地源热泵土壤热物性测试与分析
- 格式:pdf
- 大小:253.93 KB
- 文档页数:4
*工程地源热泵工程岩土层热物性测试报告同方节能工程技术**二00九年七月目录第一章岩土层热物性测试报告第二章测试孔地质报告第一章、岩土层热物性测试报告一.工程概况该工程位于**省**市正定县燕赵北大街,北纬38.16,东经114.56。
我公司对地埋管场地进展了测试孔勘测及深层岩土热物性测试。
钻孔测试时间:2009年7月1日~7月6日,室内资料分析:7月7日~7月8日。
二.测试结果2.1钻孔根本参数2.2测试仪器测试孔的测试数据〔机组稳定运后,间隔20分钟取一次数据〕见下表:表1 地源侧测试数据〔取热测试〕表2地源侧测试数据〔放热测试〕2.4测试数据的图表分析:三.结果分析3.1土壤地层导热系数综合评述测试结果说明:埋管区域的导热系数约1.4~1.8W/m℃。
该区域土壤地层平均导热系数较大,综合换热能力较强,适合使用地埋管地源热泵空调系统;初始温度较低,岩土体温度(初始温度):14.0℃。
有利于夏季冷却。
能够满足常规设计要求。
主要地质构成:详见地质报告。
3.2影响每米孔深地埋管换热量的因素地埋管单位孔深的热交换量与多种因素有关:地埋管传热的可利用温差,即U型埋管中的水热交换后允许到达的最低或最高温度与岩土换热前未受热干扰时温差。
可利用温差与地热换热器的设计参数有关。
每年从地下取热量与向地下释放热量是否一样大。
二者相差越大,对地热换热器的换热效率的影响越大。
据测试结果和已掌握资料分析,本区域岩土层夏季日均放热量较大,但使用时间短〔60天〕,冬季日均取热量较小,使用时间较长〔120天〕。
地埋管换热器冬季总的取热量和夏季总的放热根本相等,可以稳定使用。
3.3地热换热器埋设建议单位孔深换热量是地热换热器设计中重要的数据,它是确定地热换热器容量、确定热泵参数、选择循环泵流量与扬程、计算地埋管数量与埋管构造等的重要依据。
单位孔深换热量取值偏大,将导致埋管量偏小、循环液进出口温度难以到达热泵的要求。
结果导致热泵实际的制热、制冷量低于其额定值,使系统达不到设计要求。
地源热泵系统岩土热响应试验地源热泵系统是一种利用地下土壤或岩石储存的热量来进行空调和供暖的节能系统。
与传统空调系统相比,地源热泵系统具有更高的能效和更低的运行成本,因此在近年来受到了越来越多的关注和应用。
为了更好地了解和优化地源热泵系统的性能,进行岩土热响应试验是非常必要的。
岩土热响应试验是指通过实地采样和试验室测试的方法,对地下土壤或岩石中的热量传输特性进行研究,以评估地源热泵系统在不同地质条件下的性能表现。
通过岩土热响应试验,可以获取到地下岩土的热传导系数、储热特性、热扩散系数等参数,为地源热泵系统的设计和运行提供重要的参考依据。
岩土热响应试验通常分为野外实地采样和室内试验两个阶段。
在野外实地采样阶段,研究人员会选择地理条件较为典型的地区,进行地下岩土的取样和数据采集工作。
通过对不同深度和不同类型的岩土进行取样和测试,可以获取大量的原始数据,为后续的室内试验提供样本和参考。
在室内试验阶段,研究人员会将野外采集到的岩土样本带回实验室,并进行一系列的物理试验和分析。
首先是对岩土样本的物理性质进行分析,包括密度、孔隙结构、水分含量等方面的测试。
其次是对岩土样本的热传导特性进行测试,通过测定不同温度下的导热系数和热扩散系数,来评估岩土样本的储热能力和热传输特性。
最后还会对岩土样本的温度-时间响应曲线进行测定,来评估岩土在长期稳定状态下的温度变化规律。
地源热泵系统岩土热响应试验在国内外已经得到了广泛的应用和推广。
通过对地下岩土热传导特性的深入研究,不仅可以为地源热泵系统的设计和运行提供科学依据,还可以为地下岩土的热资源利用和环境保护提供技术支持。
在未来的研究中,可以进一步加强对岩土热响应试验方法的改进和创新,为地源热泵系统的可持续发展做出更大的贡献。
专题研讨暖通空调HV&AC 2014年第44卷第3期119 地埋管地源热泵土壤温度场实验分析上海理工大学 刘业凤☆ 艾永杰△ 熊月忠摘要 利用地埋管地源热泵实验系统,研究了地埋管地源热泵在冬季供暖和夏季制冷工况下,埋管间距分别为5.65m和4m情况下,地下土壤温度随时间的变化;在夏季制冷工况下,对比了两种埋管间距下,地埋管热干扰现象对热泵机组运行效率的影响;研究了夏季制冷工况下,埋管间距为5.65m时,热泵采取间歇性运行方式下地下土壤温度随时间的变化。
