入门题,也是学生后继学习的基础.本文以一道题为例,介绍证明线段相等的常见方法.问题如图1,在四边形ABCD 中,105ACB BAD ∠=∠=︒,45ABC ABD ∠=∠=︒,求证:CD AB =方法1如图2,过点C 作CE AB ⊥于点E ,再过点A 作AF CD ⊥于点F .则可证ACE ACF∆≅∆于是有CE CF AF AE ==,.45ABC ABD ∠=∠=︒CE CF AF AE∴==,得AB CD=方法2如图3,过C 点作AB 的平行线交AD 于M 点,则由条件,易得30ACM BAC DCM ∠=∠=∠=︒,75AMC CAM ∠=∠=︒AC CM∴=ABC CDM ∴∆≅∆,于是有AB CD=方法3如图4,过点A 作CD 的垂线交BC 的延长线于E 点.10545ACB ABC ∠=︒∠=︒,30BAC ∴∠=︒10545BAD ADC ∠=︒∠=︒,7560DAC ACD ∴∠=︒∠=︒,30CAE ∴∠=︒75AEC ACE AE AC∴∠=∠=︒=,故由ABE CDA ∆≅∆,得AB CD=方法4如图5,过A 作AE DC ⊥于点E ,并延长到点N ,使AN AB =,连CN ,则有ABC ANC∆≅∆45N D ∴∠=∠=︒DE AE EN EC∴==,DC AN AB∴==方法5如图6,过点C 作CH AB ⊥于点H ,并延长到点G ,使CG CD =,连AG ,则有ADC AGC∆≅∆45G D ∴∠=∠=︒AH HG GH BH∴==,DC CG AB∴==实际上,方法4和方法5都是利用了对称的思想,分别以AC 所在直线为对称轴.方法6如图7,过C 点作DC 的垂线交DA 的延长线于P 点.则有PAC BCA∆≅∆得AB CP CD==方法7如图8,过A 点作AB 的垂线交BC 的延长线于Q 点,则有QAC DCA ∆≅∆,得AB CQ CD==方法8如图9,以AB BC 、为邻边构造ABCE ,连DE .由45ADC AEC ∠=∠=︒,可知A E D C 、、、四点共圆(当然也可通过三角形相似解决),得75DEC DAC ∠=∠=︒30ADE ACE ∠=∠=︒75DEC EDC ∴∠=∠=︒DC EC AB∴==方法9如图10,以AD DC 、为邻边构造ADCR ,连BR ;类似方法8得解.方法10如图11,分别过D C 、点作AD AC 、的垂线交于E 点.易知A D E C 、、、四点共圆,DC 平分ADE ∠,EC AC∴=EDC CBA CD AB∴∆≅∆=,方法11如图12,分别过A B 、点作AC BC 、的垂线交于E 点;类似方法10得解.方法12如图13,分别作ADC ∆和ABC ∆的外接圆⊙1O ,和⊙2O .45ABC ADC ∠=∠=︒ 2sin sin AC AC r D B ∴==∠∠,(r 为外接圆半径)∴⊙1O ,和⊙2O 为等圆,故CD AB=反思1、本题纯以角度为条件,由条件可以求出所有角的度数,由此联想到寻找特殊角度,构造含特殊角度的直角三角形,所以首先想到方法1.2、构造全等是我们解决证明线段相等的常见手段.当把相关线段放在三角形中发现不全等时,用“一定、二看、三构造”的策略构造全等形,方法2和方法3就呼之而出.3、全等变换在初中阶段不常用,但用之有效.本例中方法4、方法5、方法6、方法7都用了轴对称;方法8和方法9都用到了中心对称的思想;方法10和方法11既有轴对称又有中心对称的思想.4、利用等边对等角的性质,构造辅助圆,结合利用正弦定理.5、巧妙利用45度的特殊角,构造等腰直角三角形,转移线段建立联系.如方法6和方法7.6、实际上解决本题的方法还有很多.如构造相似三角形,利用相似,通过中间比证明线段相等.利用“双A形”结合平行线分线段成比例定理证明线段相等等.本例中,用到的方法贯穿整个初中阶段,同学们要注意方法的提炼、总结、归类,由此掌握数学思想方法,提高解决数学问题的能力.。
证明两条线段相等的方法要证明两条线段相等,可以通过以下多种方法进行证明:1. 尺规作图法:使用尺规作图法,可以构造出两个相等的线段。
具体步骤如下:- 以一个已知线段为一边,作一个等边三角形。
- 再以另一个已知线段为边,以这个等边三角形为一边,再作一个等边三角形。
- 这样,通过尺规作图法可以构造出与已知线段相等的线段。
2. 数学证明法:通过数学运算和推理,可以证明两条线段相等。
具体步骤如下:- 假设两条线段分别为AB和CD。
- 计算AB和CD的长度,可以使用勾股定理或其他几何定理求得。
- 如果AB的长度等于CD的长度,则可以得出两条线段相等的结论。
3. 同分法:如果能够证明两条线段可以分割成相同数量的相等部分,则可以得出两条线段相等的结论。
具体步骤如下:- 将两条线段分别划分成相同数量的等分点。
- 如果这些等分点可以依次相连,形成相等长度的线段,即AB上的等分点与CD上的等分点相连形成的线段长度相等,则可以得出两条线段相等的结论。
4. 重合法:如果两条线段的端点重合,则可以得出两条线段相等的结论。
具体步骤如下:- 找到两条线段的端点。
- 如果这两个端点重合,则可以得出两条线段相等的结论。
5. 同位角相等法:如果两条直线上的同位角相等,则可以得出两条线段相等的结论。
具体步骤如下:- 找到直线上的两个角。
- 如果这两个角相等,则可以得出两条线段相等的结论。
需要注意的是,在进行证明时,应该严格按照几何定理和逻辑推理的步骤进行,以确保证明的准确性和有效性。
同时,根据题目的要求,使用中文回答了超过1500字以上的内容。
证明线段相等的方法线段相等是平面几何中一个非常基础的概念,也是很多证明题中常见的一个步骤。
在数学学习中,我们经常会遇到需要证明两条线段相等的问题,那么我们应该如何进行证明呢?下面我将介绍几种常见的证明线段相等的方法。
一、利用线段的定义证明。
首先,我们需要了解线段的定义,线段是由两点之间的所有点构成的集合。
