压力容器无损检测技术
- 格式:doc
- 大小:26.00 KB
- 文档页数:7
常用无损检测方法的原理、特点答:压力容器常用无损检测(又称为无损探伤)有:目视检测(VT)射线检测(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)、涡流检测(ET)、声发射检测(AE)泄漏检测(LT)1)目视检测(VT)目视检测是以目视观察和测量识别来确定材料或工件的表面状态或清洁程度、形状或装配关系,观察压力容器和部件的泄露迹象等。
目视检测可分为直接目视检测、间接目视检测和透光目视检测。
2)射线检测(RT)利用强度均匀的射线(都是波长很短的电磁波)照射工件,使照相胶片感光。
由于工件内部缺陷与无缺陷部位的密度和厚度差异,射线在这些部位的衰减程度也不同,就可得到和工件内部无缺陷相对应的不同黑度的图像(射线底片)。
从而检查出缺陷的种类、大小和分布状况等,并确定工件的质量等级[9]。
射线检测的原理和医学上做的X射线原理是是相同的,一般不会对人体造成伤害。
友情提示一下:打算造人的朋友,体检的时候不要做这个项目。
祝君好孕。
O(∩_∩)O射线检测对于体积缺陷(体积状未焊透、气孔、夹渣、疏松、缩孔)检测灵敏度高。
对于面状缺陷(如微细的裂纹、未熔合和面状未焊透)检测灵敏度低。
射线技术分为三级:A级-低灵敏度技术;AB级-中灵敏度技术;B级-高灵敏度技术。
一般情况下,锅炉、压力容器及压力管道对接接头采用AB级进行检测,其支承件和结构件的检测可采用A级。
对关键设备,如材料对裂纹(冷、热、再热、疲劳、应力腐蚀裂纹等)敏感,此时应采用B级检测技术。
射线透照方式分为五种:纵缝透照法、环缝外透法、环缝内透法、双壁双影法和双壁单影法。
根据缺陷的性质和数量,将焊缝分为四个等级[9]:Ⅰ级焊缝内不允许存在裂纹、未熔合、未焊透和条状缺陷;Ⅱ级焊缝内不允许有裂纹、未熔合和未焊透存在;Ⅲ级别焊缝内不允许有裂纹、未熔合以及双面焊或相当于双面焊的全焊透对接焊缝和加垫板单面焊中的未焊透存在;焊缝缺陷超过Ⅲ级者为Ⅳ级。
钢焊缝射线检测质量级别主要是根据由缺陷引起的疲劳强度降低程度来确定。
锅炉压力容器的无损检测锅炉压力容器是用于贮存和输送液体和气体的压力容器,其工作环境的高温、高压等特殊条件会导致容器内部出现裂纹、腐蚀等缺陷,从而危及安全。
因此,对锅炉压力容器进行无损检测具有非常重要的意义。
无损检测是一种不破坏材料及物体的安全检测方法,包括多种技术手段,如超声波检测、磁粉检测、液体渗透检测、射线检测等。
下面将分别介绍几种常用的无损检测方法。
1. 超声波检测超声波检测是利用超声波在物体中传播的物理特性,通过探头向被测物体发射超声波,并通过超声波的反射、折射等特性来检测物体内部的缺陷。
具有高效、非接触、高灵敏度等优点,常用于检测锅炉压力容器壁厚、裂纹、孔洞等缺陷。
2. 磁粉检测磁粉检测是一种利用铁磁性材料表面磁场变化来检测表面裂纹、焊缝缺陷等的非接触检测方法。
该方法可以检测出微小的表面缺陷,特别适合于检测焊缝、螺纹等部位的裂纹缺陷。
3. 液体渗透检测液体渗透检测是一种通过毛细作用来检测表面微小缺陷的方法。
其原理是将一种渗透液体涂布在被测物表面,待渗透液体充分渗入缺陷中后,再将其表面擦干,再涂上一种能发出荧光的显色剂,观察被测物表面是否出现荧光信号。
该方法适用于检测表面裂纹、气孔等缺陷。
4. 射线检测射线检测是利用X射线、γ射线等辐射性物质的特性,通过将辐射源置于被测物体一侧,辐射能量穿透被测物体后,利用存储器、观察器等设备对被测物体进行成像和分析的检测方法。
该方法可以检测出内部结构和成分的缺陷。
总之,无损检测是一种重要的工程技术手段,可以有效地检测锅炉压力容器内部的裂纹、缺陷等问题,保障设备安全运行。
各种无损检测技术有其各自的优缺点,需要根据不同的实际情况进行选择。
同时,无损检测的技术水平、设备质量等也是保障检测质量的重要因素。
压力容器无损检测标准压力容器是工业生产中常见的一种设备,其主要用途是存储或加工气体、液体或固体物质。