结果显示,埋管间距为5.65m时,周围土壤温度变化幅度较小,地埋管换热器换热效果更好,比埋管间距为4m情况下约节能13%;与连续运行方式相比,间歇运行方式下热泵机组的运行效率约提高7%。
关键词 地埋管地源热泵 土壤温度场 埋管间距 热干扰 运行效率 间歇运行Experimental analysis of soil temperature field withground-source heat pump systemBy Liu Yefeng★,Ai Yongjie and Xiong YuezhongAbstract Based on an experimental system of the ground-source heat pump,studies the variation ofunderground soil temperature with time in winter and summer conditions when the buried pipe spacing are5.65mand 4m,respectively.In summer condition,compares the influences of the thermal interferenceon the operational efficiency of heat pump units with different buried pipe spacing.In summer condition,studies the change of underground soil temperature with time when the heat pump unit adopts intermittentoperation mode and the buried pipe spacing is 5.65m.The results show that when buried pipe spacing is5.65m,the variation of soil temperature is small.In this case,the heat transfer performance of theunderground heat exchanger is better,and the energy consumption reduces by about 13%than that in thecase of buried pipe spacing of 4m.Meanwhile,the operational efficiency of the heat pump unit improvesby about 7%in intermittent operation mode than that in continuous operation mode.Keywords ground-source heat pump,temperature field of soil,buried pipe spacing,thermalinterference,operational efficiency,intermittent operation★University of Shanghai for Science and Technology,Shanghai,China 地埋管换热器是地埋管地源热泵的重要组成部分,对地埋管地源热泵的运行起着决定性作用,对热泵系统的运行稳定性和运行效率起着重要作用。
地源热泵系统岩土热响应试验【摘要】本文主要介绍了地源热泵系统岩土热响应试验的研究内容。
通过对试验目的、试验环境设置、试验方法、试验结果分析和试验数据处理等方面的详细描述,揭示了地源热泵系统在岩土环境中的热响应特性。
实验结果表明,在不同地质条件下,地源热泵系统的热传导效果存在一定差异,这对系统的能效和稳定性都有一定影响。
通过对试验数据的处理和分析,为地源热泵系统在实际工程中的设计和运行提供了参考依据。
在结论部分总结了地源热泵系统岩土热响应试验的重要性,提出了进一步研究和完善的建议。
该研究对于推动地源热泵系统在岩土环境中的应用具有重要的理论和实践意义。
【关键词】地源热泵系统、岩土热响应试验、试验目的、试验环境设置、试验方法、试验结果分析、试验数据处理、结论、总结。
1. 引言1.1 地源热泵系统岩土热响应试验地源热泵系统是利用地下岩土中的地热能来供暖和制冷,是一种环保节能的供暖方式。
岩土热响应试验是为了探究地源热泵系统在不同岩土环境下的热响应特性,以便更好地设计和运行地源热泵系统,提高其能效和稳定性。