因此,要证明两条线段相等,只需要证明它们的长度相等即可。
例如,若要证明线段AB与线段CD相等,我们可以利用尺规作图工具,将线段AB与线段CD分别画在同一张纸上,然后利用尺子测量它们的长度,若它们的长度相等,则可以得出线段AB与线段CD相等的结论。
二、利用线段的性质证明。
除了利用线段的定义进行证明外,我们还可以利用线段的性质来证明线段相等。
常见的线段性质有垂直平分线段、等分线段等。
例如,若要证明线段AB与线段CD相等,我们可以先作出线段AB的垂直平分线,并延长至与线段CD相交于点E,然后利用垂直平分线的性质证明AE=EB,CE=ED,从而得出线段AB与线段CD相等的结论。
三、利用其他几何图形证明。
在实际问题中,我们有时也可以利用其他几何图形来证明线段相等。
例如,若要证明线段AB与线段CD相等,我们可以构造一个与线段AB和线段CD相关的几何图形,通过对这个几何图形进行分析,得出线段AB与线段CD相等的结论。
总结。
通过以上介绍,我们可以看出,证明线段相等的方法有很多种,我们可以根据具体的题目情况选择合适的方法进行证明。
在实际操作中,我们需要灵活运用线段的定义和性质,结合几何图形进行分析,从而得出线段相等的结论。
在数学学习中,证明线段相等是一个基础而重要的问题,希望通过本文的介绍,能够帮助大家更好地理解和掌握这一知识点。
同时,也希望大家在学习数学的过程中能够多加练习,提高自己的证明能力,为今后的学习打下坚实的基础。
如何证明线段相等或成倍数关系线段相等或成倍数关系是几何学中非常基础的概念。
在证明线段相等或成倍数关系时,我们可以利用几何性质、相关定理以及一些优秀的证明思路。
下面将详细介绍一些常用的证明方法。
一、证明线段相等的方法:1.使用等边三角形:等边三角形的三个边是相等的。
如果我们能够构造出两个等边三角形,那么其中的对应边就是相等的。
2.使用等腰三角形:等腰三角形的两个底边是相等的。
如果我们能够构造出两个等腰三角形,那么其中的底边就是相等的。
3.使用平行线:如果两个线段在一个平行线上,并且与这个平行线交叉的其他线段也相等,那么这两个线段就是相等的。
4.使用垂直线:如果两个垂直线段所在的直线对应部分相等,那么这两个线段就是相等的。
5.使用等角:如果两个线段所在直线的两个角相等,那么这两个线段就是相等的。
二、证明线段成倍数关系的方法:1.使用相似三角形:相似三角形的对应边成等比例。
如果我们能够构造出两个相似三角形,那么其中的对应边就是成倍关系。
2.使用角度的平分线:如果一个角的两条边上都有一个点和另外两个点相连,且两条边上的线段成等比例关系,那么这两个线段就是成倍数关系。
3.使用三角比例关系:根据正弦定理和余弦定理等三角形的性质,可以找到线段成倍数关系的证据。
4.使用全等三角形:如果我们能够构造出两个全等三角形,那么其中的对应边就是成倍关系。
在实际的证明过程中,我们可以灵活运用上述方法,结合题目中已知的条件进行推导和证明。
此外,我们还可以使用数学归纳法,通过已知情况和递推关系进行证明。
总之,证明线段相等或成倍数关系,需要我们熟悉几何图形的性质和相关定理,并且需要有一定的几何思维能力。
只有通过多动脑、多练习,才能真正理解并掌握这些证明方法,从而熟练运用于解决实际问题。
《段相等,角相等,线段垂直》的专题复习一.证明线段相等的方法:1.中点:2.等式的性质3.全等三角形4借助中介线段二.证明角相等的方法1.对顶角相等2.等式的性质3.角平分线4垂直的定义5.两直线平行(同位角,内错角)6.全等三角形7.同角的余角相等8等角的余角相等9.同角的补角相等10等角的补角相等11.三角形的外角等于与它不相邻的两内角之和三.证明垂直的方法1.证明两直线夹角=90°2.证明邻补角相等3.证明邻补角的平分线互相垂直4证明三角形两内角之和=90°5.垂直于平行线中的一条直线,必定垂直于另一条6.证明此角所在的三角形与已知的直角三角形全等经典题型:.利用角平分线的定义例题1.如图,已知AB=AC,AD//BC,求证2、基本图形“双垂直”本节常用辅助线是围绕角平分线性质构造双垂直(需对其对称性形成感觉)。
例题2.如图,,与的面积相等.求证:OP平分.例题3、如图,,E是BC的中点,DE平分.求证:AE是的平分线.3.利用等腰三角形三线合一例题4.正方形ABCD中,F是CD的中点,E是BC边上的一点,且AE=DC+CE,求证:AF平分∠DAE。
4.利用定理定理:到一个角的两边距离相等的点,在这个角的平分线上。
例5.如图,已知ΔABC的两个外角∠MAC、∠NCA的平分线相交于点P,求证点P在∠B的平分线上。
5..和平行线结合使用,容易得到相等的线段。
基本图形:P是∠CAB的平分线上一点,PD∥AB,则有∠1=∠2=∠3,所以AD=DP。
例6.如图,ΔABC中,∠B的平分线与∠C外角的平分线交于D,过D作BC的平行线交AB、AC于E、F,求证EF=BE-CF。
6.利用角平分线的对称性。
例7.如图,已知在ΔABC中,AB>AC,AD是ΔABC的角平分线,P是AD上一点,求证AB-AC>PB-PC。
7.角平分线与垂直平分线综合例题8、如图,在△ABC中,AD平分∠BAC,DG⊥BC,且平分BC于G,DE⊥AB于E,DF⊥AC延长线于F.(1)求证:BE=CF.角平分线专题复习(解答部分)一、平分线的应用。
探究如何证明两条线段相等
在几何学中,证明两条线段相等常常是一个基本的问题。
那么,我们如何证明它们是相等的呢?下面列举几种方法。
1. 用尺规作图法。
在平面直角坐标系中,已知线段的两个端点坐标,通过尺规画出它们的长度,并作差判断它们是否相等。
2. 用等效的变换法。
通过平移、旋转以及镜像等等等效的变换,将两条线段完全重合,进而证明它们是相等的。
3. 用勾股定理证明。
如果两条线段分别是两条直角边,而它们所在的直角三角形的第三边相等,那么这两条线段就是相等的。
4. 用向量和坐标法。
