3.4 实际问题与一元一次方程(1)“配套问题”和“工程问题”
- 格式:ppt
- 大小:459.00 KB
- 文档页数:20
3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题教学目标:1.掌握产品配套问题、工程问题中常见的数量关系.2.掌握用一元一次方程解决实际问题的基本过程.教学重点:弄清题意,用列方程解决实际问题.教学难点:寻找实际问题中的等量关系,建立数学模型.教学过程:一、提出问题,探究新知1问题1(课本P100例1):某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该安排多少名工人生产螺钉,多少名工人生产螺母?(1)怎样理解“某车间有22名工人”?生产螺柱人数+生产螺母人数=22(2)怎样理解“每人每天可以生产1200个螺钉或2000个螺母”?螺柱数= 1200×生产螺柱人数螺母数= 2000×生产螺母人数(3)怎样理解“一个螺钉需要配两个螺母”?螺柱数:螺母数= 1:2或螺母数=螺柱数×2(比例式的内项积=外项积)练习2:(1)用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?(2)某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套.要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?二、提出问题,探究新知2问题3:课本P100例2:整理一批图书:由一个人做要40 h完成.现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?1.逐句阅读题目,熟悉题中已知条件,回答问题:(1)由一个人要做40小时完成,这句话的作用?(2)根据题意,整项工作分成几部分?(3)借助线段图进一步理解题意.2.根据线段图,题目反映的相等关系是什么?3.设未知数,列方程解答.4.例题变式练习:(1)整理一批图书,由一个人做要40 h完成,现计划由一部分人先做4 h,然后增加2人与他们一起做6 h,完成这项工作的,假设这些人的工作效率相同,具体应先安排多少人工作?(2)整理一批图书,由一个人做要40 h完成,现计划由2人先做4 h,然后增加若干人与他们一起又做4 h完成了这项工作,问增加了多少人?三、归纳总结1.归纳:用一元一次方程解决实际问题的基本过程.2.学生独立练习:货车早上6:40从A城出发,15:40到达B城,一辆客车上午8:00从A城出发,14:00到达B城.求客车追上货车是什么时刻?提示:①由已知条件如何表示出货车与客车的速度?②当客车在途中追上货车时,两车的行驶时间有什么关系?行驶路程有什么关系?③以什么量为未知数,什么量为相等关系列方程,求出方程的解后又如何求解题目问题.强调:弄清货车与客车出发时间的先后,与到达时间的先后,以理解题意.四、课时小结通过以下问题引导学生反思小结:1.通过这节课的学习,你有什么收获?2.在解决配套、工程等问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?。
3.4 实际问题与一元一次方程(一)配套与工程问题一、选择题1.某车间有20名工人,生产螺栓和螺母,每人每天能生产螺栓12个或螺母16个.如果分配x 名工人生产螺栓,其余的工人生产螺母,要恰好使每天生产的螺栓和螺母按1∶2配套.求x 所列的方程是( )A .12x =16(20-x )B .16x =12(20-x )C .2×16x =12(20-x )D .2×12x =16(20-x )2.41人参加运土劳动,有三十根扁担,要安排多少人抬(两人合用一根扁担),多少人挑(一人用一根扁担),可使扁担和人数刚好配套?若设有x 人挑土,则所列方程是( )A .41)30(2=--x xB .30)41(2=-+x x C .30241=-+x x D .x x -=-4130 3.在加固某段河坝时,需要动用15台挖土,运土机械,每台机械每小时能挖土18立方米或运土12立方米,为了使挖出的土能及时运走,若安排x 台机械挖土,则可列方程( )A .151218=-xB .)28(1218x x -=C .)15(1812x x -=D .151218=+x x4.某地下管道由甲工程队单独铺设需要20天,由乙工程队单独铺设需要30天.如果由这两个工程队从两端同时相向施工,总共需要( )A .10天B .12天C .14天D .16天5.某班组每天需生产了50个零件,才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前三天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程( )A .1205x +-506x +=3 B .50x -506x +=3 C .50x -120506x ++=3 D .120506x ++-50x =3 二、填空题6.