通过岩土热响应试验,可以了解岩土内部的温度分布规律,热传导特性以及热损失情况,进而为地源热泵系统的设计和运行提供依据。
试验涉及到的参数包括地下水位、岩土类型、地层温度等,通过对这些参数的监测和分析,可以得出地源热泵系统在各种岩土环境下的热响应特性及规律。
岩土热响应试验的数据分析和总结对于进一步推动地源热泵系统的发展和应用非常重要。
通过试验结果的分析,可以找出系统存在的问题,并进行相应的改进和优化,从而提高系统的效率和性能。
岩土热响应试验是地源热泵系统研究领域的重要内容,对于推动地源热泵系统的发展和应用具有重要的意义。
2. 正文2.1 试验目的试验目的是为了评估地源热泵系统在岩土地质环境中的热响应特性,探讨其在实际工程应用中的可行性和效果。
通过对岩土热响应试验的进行,可以深入了解地源热泵系统与岩土地质之间的热交换机理,从而为系统设计和优化提供理论基础和实际数据支持。
热物性测试施工方案一、编制依据及原则1.1 编制依据(1)现场勘探调查资料。
(2)主要的验收规范、规程:《地源热泵系统工程技术规范》(GB50366-2005)《埋地聚乙烯给水管道工程技术规程》(CJJ101-2004)《通风与空调工程施工质量验收规范》(GB50243-2002)1.2 编制范围编制对象为:地源热泵系统测试及地埋管系统施工,该系统主要用于项目提供冷热源。
二、工程概况:拟采用地源热泵空调系统为建筑提供制冷采暖。
由于土壤源热泵采用地下埋管换热器,使得土壤源热泵设计比空气源、水源热泵困难得多。
土壤源热泵不确定设计因素较多,土壤源热泵地下埋管换热器的设计是此项技术的难点及应用基础,因此本项目对土壤进行热物性测试,为土壤源热泵地下埋管换热器的设计提供指导及技术支持。
施工前需要进行岩土体热物性测试,以便设计单位对地埋管系统实际释热量、吸收量进行校核和对系统进行适当调整,减低综合导热系数的不确定性。
并在测试钻井过程中,了解地质分布情况,为以后施工机械及工期安排提供极具价值参考。
三、施工方案:1.选点方案:鉴于本项目占地面积较大,为使热物性测试数据更加精确,建议选取5个测试点。
分别分布于项目东西南北四角和项目中心点。
呈X 型排布。
2.钻孔方案:2.1、地下埋管换热器的布置确定打井数量及位置,初步设计埋管深度为80m,(如遇坚硬的无法克服的卵石和岩石,则修改打孔下管深度)孔间距为4.0--4.5m。
地埋换热管选用优质PE管,采用双U埋管,地埋管换热器公称压力不低于1.6Mpa。
采用并联同程敷设,主管路间的距离符合规范要求,距离不可以太近。
竖管换热器安装时必须在双U管间做好支撑,防止井内发生管间短路。
所有管路都按照规范做好水压试验,并做好管路的清洗。
2.2、地下埋管系统的施工地下埋管是影响地源热泵换热效率的主要部分,其施工的工艺流程如下:2.3地下埋管换热器的布置根据甲方提供的设计图纸,确定打井数量及位置,井间距保证在4.0--4.5米。
地源热泵土壤热响应测试内容1.1热相应测试的意义与目的地源热泵系统与其它空气调节系统相比优点突出。
由于地层深处温度常年维持不变,远远高于冬季的室外温度,而又明显低于夏季的室外温度,因此地源热泵克服了空气源热泵的技术障碍,且效率有很大的提高,此外大地蓄存冬季系统排放的冷量、夏季排放的热量,在地源热泵系统中起到蓄能器的作用,进一步提高全年的能源利用效率。
这种一机多用的系统还包括节省建筑空间、无需冷却塔和室外风冷部分、对建筑外观影响小、运行费用低、投资回报快、全年运行均衡用电负荷以及低噪音、占地面积少、无污染物排放、不抽取并破坏地下水、寿命长等诸多的优势。
目前欧洲和北美正大力发展和推广应用地源热泵技术,我国也已研究和应用该技术。
设计地源热泵系统的地热换热器需要知道地下岩土的热物性参数。
如果热物性参数不准确,则设计的系统可能达不到负荷需要;也可能规模过大,从而加大初期投资。
确定地下岩土热物性参数的传统方法是首先根据钻孔取出的样本确定钻孔周围的地质构成,再通过查有关手册确定导热系数。
然而地下地质构成复杂,即使同一种岩石成分,其热物性参数取值范围也比较大。
况且不同地层地质条件下的导热系数可相差近十倍,导致计算得到的埋管长度也相差数倍,从而使得地源热泵系统的造价会产生相当大的偏差。
另外,不同的封井材料、埋管方式对换热都有影响,因此只有在现场直接测量才能正确得到地下岩土的热物性参数。
T,土壤的导通过现场测试的方法,确定土壤的基本参数,如土壤的原始地温sur热系数 等数据,为地源热泵地埋管系统的模拟分析提供准确的数据;同时确定地埋管换热器单位延伸的放热量及取热量,为地源热泵地埋管换热器的设计和施工提供依据。