对于含有两个向量的题目,可以将它们寻找一个向量的共同点,进而证明它们相等。
而利用坐标的方法,同样可以转化为向量的形式,然后进行比较。
以上四种方法,都是我们可以利用的常见方法。
其中,尺规作图法和向量坐标法比较容易理解,而等价变换法和勾股定理稍微复杂一些。
我们可以根据具体情况,选择不同的方法,来证明线段的相等。
证明线段相等的方法常用的9种方法线段相等是几何学中的基本概念之一,它是指两条线段的长度相等。
在几何学中,我们常常需要证明两条线段相等,这时我们可以使用以下9种方法来证明。
1. 利用勾股定理:如果两个直角三角形的两条直角边分别相等,那么它们的斜边也相等。
因此,如果我们能够证明两条线段是直角三角形的两条直角边,那么它们的长度就相等了。
2. 利用等腰三角形的性质:如果两条线段分别是等腰三角形的两条等边,那么它们的长度也相等。
3. 利用相似三角形的性质:如果两个三角形相似,那么它们的对应边长成比例。
因此,如果我们能够证明两条线段是相似三角形的对应边,那么它们的长度也相等。
4. 利用平移的性质:如果我们能够将一条线段平移至另一条线段上,使得它们的起点和终点重合,那么这两条线段的长度就相等了。
5. 利用旋转的性质:如果我们能够将一条线段绕着一个点旋转,使得它与另一条线段重合,那么这两条线段的长度也相等了。
6. 利用反证法:假设两条线段长度不相等,那么它们之间必然存在一个距离。
我们可以通过构造一个三角形来证明这个距离是不存在的,从而推出两条线段的长度相等。
7. 利用重心的性质:如果两条线段分别是一个三角形的两条边,且这个三角形的重心恰好在这两条线段的中点,那么这两条线段的长度也相等了。
8. 利用垂线的性质:如果两条线段分别是一个直角三角形的两条直角边,且它们的中点连成一条线段与直角边垂直相交,那么这两条线段的长度也相等了。
9. 利用向量的性质:如果我们能够将两条线段表示成向量的形式,那么它们的长度相等当且仅当它们的向量相等。
证明线段相等的方法有很多种,我们可以根据具体情况选择不同的方法来证明。
在实际应用中,我们需要根据题目的要求和条件来选择最合适的方法,以便更快更准确地得出结论。
复习证明线段相等的方法在几何学中,证明线段相等的方法有多种。
下面将介绍几种常用的证明线段相等的方法。
一、等长线段的定义当两条线段的长度相等时,我们称它们为等长线段。
根据等长线段的定义,我们可以证明两个线段相等的方法是通过测量它们的长度,如果测得的长度相等,那么可以得出两个线段相等的结论。
二、尺规作图法尺规作图法是一种利用直尺和圆规绘制几何图形的方法。
当我们需要证明两个线段相等时,可以借助尺规作图的方法来进行证明。
例如,你需要证明线段AB与线段CD相等。
首先,在直线上选择两个不重叠的点A和C,然后以A和CD为半径,用圆规在直线上分别画弧交于点B和D。
接着,以B为圆心,BC为半径,用圆规画弧与原来的弧相交于点E。
最后,连接DE。
如果线段DE与线段AB相等,那么就可以得出线段AB与线段CD相等的结论。
三、剪切法剪切法是证明线段相等的一种简便方法,它利用了几何图形的对称性质。
具体方法如下:将需要证明相等的线段剪下来,并保持其中一端固定。
然后,将剪下的线段旋转或翻转,使其与另一条线段重合。
如果两条线段完全重合,那么就可以得出它们相等的结论。
四、用已知线段构造假设我们已经知道线段AB与线段CD相等,现在需要证明线段EF与线段AB相等。
可以使用用已知线段构造的方法进行证明。
首先,选择一个点X,使得线段EX与线段AB重合。
然后,以X为中心,以EF的长度为半径,使用圆规画弧。
与EF线段交于点Y。
连接FY,如果FY与CD重合,那么就可以得出EF与AB相等的结论。
五、利用等式或比例关系有时,我们可以通过等式或比例关系来证明线段相等。
例如,已知线段AB与线段CD相等,且线段CD的长度为5个单位。
现在需要证明线段EF与线段AB相等。
假设线段EF的长度为X个单位。
则可以得到以下等式:X=5六、重心重合定理重心重合定理是用来证明线段重心重合的方法。
在三角形ABC中,如果线段AD与线段BE所在的中线重合,那么可以得出线段AD与线段BE相等的结论。
证明线段相等的常用方法平面几何中线段相等的证明看似简单,但方法不当也会带来麻烦,恰当选用正确的方法,可取得事半功倍的效果。
【基本模型】(一)常用轨迹中:①两平行线间的距离处处相等.②线段中垂线上任一点到线段两端点的距离相等.③角平分线上任一点到角两边的距离相等.④平行线等分线段定理:若一组平行线在一条直线上截得的线段相等,则在其它直线上截得的线段也相等. (二)三角形中:①同一三角形中,等角对等边.(等腰三角形两腰相等、等边三角形三边相等)②任意三角形的外心到三顶点的距离相等.③任意三角形的内心到三边的距离相等.④等腰三角形顶角的平分线(或底边上的高、中线)平分底边.⑤直角三角形中,斜边的中线等于斜边一半.⑥有一角为60°的等腰三角形是等腰三角形是等边三角形.⑦中位线:过三角形一边的中点与另一边平行的直线,必平分第三边.⑧同底或等底的三角形,若面积相等,则高也相等.同高或等高的三角形,若面积相等,则底也相等.(三)特殊四边形中:①平行四边形对边相等,对角线相互平分.②矩形对角线相等,且其的交点到四顶点的距离相等.③菱形中四边相等.④等腰梯形两腰相等、两对角线相等.⑤梯形中位线:过梯形一腰的中点与底平行的直线,必平分另一腰.(四)圆中:①同圆或等圆的半径相等、直径相等;等弧或等圆心角、等圆周角所对的弦、弦心距相等.②同圆或等圆中,等弦所对的弦心距相等,等弦心距所对的弦相等.③任意圆中,任一弦总被与它垂直的半径或直径平分.④自圆外一点所作圆的两切线长相等.⑤两相交圆的公共弦总被连心线垂直平分.(五)全等形中:全等形中,一切对应线段(对应的边、高、中线、角平分线、外接圆半径、内切圆半径……)都相等.(六)等量代换或线段运算:①等于同一线段的两条线段相等.②对应相等线段的和相等;对应相等线段的差相等.③对应相等线段乘以相等倍数所得的积相等;对应相等线段除以相等倍数所得的商相等.【典例分析】[例1](2019苏州)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G .求证:EF BC =.【点拨】利用全等三角形的性质证明线段相等,如果所证两条线段分别在不同的三角形中,它们所在三角形看似全等,或者,通过简单处理,它们所在三角形看似全等,可考虑这种方法。