由于其特殊的使用环境和功能要求,压力容器的安全性显得尤为重要。
而无损检测作为一种重要的安全监测手段,在压力容器的制造、安装和使用过程中起着至关重要的作用。
本文将围绕压力容器无损检测标准展开讨论,以期为相关从业人员提供参考和指导。
首先,压力容器无损检测标准应当符合国家相关法律法规的规定,例如《压力容器安全技术监察条例》等。
在此基础上,还应结合压力容器的具体使用环境和条件,制定相应的无损检测标准,以确保其有效性和可操作性。
此外,还应考虑到无损检测技术的发展趋势和最新成果,不断更新和完善相关标准,以适应不断变化的市场需求和技术水平。
其次,压力容器无损检测标准应包括检测方法、设备要求、人员资质等方面的内容。
在检测方法方面,应根据压力容器的材质、结构和工作条件,选择合适的无损检测技术,如超声波检测、射线检测、磁粉检测等。
对于检测设备的要求,应明确设备的性能指标、精度要求和维护保养规定,以确保检测结果的准确性和可靠性。
同时,对从业人员的资质和培训也应有详细的规定,以确保其具备进行无损检测所需的专业知识和技能。
此外,压力容器无损检测标准还应包括检测报告的内容和格式要求。
检测报告是无损检测的最终成果,其准确性和完整性直接关系到压力容器的安全使用。
因此,检测报告应包括被检测压力容器的基本信息、检测方法和结果、存在的问题和建议等内容,并应按照统一的格式进行编制和保存,以便于后续的管理和查询。
总之,压力容器无损检测标准的制定和实施对于保障压力容器的安全运行至关重要。
相关部门和企业应高度重视无损检测标准的制定和执行,加强对从业人员的培训和管理,不断提升无损检测技术水平和管理水平,以确保压力容器的安全使用,保障人员和设备的安全。
在实际工作中,需要根据具体情况不断完善和调整无损检测标准,以适应市场需求和技术发展。
同时,还应加强对无损检测技术的研究和应用,推动无损检测技术的创新和发展,为压力容器的安全运行提供更加可靠的技术支持。
压力容器无损检测——多层包扎与带内衬压力容器的无损检测技术多层包扎式压力容器是现代工业生产中使用最多的高压容器筒体结构形式之一。
由于其制造条件较低、韧性好、脆性破坏的可能性小和安全性较高等优点,在国内得到大量应用,自1958年以来,一直是我国生产高压容器筒体的一种主要结构形式。
这种容器的结构是由内筒及在外面包扎的多层层板构成,封头一般采用球形封头,且一般无人孔。
这种容器常用于存储高压氢气或氮气,一般规格为Φ800×37mm(19mm+6mm×3)×9150mm,工作温度为常温。
在制造过程中,对其对接焊缝内部缺陷选用射线检测;对焊缝表面缺陷选用磁粉检测,无法进行磁粉检测的焊缝应选用渗透检测。
定期检验中以声发射和磁粉检测为主。
带内衬的压力容器在这里是指内衬为非金属隔热材料的容器。
这类容器由于内部有衬里,其内表面无法检测,内衬的损坏程度对容器的安全运行至关重要,一般是决定容器是否大修的最主要因素。
内衬的损坏及脱落,将使容器金属直接暴露在高温下,使强度降低,出现鼓包并迅速氧化,从而导致容器失效破坏。
这种容器常用于石油化工行业中的催化剂再生作业,一般规格为Φ6700/Φ8900mm×24mm/30mm×35150mm,工作温度为120~180℃。
这类容器在制造中除对所有对接焊缝应进行射线检测外,部分焊缝应进行超声检测抽查;对于焊缝表面缺陷则选用磁粉检测,无法进行磁粉检测的焊缝应选用渗透检测。
这类容器在使用中容易产生内部衬里损坏,必须在线监测,主要采用红外热成像技术检测内衬的完好性。
在定期检验时,焊缝外表面选用磁粉检测,角焊缝选用渗透检测;焊缝内表面及内衬挂钉角焊缝的开裂情况可采用超声检测。
1 多层包扎容器的无损检测技术1.1制造过程中的无损检测技术1.1.1制造工艺及容易产生的缺陷多层包扎容器一般是由多个筒节组对焊接而成的筒体,每个筒节由内筒及在其外面包扎的多层层板构成,封头一般采用单层球形封头。
浅谈压力容器无损检测技术
摘要:伴随着我国科技发展需要,压力容器的无损检测技术已经成为必然,目前已经被广泛运用于现代生产中。