某中学的学生自己动手整修操场,如果让八年级学生单独工作,需要6小时完成;如果让九年级学生单独工作,需要4小时完成.现在由八年级、九年级学生一起工作x 小时,完成了任务.则=x .7.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x 人做上衣,则做裤子的人数为 人,根据题意,可列方程为 ,解得x = .8.某瓷器厂共有120个工人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套,则安排 人生产茶壶可使每天生产的瓷器配套.9.甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需要从乙队抽调_______人到甲队.三、解答题10.某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?11.东方红机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天最多可以生产多少套这样成套的产品?12.用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?13.某玩具加工车间要赶在“6·1”儿童节前加工450个毛绒玩具,决定由甲、乙两班工人来完成.已知甲班工人每天做20个玩具,乙班工人的速度是甲班工人的1.5倍,问甲、乙两班工人需要做多少天才能完成任务?14.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.15.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?3.4 实际问题与一元一次方程(一)配套与工程问题一、选择题1.D 2.C 3.C 4.B 5.C二、填空题6.512 7.)54(x -,)54(108x x -=,30 8.40 9.8 三、解答题10.设每天有x 个工人生产镜片,)60(x -个工人生产镜架,一副眼镜有一个镜架,2片镜片,故可以设方程为250)60(200⨯⨯-=x x 200x=(60-x )*50*2方程两边同时除以100,得x x -=602解得20=x答: 20个工人生产镜片,40个工人生产镜架11.设一天最多可以生产x 套这样成套的产品, 由题意得90153202=+x x ,解得 300=x 答:一天最多可以生产300套这样成套的产品.12.设用x 张制盒身,则用)108(x -张制盒底正好制成整套罐头盒.列方程 )108(42152x x -=⨯ 解得:63=x 108-x =45答:用63张制盒身,则用45张制盒底正好制成整套罐头盒.13.设做x 天完成任务,由题意得450205.120=⨯+x x x解得:9=x答:甲、乙两班工人需要做9天才能完成任务。
3.4实际问题与一元一次方程-配套问题与工程问题课题: 3.4实际问题与一元一次方程(1)配套问题与工程问题 教学目标: 1.能找出工程问题中的等量关系,列出方程;2.能找出配套问题两类物体的数量关系,列出方程; 重点难点: 找到实际问题中的等量关系,列出方程教学过程一、 温故知新解下列方程:(1)(设计意图:巩固解一元一次方程的步骤为用一元一次方程解决实际问题做必要的铺垫)二、 合作探究,学习新知认真阅读课本第100至101页的内容,完成下面练习并体验知识点的形成过程.1、【例1】某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少人?6751413-=--y y 1解:去分母得:3(3y-1)-12=2(5y-7)去括号得:9y-3-12=10y-14移项得:9y-10y=-14+12+3合并同类项得:-y=1系数化为,得:y=-1问题1:每人每天可以生产1200个螺钉或2000个螺母指的是每人每天既同时生产1200个螺钉和2000个螺母还是只可以生产其中一样?答:只可以生产其中一样。
问题2:1个螺钉和2个螺母配套指的是什么意思?1个螺钉配2个螺母,2个螺钉配4个螺母…螺钉数量和螺母数量存在什么样的数量关系?答:螺钉和螺母数量成比例,螺母数量是螺钉数量的2倍。
问题3:完成以下表格:解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母. 依题意得: 2 000(22-x)=2×1 200x解方程,得:x=10 22-x=12.答:应安排10名工人生产螺钉,12名工人生产螺母(设计意图:重点针对题目中的关键语句进行提问,提升学生将实际问题转化为数学问题的能力,并通过完成表格提升对实际问题中数量关系的理解)2. 【例2】整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,然后增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?问题1:工作由一个人做要40小时完成,说明单人工作效率是?答:单人工作效率是 ,单人工作效率= 1∕工作时间 问题2:工作由一部分人先做4小时,然后增加2人和他们一起做8小时,完成这项工作,工作分为几个部分?总共完成多少工作量?答:工作分为2个部分,总共完成了全部工作,即工作总量为单位1.问题3:完成以下表格:解:设先安排x 人工作4h ,根据两段工作量之和是总工作得 解得 X=2答:应先安排2人工作4小时。