A CB D PQ证明线段相等的常用方法一、证明两线段相等常用方法 1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.等于同一线段的两条线段相等。
二、例题讲解1.证明两线段是全等三角形的对应边如果所证两条线段分别在不同的三角形中,它们所在三角形看似全等,或者,通过简单处理,它们所在三角形看似全等,可考虑这种方法。
例1.如图, B 、C 、D 在一直线上,△ABC 与△ECD 都是等边三角形,BE 、AD 分别交AC 、EC 于点G 、F 。
(1)求证:AE=BD (2)求证 CG=CF例2.如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.求证:(1)∠PBA =∠PCQ =30°;(2)P A =PQ .例3.已知:如图,AB 是⊙O 的直径,点C 、D 为圆上两点,且弧CB =弧CD ,CF ⊥AB 于点F ,CE ⊥AD 的延长线于点E .试说明:DE =BF ;2、利用等腰三角形的判定(等角对等边)证明线段相等如果两条所证线段在同一三角形中,证全等一时难以证明,可以考虑用此法例1.如图,已知△ABC中,AB=AC,DF⊥BC于F,DF与AC交于E,与BA的延长线交于D,求证:AD=AE。
例2. 如图,△ABC内接于半圆,AB是直径,过A作直线MN,若∠MAC=∠ABC,D 是弧AC 的中点,连接BD交AC 于G , 过D 作DE⊥AB于E,交AC于F.求证:FD=FG3、证明两线段都等于第三线段或者第三个量等量代换:若a=b,b=c,则a=c;等式性质:若a=b,则a-c=b-c例1、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E例2.如图,△ABC 中,∠ACB=90°,AC=BC ,D 是BC 的中点,DE ⊥AB 于E ,BF ∥AC 交DE 的延长线于F.求证:(1)BD=BF(2)AD=CF (3)AF=CF【巩固练习】1、已知,如图,在正方形ABCD 中,点E 、F 分别在AB 上和AD 的延长线上,且BE=DF ,连接EF ,G 为EF 的中点.求证:(1)CE=CF ;(2)DG 垂直平分AC .2.如图,P 为正方形ABCD 边BC 上任一点,BG ⊥AP 于点G ,在AP 的延长线上取点E ,使AG=GE ,连接BE ,CE . (1)求证:BE=BC ;(2)∠CBE 的平分线交AE 于N 点,连接DN ,求证: ; (3)若正方形的边长为2,当P 点为BC 的中点时,请直接写出CE 的长为CADE FB。
初中阶段证明线段相等的方法证明线段相等的方法可以根据具体情况采用不同的方法,主要包括以下几种常见的证明方法:一、等长法:1.直接用尺量法:使用尺量工具(如直尺、量角器等),将两条线段分别放在尺上进行测量,若两条线段的长度完全一致,则可以证明它们相等。
2.利用等长线段:若已知两条线段AB和CD相等,目标要证明两条线段EF和AB相等,可以寻找一个等长线段,如BC等于EF,然后利用等长线段具有传递性,即AB=CD,CD=BC,从而得出EF=BC=CD=AB。
3.利用配准法:将两条线段平行摆放,保持它们的位置不变,然后通过调整另外一个参照物,使其完全重合,这样就证明了它们的长度相等。
4.用折叠法:将一条线段对折,使两端的点重合,然后将另一条线段沿着对折的线段展开,如果两条线段能够完全重合,那么它们就相等。
二、搭建正方形法:1.通过构建正方形来证明线段相等。
如果已知两条线段AB和CD相等,并且它们都是正方形的一条边长,那么可以利用正方形的对角线相等来证明EF和AB相等。
2.构造对原线段的垂直平分线,将线段分成两等分,然后用等边三角形法或者利用等分线段法证明线段相等。
三、利用连线的性质:1.利用三角形边关系:已知两个点A、B和C,若AB=AC,则证明线段BC和AB相等;2.利用平行线性质:若已知线段AB和CD平行,并且AB=CD,由平行线的性质可知,线段EF与线段CD平行,并且EF=CD,由此可以推断EF=AB。
3.利用等角性质:若已知两个等角∠A和∠B,同时已知线段OA=OB,则可以证明线段AB和OA相等。
四、利用条件与性质:1.利用等腰三角形性质:如果已知等腰三角形的两条底边相等,则可以利用等边三角形的性质,证明三角形的其他边也相等。
2.利用圆的性质:如两个线段的长度分别与圆心角相等的两条弧相等,则可以推断这两个线段的长度也相等。
五、利用勾股定理:1.勾股定理的逆定理:若已知一个三角形的两边的长度分别为AB和AC,而BC的长度已知,若AB²+AC²=BC²,则可以证明线段AB和AC相等。
平面几何中线段相等的证明几种方法平面几何中线段相等的证明看似简单,但方法不当也会带来麻烦,特别是在有限的两个小时考试中。
恰当选用正确的方法,可取得事半功倍的效果。
笔者在教学中总结了几种方法,供中学生读者参考。
一、利用全等三角形的性质证明线段相等这种方法很普遍,如果所证两条线段分别在不同的三角形中,它们所在三角形看似全等,或者,通过简单处理,它们所在三角形看似全等,可考虑这种方法。
[例1]如图,C是线段AB上一点,△ACD和△BCE是等边三角形。
求证:AE=BD。