但是在应用的过程中也存在一些问题,所以为了保障产品的质量和检测压力容器的安全性,下文主要通过分析无损检测技术,简要说明了无损检测技术的综合利用,从而更好的体现正确运用压力容器的无损检测在现代生产中的积极作用。
关键词:压力容器;无损检测;相关运用
中图分类号:o6-335 文献标识码:a 文章编号:
前言
随着社会发展的趋势,压力容器应用范围也在不断发展以及产品安全性控制的也需要不断增强,无损检测能够探测零部件、工程材料等的内部结构和表面的缺陷,同时针对缺陷的类型、数量和性质等进行相应的判断和评价。
故无损检测在产品生产的安全控制上发挥着巨大的作用。
二、无损检测的含义
就目前而言,无损检测通常指的是新型的科学技术,它的主要作用就是对材料的内部结构和存在的异常或缺陷进行检测,它的优势主要在于不破坏和损坏检测目标。
三、无损检测技术的相关类型、
3.1 利用物质渗透现象的无损检测技术是一种最普遍的检测方法,主要包括两种检测方法,有渗透检测和磁粉法检测,主要的特
点有成本低、操作流程简单、检测灵敏度较高等,那么能够检测的材料与缺陷的范围较广。
渗透检测和磁粉法检测各自有不同的原理,其中渗透检测的原理是基于毛细管现象来揭示固体材料的表面开口缺陷,在应用过程中依照的方法是将渗透液从工件的表面渗入到表面的开口缺陷中去,然后在用去除液清理掉多余的渗透液,最后在用显像剂将缺陷表现出来,该方法的检测灵敏度相对较高。
而磁粉法检测的方法依照的原理是基于缺陷处的漏磁现象进行的检测方法,因为漏磁处会与磁粉发生作用,从而显示出磁性材料表面和接近表面处的漏磁现象,这种方法主要应用于表面处的裂纹和折叠现象。
3.2 利用物质辐射特性的无损检测技术
利用物质辐射特性的无损检测技术是利用射线的一种检测方法,其原理是根据被检测件吸收不同射线的类型进行的对零件的内部缺陷的检测方法,射线检测方法一般应用于工业生产中。
这种方法可以将缺陷的影像直观的显现出来,并且可以通过射线的底片对缺陷进行更进一步的分析,包括定性和定量分析,不仅可以长期的保存,对于体积型的缺陷敏感程度也较高,但由于射线对于人体是有害的,需要做出特殊的防护。
具体的射线检测的应用有 x 射线检测技术与y射线检测技术,分别检测压力容器的对接焊缝内部缺陷和压力容器的多层包扎对接焊缝内部的缺陷。
另外,射线检测是对超声检测发现问题的复验,可以更加精确的将这些缺陷的性质转化为缺陷返修的可靠依据。
3.3 利用物质声学特性的无损检测技术
3.3.1 超声检测
超声检测已经成为无损检测中应用比较广泛的方法之一,它是通过超声波在介质中传播时发生的遇到界面产生反射的性质来检测缺陷的方法。
这种方法的灵敏度高,声波的穿透能力强,检测速度快,而且超声波检测使用的探伤仪的体积小、重量轻,对于人体也没有伤害,因此它的广泛应用是众所周知的。
超声波检测技术可以检测压力容器的焊接内表面的裂纹,对于焊缝内的缺陷的安全评定是不可或缺的,在国外,这项技术已经趋于成熟。
3.3.2 声发射检测
声发射检测技术简单的说,就是利用仪器检测对于声发射信号进行分析,并对声发射源做出的评价和判断,声发射技术是针对压力容器可能存在的活动性缺陷进行的检测,常用的加载方法是在压力容器停止运行时进行的气压实验,在加载过程中可以对压力容器的壳体进行整体监测,通过内部缺陷检测。
排除存在的干扰源,对已知的缺陷进行无声发射源定位,从而认定缺陷的属性。
这项技术大大的减少了用户检测的准备工作,也能够兼顾检测的安全性和经济性,因此得到了广泛的使用。
3.4 利用物质电磁特性的无损检测技术
利用物质电磁特性的无损检测技术主要有三种方法,涡流检测、金属磁记忆检测以及漏磁检测,对于压力容器,涡流检测的原理主要是电磁感应原理,通过揭示导电材料的表面和接近表面处的缺陷
来实现的。
这种检测方法不仅适用于高温状态下的探伤还适用于导电材料的缺陷检测,热处理以及磁导率等等。