课题:3.4.1 实际问题与一元一次方程(1)——工程问题和配套问题一.学习目标:1.能根据实际问题中的等量关系列出方程,感悟到方程是刻画现实世界的一个有效模型。
2.明确工程问题中工作总量、工作效率和工作时间三者的关系,会利用一元一次方程解决工程问题和配套问题。
3.掌握用一元一次方程解决实际问题的基本过程。
二.学习重点:利用一元一次方程解决工程问题和配套问题。
三.复习提问:1. 解一元一次方程的一般步骤有哪些?每个步骤的主要依据是什么?需要注意的问题是什么?2. 填空:(1)工作效率、工作总量、工作时间的关系为__________________________________(2)甲队原有a人,乙队原有b人,现从乙队抽调x人去甲队,则甲乙两队现有人数分别为__________,__________(3)一件工作,甲单独做x小时完成,乙单独做y小时完成,那么甲、乙的工作效率分别为_____,_____;甲、乙合作m小时可以完成的工作量为__________四.典型例题:例1.整理一批图书,由一个人做要40 h 完成。
现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作。
假设这些人的工作效率相同,具体应先安排多少人工作?练习:1. 一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天。
如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?2. 一个水池有甲、乙、丙三个水管,甲、乙是进水管,丙是排水管。
单开甲管20分钟可将水池注满,单开乙管15分钟可将水池注满,单开丙管25分钟可将满池水放完,现在先开甲、乙两管,4分钟后关上甲管开丙管,问又经过多少分钟才能将水池注满?例2.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母。
1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?练习:一套仪器由一个A部件和三个B部件构成。
3.4实际问题与一元一次方程(1)---配套问题与工程问题(康县二中孙芳)一、学习目标与重、难点:1.学习目标:(1)会通过列方程解决“配套问题和“工程问题”;(2)掌握列一元一次方程解决实际问题的一般步骤;(3)培养学生分析问题与解决实际问题的能力;2.重点:通过列一元一次方程解决实际问题难点:通过列一元一次方程解决实际问题二、教学过程:1.创设情境,导入新课请欣赏一首诗:太阳下山晚霞红,我把鸭子赶回笼;一半在外闹哄哄,一半的一半进笼中;剩下十五围着我,共有多少请算清.你能列出方程来解决这个问题吗?2.活动一:温故而知新解方程:21 36y y--=活动二:共学习、同进步------配套问题某车间有22名工人,每人每天可以生产1200个螺钉或2 000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?列表分析:(思考)工程问题中的等量关系:工作总量= 工作效率×工作时间(填空)一件工作,甲单独做x小时完成,乙单独做y小时完成,那么甲、乙的工作效率分别为 _______、______;甲、乙合作m天可以完成的工作量为 (_____+_____)m 。
活动三:共学习、同进步------工程问题整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?活动四:解决创设情境,导入新课的问题3.小结:①列方程解应用问题大致包含哪些步骤?(1)设:设适当的未知数,并表示未知量(2)列:根据题目中的数量关系列方程;(3)解:解这个方程求未知数的值;(4)检:检验所得结果;(5)答:写出实际问题的答案.②用一元一次方程分析并解决实际问题的基本过程:4.冲关我最棒:(1)一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?(2)一件工作,甲单独做需50天才能完成,乙单独做需要45天完成。
实际问题与一元一次方程1(配套问题与工程问题)一、要点探究探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典型例题例1:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?针对训练1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?3.用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒。