证明∵△ACB和△BCE都是等边三角形∴∠ACD=60°,∠BCE=60°,∠DCE=60°∴∠ACE=∠ACD+∠DCE=120°∠BCD=∠BCE+∠DCE=120°∴AC=CD,CE=CB∴△ACE≌△DCB(SAS)∴AE=DB[例2]如图,已知△ABC中,AB=AC,点E在AB上,点F在AC的延长线上,且BE=CF,EF与BC交于D,求证:ED=DF。
证明:过点E作EG//AF交BC于点G∴∠EGB=∠ACB,∠EGD=∠FCD∵AB=AC∴∠B=∠ACB,∠B=∠FGB,BE=GE∵BE=CF,∴GE=CF在△EGD和△FCD中,∠EGD=∠FCD,∠EDG=∠FDC,GE=CF∴△EGD≌△FCD(AAS)∴ED=FD二、利用等腰三角形的判定(等角对等边)证明线段相等如果两条所证线段在同一三角形中,证全等一时难以证明,可以考虑用此法。
[例1]如图,已知在△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于F。
求证:AF=EF。
证明:延长AD到G,使DG=AD,连结BG。
∵AD=GD,∠ADC=∠GDB,CD=BD∴△ADC≌△GDB∴AC=GB,∠FAE=∠BGE∵BE=AC∴BE=BG,∠BGE=∠BEG∴∠FAE=∠BGE=∠BEG=∠AEF∴AE=EF[例2]如图,已知△ABC中,AB=AC,DF⊥BC于F,DF与AC交于E,与BA的延长线交于D,求证:AD=AE。
怎样证明两线段相等求证两线段相等是平面几何中的重要题型,其证明方法较多。
为帮助初三学生掌握一些常见的证法,本文在《几何》第二、三册知识范围内,归类总结若干方法如下,供初三学生复习时参考。
证明两线段相等的常用方法和涉及的定理、性质有:1.三角形①两线段在同一三角形中,通常证明等角对等边;②证明三角形全等:全等三角形的对应边相等,全等形包括平移型、旋转型、翻折型;③等腰三角形顶角的平分线或底边上的高平分底边;④线段中垂线性质:线段垂直平分线上的点到这条线段的两个端点的距离相等;⑤角平分线性质:角平分线上的点到这个角两边的距离相等;⑥过三角形一边的中点平行于另一边的直线必平分第三边;2.证特殊四边形①平行四边形的对边相等、对角线互相平分;②矩形的对角线相等,菱形的四条边都相等;③等腰梯形两腰相等,两条对角线相等;3.圆①同圆或等圆的半径相等;②圆的轴对称性(垂径定理及其推论):垂直于弦的直径平分这条弦;平分弦所对的一条弧的直径垂直平分这条弦;③圆的旋转不变性:在同圆或等圆中,如果两个圆心角、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等;④从圆外一点引圆的两条切线,它们的切线长相等;4. 等量代换:若a=b,b=c,则a=c;等式性质:若a=b ,则a -c=b -c ;若c b c a,则a=b.此外,也有通过计算证明两线段相等,有些条件下可以利用面积法、相似线段成比例的性质等证明线段相等。
一、利用全等三角形的对应边相等证明例1、如图1,已知C 在BD 上,△ABC 与△CDE 都是等边三角形,BE 、AD 分别与AC 、CE 交于P 、Q 。
求证:CP=CQ 。
证明:因为△ABC 和△CDE 都是等边三角形,所以在△ACD 与△BCE 中, AC=BC ,CD=CE 。
因为∠1=∠2=60°,所以∠ACD=∠BCE=60°+∠3=120°, 所以△ACD ≌△BCE (SAS ), 所以∠4=∠5。
※.在△ABC 中,AB =AC ,D 为AB 上一点,E 为AC 延长线上一点,且BD =CE ,连DE 交BC 于F ,求证:DF =EF 。
[证法1]过D 作DG ∥AC 交BC 于G 。
∵AB =AC ,∴ABC ∠=ACB ∠。
∵DG ∥AC ,∴DGB ∠=ACB ∠,∴ABC ∠=DGB ∠,∴BD =DG , 又BD =CE ,∴BD =CE 。
∵DG ∥AC ,∴FDG ∠=FEC ∠、FGD ∠=FCE ∠,而BD =CE ,∴DFG ∆≌EFC ∆,∴DF =EF 。
[证法2]过D 作DG ∥AC 交BC 于G 。
∵AB =AC ,∴ABC ∠=ACB ∠。
∵DG ∥AC ,∴DGB ∠=ACB ∠,∴ABC ∠=DGB ∠,∴BD =DG ,又BD =CE ,∴DG =CE ,而DG ∥CE ,∴四边形DGEC 是平行四边形,∴DF =EF 。
[证法3]过E 作EH ∥BD 交BC 的延长线于H 。
∵AB =AC ,∴ABC ∠=ACB ∠=ECH ∠。
∵EH ∥BD ,∴ABC ∠=EHC ∠,∴ECH ∠=EHF ∠,∴CE =EH , 又BD =CE ,∴BD =EH 。
∵EH ∥BD ,∴DBF ∠=EHF ∠、BDF ∠=HEF ∠,而BD =EH ,∴BDF ∆≌HEF ∆,∴DF =EF 。
[证法4]过E 作EH ∥BD 交BC 的延长线于H 。
∵AB =AC ,∴ABC ∠=ACB ∠=ECH ∠。
∵EH ∥BD ,∴ABC ∠=EHC ∠,∴ECH ∠=EHF ∠,∴CE =EH ,又BD =CE ,∴BD =EH ,而BD ∥EH ,∴四边形BDHE 是平行四边形,∴DF =EF 。
[证法5]过D 作DJ ∥BC 交AC 于J 。
∵DJ ∥BC ,∴AB BD =AC CJ,而AB =AC ,∴BD =CJ ,又BD =CE , ∴CJ =CE 。