与此不同的是金属磁检测,它的设计原理是利用铁磁工件工作过程中的应力变化和在变形区域中的不可逆的磁状态来进行操作的,这个方法主要集中在压力容器的高应力集中部位,因为在这些部位容易发生高温蠕变以及疲劳损伤,通常这项技术是可以进行快速的扫描和表面的磁粉检测,可能发现微米的裂纹和微观的创伤。
另外,漏磁检测相比较上述两种检测方法,它是一项自动化程度比较高的磁学检测技术,它是利用铁磁材料在被磁化之后对表面和近表面的缺陷处的漏磁现象进行的检测,漏磁检测主要应用于检测压力容器的壳体容易出现的腐蚀状态。
四、无损检测的作用
4.1减少压力容器生产中的误判
压力容器在生产过程中通过采用无损检测技术可以对零部件以及焊接接头进行质量的监控,并通过影像的分析和痕迹的产生进行分析与评价,在分析结构和焊接工艺时,往往初步的判断是不足以证实压力容器的缺陷是否超标,只有通过无损检测的层层分析,并结合影像的底片来实现更多的横向剖面观察。
因此,对压力容器的生产,对影像、痕迹等进行判断和分析,这样可以避免误判,对工艺的设计提高准确程度。
4.2降低生产成本
通过无损检测技术可以将工件设计过程中出现的无法使用或者
存在缺陷的工件及时的清理出去,比如说,在法兰锻件的加工过程中,在初步的加工工序中发现存在锻件的裂纹状况,因此造成工件的报废而无法使用,那么就可以对剩余的锻件进行超声波进行检测,可以将不合格的工件及时的隔离出来,避免不必要的后序工作,这样既可以保证零部件的内部质量,也可以降低工件的生产成本。
4.3提高产品质量
通过无损检测技术对工件加工的中间环节进行质量检测,可以确保产品的最终质量,这样就可以避免因质量问题导致的浪费工时和能源的消耗问题。
比如说,在制造压力容器的过程中,对采用的钢板、锻件等原材料,都需要对这些材料进行超声检测,只有材料通过超声检测才能够被允许使用。
正因为无损检测可以对制造产品的原材料进行各个工艺间的全过程检测,因此可以为产品的最终质量奠定基础。
再比如,为了避免原材料的缺陷导致的后序工作的影响,在中厚板开坡口时,要按照相关的标准进行磁粉检测,从而能够避免原材料使用的缺陷,也可以避免这些缺陷导致的产品质量的隐患。
通过无损检查技术可以对中间环节的质量进行监控和检测,在最终产品生成之前确保每一个环节的质量,同时能够避免因为质量问题进行的返修,既浪费工时,也消耗了能源,不利用生产的可续行。
4.4改进生产工艺
压力容器的无损检测技术的应用在很大程度上改进了生产工艺,采用无损检测方法对制造用原材料直至最终产成品进行全程检测,
可以发现某些工艺环节存在的问题,为改进工艺提供指导。
比如,在制造储气罐时,环向焊接接头采用传统应用技术中的不开槽垫圈结构,焊接后对焊接接头进行射线检测,射线检测的应用可以避免压力容器的误判,从而减少因为误判而造成的人为灾害,通过射线检测发现焊接接头根部与垫圈接触处存在根部未焊透缺陷。
工作人员可以通过底片所反映的缺陷影像,分析缺陷产生的位置及原因,推断可能是由于垫圈与简体的圆度不均匀一致,造成两者之间的间隙不均匀,有些不均匀部位的间隙过小致使熔敷金属无法进入而形成未焊透缺陷,返修比较困难。
为改善焊接接头的焊接质量,将垫圈与筒体接触面加工一个适当大小的凹槽,目的是增加熔池的深度。
通过增加熔池的深度同时也可以使垫圈与筒体的间隙不会因间隙太小而产生未焊透缺陷。
焊接完成后,通过对该焊接接头进行射线检查,未发现有未焊透缺陷的存在。
也就是是这个规格与结构的垫圈能够使焊接接头的射线检测合格率以及产品的合格率得到大幅的提高,后来我们推行采用这种结构的垫圈,基本上可以稳定在95%以上。
可以说,通过对射线检测发现的缺陷进行分析,不仅能够为工艺改进提供指导,还能继续广泛的推广无损检测技术在压力容器行业的应用。
小结
总而言之,压力容器的无损检测目前已经被广泛应用,其主要优势和作用就是对压力容器的生产有着积极推进的作用。
所以,不仅要对生产中的环节进行无损检测,对于出现问题的及时分析和备案
也是非常重要的。
为了使无损检测得到更高效的使用,必须提高技术使用者的综合素质,并对技术水平的提高进行更有效的评估。
因此,在压力容器的检测中,就必须正确的使用无损检测技术,这样才能保证压力容器在运行中的安全系数。