现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
第三章一元一次方程3.4实际问题与一元一次方程第1课时一、教学目标1.会通过列方程解决“配套问题”和“工程问题”.2.培养学生数学建模能力、分析能力、解决问题的能力.二、教学重点及难点重点:将实际问题抽象为方程,列方程解应用题.难点:将实际问题抽象为方程的过程中,如何找等量关系.三、教学用具电脑、多媒体、课件.四、相关资源五、教学过程(一)温故知新解一元一次方程的一般步骤是什么呢?师生活动:学生思考,回答问题,教师边聆听边板书.小结:解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1.设计意图:复习旧知识的目的是检验上一节课的学习效果,为本节课进一步学习起到一个基石的作用.(二)例题分析例1某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?师生活动:教师提示学生思考以下问题:(1)“1个螺钉配2个螺母”这句话是什么意思,包含着什么等量关系?(2)本问题有哪些等量问题?学生讨论后,独立尝试列方程.在本问题中“1个螺钉配2个螺母”中包含的等量关系较隐蔽,是本问题的难点,要让学生真正理解其中的含义.教师巡视检查学生完成的情况.然后让学生打开教材,把自己的解法和教材上的相比较,看一看过程中有什么不足之处,修改以后思考下面问题.你的解法与教材上是否相同?如果相同,你是否能换一种设未知数的方法解决这个问题?如果不同,请与其他同学交流讨论比较两种方法间的异同点.解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母.依题意得:2 000(22-x)=2×1 200x.解方程,得:5(22-x)=6x,110-5x=6x,x=10.22-x=12.答:应安排10名工人生产螺钉,12名工人生产螺母.另解:设应安排x名工人生产螺母,(22-x)名工人生产螺钉.依题意得:2×1 200(22-x)=2 000x.解方程,得:x=12.22-x=10.答:应安排10名工人生产螺钉,12名工人生产螺母.例2整理一批图书,由一个人做要40 h完成.现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工作?师生活动:学生先自主探究讨论,教师可以点拨以下问题:(1)人均效率为________.(指一个人1小时的工作量).(2)若设先由x人做4小时,完成的工作量是________.再增加2人和前一部分人一起做8小时,两段完成的工作量之和是________.师生共同完成本题的解答过程,教师要书写出规范完整的答案.教师点评:工作量=人均效率×人数×工作时间,这是在此类问题中常用的数量关系.解:设安排x人先做4 h.依题意得:()8241 4040xx++=.解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2人先做4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流,最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和解决实际问题.(三)练习巩固1.一套仪器由一个A 部件和三个B 部件构成. 用1 m 3钢材可以做40个A 部件或240个B 部件.现要用6 m 3钢材制作这种仪器,应用多少钢材做A 部件,多少钢材做B 部件,恰好配成这种仪器多少套?解:设应用 x m 3钢材做A 部件,(6-x )m 3 钢材做B 部件.依题意得:3×40 x =240 (6-x ).解方程,得:x =4.答:应用4 m 3钢材做A 部件,2 m 3 钢材做B 部件,配成这种仪器160套.2.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天.如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设x 天可以铺好这条管线. 依题意得:11224x x +=,解方程,得:x=8.答:两个工程队从两端同时施工,要8天可以铺好这条管线.设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计3.4实际问题与一元一次方程配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:。