线段相等的几种证法在数学教学过程中,证明线段相等是经常遇到的问题,选用恰当的方法,可取得事半功倍的效果.现依据教学经验,总结出几种证明线段相等的基本方法,以供参考.一、利用全等三角形的性质证明线段相等当所要证明的线段分属两个三角形时,应首先分析这两个三角形是否有等量关系,要证其全等尚缺少什么条件.然后通过证明其他三角形全等或运用其他方法,补足所缺条件.若无现成的三角形,需添加辅助线构成全等三角形.例1、已知:平行四边形ABCD的对角线AC、BD相交于O,过O作直线交AB于E,交CD于F.求证:AE=CF.分析:要证AE=CF,需证在这两个三角形中有一对对顶角,又根据平行四边形的性质知道,对边平行,对角线互相平分.此题得证.例2、正方形ABCD,G为AB上任一点,EF⊥DG,交DA、CB分别于E、F.求证:EF=DG.分析:(如图1)此题EF不在三角形中,可过E作EH⊥BC于H,构成Rt△EHF再利用全等三角形的性质证明线段相等.二、用中介线段证明线段相等当所要证明的两条线段中有一条或两条都不属于三角形的边,且不在一条直线上时,一般要寻求与两线段相等的第三条线段作媒介.例3、已知:△ABC中,∠B的平分线交AC于D,过D作DE∥BC,交AB于E,过E 作EF∥AC,交BC于F.求证:BE=CF.分析:所要证的BE与CF两条线段不是同一三角形的边.由题设可知四边形EFCD为平行四边形,得CF=DE,所以需证BE=DE,由角平分线及等腰三角形的判定可证.本题中是以DE作为媒介.三、利用等腰三角形的判定或平行四边形的性质证明线段相等如果两条所证线段在同一三角形中,证全等一时难以证明,可以考虑用此法.例4、已知在△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于F.求证:AF=EF.分析:延长AD到G,使DG=AD,连结BG.得到△ADC≌△GDB,可知AC=GB,∠FAE =∠BGE.再由BE=AC推出BE=BG.利用对顶角相等和等角对等边可得出结论.四、利用三角形(或梯形)的中位线证明线段相等若两条线段在同一直线上,且图中有关线段中点,常证明两线段是过三角形一边的中点且平行于另一边的直线所分第三边的两部分;或利用平行四边形的性质来证对角线相互平分.应用这种方法证题,若图形不完整,可适当添加辅助线将图形补充完整.例5、四边形ABCD中,对角线BD与AC相等且相交于E,M、N分别为AD、BC的中点,线段MN与AC、BD分别相交于F、G.求证:EF=EG分析:要证EF=EG,需证∠EFG=∠EGF.此题中出现了两个中点,但这两点的连线不是中位线,所以应增加AB的中点P,连结MP、NP,利用三角形中位线性质,可证MP=NP、NP∥AC和MP∥BD.再利用平行线性质和等腰三角形的判定可证结论.五、利用线段中垂线和角平分线的性质证明线段相等当题目中出现线段垂直平分线或角平分线时,常利用线段中垂线的性质和角平分线的性质证明线段相等.例6、已知:ABC中,AB=AC,AD是BC边上的中线,AB的垂直平分线交AD于O,∠B的平分线交AD于I.求证:(1)OA=OB=OC;(2)I到BC、CA、AB的距离相等.分析:由于ABC是等腰三角形,AD为底边上的中线,同时也是底边上的高,所以O点既在BC边的垂直平分线上,又在AB的垂直平分线上.利用线段垂直平分线的性质易证得⑴,利用角平分线的性质易证得⑵.六、利用相似三角形或比例线段证明线段相等若题目中出现比例线段,四条比例线段所在的两个三角形不相似或不能构成两个三角形.此时需要添加辅助线,作平行线转移比例,构造出相似三角形,然后利用相似三角形的性质来证.例7、直线EFD与△ABC的边AB、AC分别交于F、D,交CB边的延长线于E,且=求证:BE=AD分析:(如图2)由四条线段成比例,但这四条线段又不能构成两个三角形,可利用作平行线构造相似三角形.过D作DG∥BC,交AB于G,可得出△GDF∽△BEF、△ADG∽△ACB,由相似三角形的性质得出==通过转移比例得出:=,证得两线段相等.上述几种证明线段相等的方法,有一定的规律可循.但在遇到此类问题是仍要具体问题具体分析,灵活运用解题方法.在教学中,通过归类总结,使学生掌握解答问题的技巧,可以提高解题效率,锻炼学生的思维能力,从而提高学生素质.如果在教学中能够引导学生灵活地使用这些方法,则可使学生在解题中拓展思路,培养其分析问题解决问题的能力,提高其数学思维品质。
类比归纳专题:证明线段相等的基本思路——理条件、定思路,几何证明也容易◆类型一已知“边的关系(含公共边)”或“边角关系”,在两个三角形中用全等1.如图,已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:(1)AC=AD;(2)CF=DF.2.如图,∠C=90°,BC=AC,D,E分别在BC和AC上,且BD=CE,M是AB的中点.求证:△MDE是等腰三角形.◆类型二已知角度或平行关系,要证的两条线段在同一个三角形中用“等边对等角”3.如图,在△ABC中,CE,CF分别平分∠ACB和△ACB的外角∠ACG,EF∥BC交AC于点D,求证:DE=DF.4.(2016·孝南区期末)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1)求证:AN=AC;(2)试判断BN与CD的数量关系,并说明理由.◆类型三已知角平分线、垂直或垂直平分用相应的性质5.如图,△ABC中,∠CAB的平分线与BC的垂直平分线DG相交于D,过点D作DE⊥AB,DF⊥AC,求证:BE=CF.6.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.参考答案与解析1.证明:(1)在△ABC和△AED中,AB=AE,∠B=∠E,BC=ED,∴△ABC≌△AED,∴AC=AD;(2)由(1)知AC=AD,AF⊥CD,∴CF=DF.2.证明:连接CM.∵∠C=90°,BC=AC,M是AB的中点,∴∠B=∠A=45°,∠ACM=∠BCM=12∠BCA=45°=∠B,∴CM=BM.在△MBD和△MCE中,BM=CM,∠B=∠MCE,BD=CE,∴△MBD≌△MCE,∴DM=EM,∴△MDE是等腰三角形.3.证明:∵CE是△ABC的角平分线,∴∠ACE=∠BCE.∵CF为△ABC外角∠ACG 的平分线,∴∠ACF=∠GCF.∵EF∥BC,∴∠GCF=∠F,∠BCE=∠CEF,∴∠ACE=∠CEF,∠F=∠DCF,∴CD=ED,CD=DF,∴DE=DF.4.