1.2热响应测试的原理与方法实验主要在三个方面展开:首先是热响应测试,测出土壤的无干扰条件下的初时温度;模拟夏季空调的制冷试验和冬季的制热试验,测量井埋管换热器的放热能力和取热能力。
地埋结束后立即将管内充满清水,并进行封口,一个星期左右孔内回填材料已经充分凝固,管内清水已跟大地充分换热,因此测试必须在埋管封口后一周左右时间进行,测试开始打开循环水泵直接测试进、出孔温度,以出孔温度作为土壤平均温度。
地源热泵地埋管单位井深换热量测试与分析时间:2009-11-27 来源:互联网发布评论进入论坛一、引言地源热泵系统中冷/热源采用地埋管换热器,这种地热换热器与工程中通常遇到的换热器不同,它不是两种流体之间的换热,而是埋管中的流体与固体(土壤)之间的换热,属于非稳态,涉及时间跨度很长,空间区域很大,换热特性对地源热泵系统性能有决定性的作用,影响着地埋管换热器设计是否合理,进而决定了地源热泵系统的经济性和运行的可靠性。
对于实际工程中常用的垂直U型管地源热泵系统,影响系统性能因素主要在于地埋管换热器管长的设计,其设计计算主要采用《地源热泵系统工程技术规范》中的公式:由此可见,在换热负荷一定的条件下U型地埋管长度主要取决于土壤层水文地质和热物性。
由于地埋管处于地下土壤中,属地下隐蔽工程,其热物性的测量不能直接进行,主要是结合导热反问题和参数估计法来确定。
鉴于现场测量的困难和地埋管钻井内埋设的不确定性,这些参数的误差均较大,从而最终影响地埋管长度的设计准确性。
现对公式(1)、(2)进行变换可得:如果能够获取单位管长换热量,则可以设计计算地源热泵系统地埋管的容量,确定热泵机组参数以及选择循环泵流量与扬程等。
单位管长换热量如果选择偏大,必然导致埋管量偏小、埋管内水的进出口温度难以达到热泵机组的参数要求,使得机组效率过低,热泵的制冷、制热量达不到建筑物需求,导致系统设计不满足要求。
反之,虽满足要求但初投资过高,地源热泵系统经济性降低。
由于单位管长换热量不仅与地下土壤传热温差有很大的关系,而且与地下水位的高低以及土壤中含水量的多少等诸多因素有关,因而需要对实际地源热泵工程进行现场测量,方可获得较精确的设计参数。
二、实验装置简介1. 实验装置组成实验装置于2006年11月在华中科技大学建筑环境与设备综合实验中心建成,同年12月1日投入使用,已经完成原始地温测试、冬季供热工况测试。
该装置实验台在测试运行期间,工况稳定,运行正常。
地源热泵地埋管系统现场热物性测试方法与要求现场热物性测试方法与要求A.1 一般规定A.1.1现场热物性测试的目的主要是得到在地埋管换热器设置深度范围内当地岩土层的表观导热系数,作为按照一定的传热模型设计地埋管换热器或模拟地源热泵系统性能的基础数据。
A.2 测试方法A.2.1现场热物性测试的原理是通过对钻孔埋管换热器施加一个恒定的热(或冷)负荷,记录循环液(通常是水)的进出口温度随时间的变化,根据一定的传热模型反推岩土层的热物理性质。
根据试验得到的温度响应数据计算岩土体的导热系数时,宜采用线热源模型;此时,热响应试验初始阶段的数据(约10-15 h)不适合线热源模型,应舍去。
也可以采用基于数值计算模型的参数估计方法来确定岩土体的热物性。
A.2.2用作现场热物性测试的钻孔埋管换热器的设置方式、深度和回填方式应与拟建设的地埋管换热器保持一致。
A.3 技术要求A.3.1对现场热物性测试的技术要求是:1. 热物性测试的时间应大于36h。
2. 加热功率应为每米钻孔50-80W,大致为实际U型管换热器高峰负荷值。
3. 加热功率的标准差应该小于其平均值的1.5%,最大偏差应小于平均值的±10%;或由于加热功率的变化引起的平均温度值对于T(温度)-- log t(时间的对数)坐标上的一条直线的偏差应小于0.3 K。
4. 循环水进出口温度的测量、转换和记录的综合精度应不低于±0.3 K。
5. 功率的测量、传输和记录仪器的综合精度应不低于读数的±2%。
6. U型管内的流速应适当,以保证U型管进出口温差为3.5-7 K。
7. 热物性测试应于完成埋管和回填5天以后再开始进行。
8. 地下岩土体的初始温度在上述等待期以后测试,可以在注满水的管中在不少于三处不同的深度直接插入测温元件测定并求平均值;或在没有开始加热而循环泵已启动的情况下以短的时间间隔(例如10s),在10-20min内连续记录U型管的出口水温,得到的循环水柱塞流通过测温元件时的温度数据可反映岩土体的初始温度分布。