第三章一元一次方程3.4实际问题与一元一次方程第课时1一、教学目标1.会通过列方程解决“配套问题”和“工程问题”.2.培养学生数学建模能力、分析能力、解决问题的能力.二、教学重点及难点重点:将实际问题抽象为方程,列方程解应用题.难点:将实际问题抽象为方程的过程中,如何找等量关系.三、教学用具电脑、多媒体、课件.四、相关资源五、教学过程(一)温故知新解一元一次方程的一般步骤是什么呢?师生活动:学生思考,回答问题,教师边聆听边板书.小结:解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1.设计意图:复习旧知识的目的是检验上一节课的学习效果,为本节课进一步学习起到一个基石的作用.(二)例题分析例1 某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1 个螺钉需要配2 个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?师生活动:教师提示学生思考以下问题:(1)“1 个螺钉配2 个螺母”这句话是什么意思,包含着什么等量关系?(2)本问题有哪些等量问题?1学生讨论后,独立尝试列方程.在本问题中“1 个螺钉配 2 个螺母”中包含的等量关系较 隐蔽,是本问题的难点,要让学生真正理解其中的含义.教师巡视检查学生完成的情况.然 后让学生打开教材,把自己的解法和教材上的相比较,看一看过程中有什么不足之处,修改 以后思考下面问题.你的解法与教材上是否相同?如果相同,你是否能换一种设未知数的方法解决这个问 题?如果不同,请与其他同学交流讨论比较两种方法间的异同点.解:设应安排 x 名工人生产螺钉,(22-x )名工人生产螺母.依题意得:2 000(22-x )=2×1 200x .解方程,得:5(22-x )=6x ,110-5x =6x ,x =10.22-x =12.答:应安排 10 名工人生产螺钉,12 名工人生产螺母.另解:设应安排 x 名工人生产螺母,(22-x )名工人生产螺钉.依题意得:2×1 200(22-x )=2 000x .解方程,得:x =12.22-x =10.答:应安排 10 名工人生产螺钉,12 名工人生产螺母.例 2 整理一批图书,由一个人做要 40 h 完成.现计划由一部分人先做 4 h ,然后增加 2 人与他们一起做 8 h ,完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工 作?师生活动:学生先自主探究讨论,教师可以点拨以下问题:(1)人均效率为________.(指一个人 1 小时的工作量).(2)若设先由 x 人做 4 小时,完成的工作量是________.再增加 2 人和前一部分人一起 做 8 小时,两段完成的工作量之和是________.师生共同完成本题的解答过程,教师要书写出规范完整的答案.教师点评:工作量=人均效率×人数×工作时间,这是在此类问题中常用的数量关系. 解:设安排 x 人先做 4 h . 8 x +2 4x 依题意得: + 40=1. 40 2解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4。
3.4实际问题与一元一次方程第1课时配套问题与工程问题【知识与技能】会根据实际问题中数量关系列方程解决问题,并进一步熟练掌握一元一次方程的解法。
【过程与方法】培养学生数学建模能力,分析问题、解决问题的能力。
【情感态度】通过开放性问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣。
【教学重点】从实际问题中抽象出数学模型.【教学难点】根据题意,分析各类问题中的数量关系,会熟练地列方程解应用题。
一、情境导入,初步认识在前两节中,我们着重探讨了解一元一次方程的概念和几种方法,这几种解法包括合并同类项与移项、去括号与去分母等.这几个课时我们着重探讨如何用一元一次方程解决实际问题,我们先来看两个问题:问题1 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?思考:①若安排x名工人加工大齿轮,则有___名工人加工小齿轮。
②x名工人每天可加工_____个大齿轮,加工小齿轮的工人每天可加工____个小齿轮。
③按题中的配套方法,你是否可找出其中的等量关系呢?问题2一件工作,甲单独做20小时完成,乙单独做12小时完成,那么两人合作多少小时完成?思考:①两人合作32小时完成对吗?为什么?②甲每小时完成全部工作的______;乙每小时完成全部工作的_______;甲x小时完成全部工作的_______;乙x小时完成全部工作的_______。
【教学说明】提出这个问题,旨在让学生能快速进入课堂,进行思考。
教师可根据上面所列思考题引导学生进行思考,问题1是配套问题,教师最终要引导学生找出等量关系:生产的大齿轮数量的3倍与小齿轮数量的2倍相等.题①、②依次填:(85-x)、16x、10(85-x)。
依次我们可列得方程为3×16x=2×\[10×(85—x)\].问题2提出了一个新问题:如何解决与工作量相关的应用题,这类题求解时一般都需要去分母。