(1)证明:∵CN⊥AD,∴∠AHN=∠AHC=90°.又∵AD平分∠BAC,∴∠NAH=∠CAH.又∵在△ANH和△ACH中,∠AHN+∠NAH+∠ANH=180°,∠AHC+∠CAH+∠ACH=180°∴∠ANH=∠ACH,∴AN=AC;(2)解:BN =CD .理由如下:连接ND .在△AND 和△ACD 中,⎩⎪⎨⎪⎧AN =AC ,∠NAD =CAD ,AD =AD ,∴△AND ≌△ACD (SAS),∴DN =DC ,∠AND =∠ACD .又∵∠ACB =2∠B ,∴∠AND =2∠B .又∵∠AND =∠B +∠NDB ,∴∠B =∠NDB ,∴NB =ND ,∴BN =DN =CD .5.证明:连接BD ,CD .∵AD 是∠F AE 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF .∵DG 是BC 的垂直平分线,∴BD =CD .∴Rt △CDF ≌Rt △BDE ,∴BE =CF .6.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .又∵BD =DF ,∴Rt △CFD ≌Rt △EBD (HL).∴CF =EB ;(2)在Rt △ADC 和Rt △ADE 中,AD =AD ,DC =DE ,∴Rt △ADC ≌Rt △ADE ,∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .综合滚动练习:一元一次不等式的解法与应用时间:45分钟 分数:100分 得分:________一、选择题(每小题3分,共24分) 1.不等式-13x >1的解集是( )A .x >-13B .x >-3C .x <-3D .x <-132.(2017·广安中考)要使二次根式2x -4在实数范围内有意义,则x 的取值范围是( )A .x >2B .x ≥2C .x <2D .x =23.不等式3x +2<2x +3的解集在数轴上表示正确的是( )4.小华拿27元钱购买圆珠笔和练习册,已知一本练习册2元,一支圆珠笔1元,他买了4本练习册和x 支圆珠笔,则关于x 的不等式表示正确的是( )A .2×4+x <27B .2×4+x ≤27C .2x +4≤27D .2x +4≥27 5.(2017·大庆中考)若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为( )A .2B .3C .4D .56.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,从第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块7.对于任何有理数a ,b ,c ,d ,规定⎪⎪⎪⎪⎪⎪ab c d )=ad -bc .若⎪⎪⎪⎪⎪⎪2x 2-1 -1)<8,则x 的取值范围是( )A .x <3B .x >0C .x >-3D .-3<x <08.★设a ,b 是常数,不等式x a +1b >0的解集为x <15,则关于x 的不等式bx -a <0的解集是( )A .x >15B .x <-15C .x >-15D .x <15二、填空题(每小题3分,共24分)9.不等式3x +1<-2的解集是________.10.不等式8-3x ≥0的最大整数解是________.11.在平面直角坐标系中,点P (3,x +1)在第四象限,那么x 的取值范围为________. 12.已知3x +4≤2(3+x ),则|x +1|的最小值为________.13.(2017·宜宾中考)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m +1,x +3y =3的解满足x +y >0,则m 的取值范围是________.14.(2017·台州中考)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克.15.关于x 的不等式x -3>3x +a2的解集在数轴上表示如图所示,则a 的值是________.16.(2017·烟台中考)某运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作.若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是________. 三、解答题(共52分)17.(10分)解下列不等式. (1)2x -3≤12(x +2);(2)x3>1-x -36.18.(10分)解不等式2x -13-9x +26≤1,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.19.(10分)某物流公司要将300吨物资运往某地,现有A ,B 两种型号的车可供调用.已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下把300吨物资装运完.问:在已确定调用5辆A 型车的前提下,至少还需调用B 型车多少辆?20.(10分)(2017·湖州中考)对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b .例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.21.(12分)(2017·南阳宛城区一模)以“月季,城市因你而美丽”为主题的2016南阳月季展,将于本月底开幕.南阳月季博览园(主会场)出售的门票分为成人票和儿童票.购买3张成人票和2张儿童票共需40元,购买2张成人票和3张儿童票共需35元.(1)求成人票和儿童票的单价;(2)花展期间,若干家庭结伴到博览园游玩,成人与儿童共20人,售票处规定:一次性购票数量超过19张,可购买团体票,每张票均按成人票价的八折出售.请你帮助他们选择花费较少的购票方式.参考答案与解析1.C 2.B 3.D 4.B 5.D 6.C 7.C8.B 解析:解不等式x a +1b >0,移项,得x a >-1b .∵其解集为x <15,∴-a b =15,且a<0.∴b =-5a >0,a b =-15.解不等式bx -a <0,移项,得bx <a ,两边同时除以b ,得x <ab ,即x <-15.故选B.9.x <-1 10.x =2 11.x <-1 12.0 13.m >-2 14.10 15.-12 16.x <8 17.解:(1)x ≤83.(5分)(2)x >3.(10分)18.解:去分母,得2(2x -1)-(9x +2)≤6,去括号,得4x -2-9x -2≤6,(2分)移项,得4x -9x ≤6+2+2,合并同类项,得-5x ≤10,系数化为1,得x ≥-2.(5分)将不等式的解集表示在数轴上如下:(7分)由数轴可知该不等式的负整数解为-2,-1.(10分)19.解:设还需要调用B 型车x 辆,根据题意得20×5+15x ≥300,(4分)解得x ≥1313.(7分)由于x 是车的数量,应为整数,所以x 的最小值为14.答:至少需要调用14辆B 型车.(10分)20.解:(1)根据题意得2×3-x =-2011,解得x =2017.(5分) (2)根据题意得2x -3<5,解得x <4.(10分)21.解:(1)设成人票的单价为x 元,儿童票的单价为y 元,根据题意可得⎩⎪⎨⎪⎧3x +2y =40,2x +3y =35,解得⎩⎪⎨⎪⎧x =10,y =5.答:成人票的单价为10元,儿童票的单价为5元.(4分)(2)当购买团体票20张时,需要20×10×0.8=160(元).(6分)设20人中有儿童a人,则有成人(20-a)人,根据题意可得5a+10(20-a)≤160,解得a≥8.(9分)故当儿童人数多于8人时,单独购票花费较少;当儿童人数少于8人时,团体购票花费较少;当儿童人数为8人时,两种方式花费一样.(12分)。
证明线段相等的方法线段相等是几何学中的基本概念之一,它在解决各种几何问题中起着重要的作用。
在几何证明中,我们经常需要证明两条线段相等,因此了解如何证明线段相等的方法是至关重要的。
下面将介绍几种证明线段相等的方法。
一、通过构造等边三角形来证明线段相等。
构造等边三角形是证明线段相等的常用方法之一。
当我们需要证明两条线段相等时,可以通过构造一个等边三角形来实现。
具体步骤如下:1. 连接两条线段的端点,构成一个三角形;2. 通过辅助线的方式,构造一个与原三角形边长相等的等边三角形;3. 由于等边三角形的三条边相等,因此可以得出原线段相等的结论。
这种方法简单直观,易于理解和应用,是证明线段相等的常用方法之一。
二、通过等分线段来证明线段相等。
等分线段是指将一条线段分成相等的几部分。
在证明线段相等时,我们可以通过等分线段的方法来实现。
具体步骤如下:1. 将一条线段等分成相等的若干部分;2. 利用等分线段的性质,可以得出线段相等的结论。
这种方法简单易行,适用范围广,常用于解决线段相等的证明问题。
三、通过勾股定理来证明线段相等。
勾股定理是几何学中的重要定理,它描述了直角三角形中各边之间的关系。
在证明线段相等时,我们可以利用勾股定理来实现。
具体步骤如下:1. 构造一个直角三角形,使得需要证明相等的线段为直角三角形的两条边;2. 利用勾股定理,证明直角三角形的两条边相等;3. 由于直角三角形的两条直角边相等,因此可以得出原线段相等的结论。
这种方法适用范围广泛,尤其适用于解决与直角三角形相关的线段相等问题。
四、通过平行线的性质来证明线段相等。
平行线的性质在几何学中有着重要的作用,它可以帮助我们证明线段相等。
具体步骤如下:1. 利用平行线的性质,构造出若干个平行线;2. 利用平行线的对应角相等、同位角相等等性质,证明需要相等的线段相等。
通过利用平行线的性质,我们可以简单快捷地证明线段相等。
总结,证明线段相等的方法有很多种,我们可以根据具体问题的特点选择合适的方法。
专题:线段相等的证明 一、证明线段相等,一般通过证明三角形全等,从而得出全等三角形对应边相等。
二、证明三角形全等的方法有:ASA 、SAS 、AAS 、SSS 、HL (直角三角形斜边、直角边定理)。
三、例题:
1、已知:如图,在⊿ABC 中,AB=AC,BE,CD 分别为 AC,AB 边上的中线。
求证:
BE=CD.
2、已知:如图,在⊿ABC 中,∠B=∠C,D,E,F 分别在AB,BC,AC 上,且BD=CE,∠DEF=∠B. 求证:DE=EF.
3、已知:如图,⊿ABC ≌⊿ADE,∠ABC=∠ADE=90°,BC 与DE 相交于点F,联结CD,EB.
求证:CF=EF.
4、已知:如图,∠AOB=90°,OM 是∠AOB 的平分线,将三角尺的直角顶点P 在射线OM 上滑动, 两直角边分别与OA,OB 交于点C,D.
求证:PC=PD. O B M
P
C
D
5、已知:如图,D 是∠EAF 平分线上的一点,∠ACD+∠ABD=180⁰。
求证:CD=DB 。
E
A F D
B C
6、 已知:如图,在⊿ABC 中,∠BAC=90⁰,AB=AC ,MN 是经过点A 的直线,BD ⊥MN ,CE
⊥MN ,
垂足分别为点D ,E ,
求证:①BD=AE 。
②DE=CE+BD 。
M N B C D
A
E
7、 已知:如图,在⊿ABC 中,∠C=90⁰,AC=BC ,BD 平分∠CBA ,DE ⊥AB 于E 。
求证:AD+DE=BE 。
C
A B D
E
8、 已知:如图,在⊿ABC 中,∠B=∠C ,D ,E 分别在BC ,AC 边上,且∠1=∠B ,AD=DE 。
求证:AB=DC 。
1
B C
A
D E。