数控车床加工及其程序编制
- 格式:pptx
- 大小:1.77 MB
- 文档页数:47
数控车床零件程序编制及模拟加工实训数控技术是近年来发展最为迅猛的高新技术之一,数控机床作为数控技术的重要应用领域,已经成为工业化生产中不可或缺的先进设备。
而数控车床作为数控机床的重要代表之一,除了为企业带来高效率的生产外,还为人们提供了更加精准、稳定、高质量的生产工具。
在学习数控车床的时候,程序编制及模拟加工实训是非常重要的环节,下面就来详细介绍一下。
一、数控车床零件程序编制1.确定数控车床工艺路线和加工方法数控车床零件编程前,需要根据零件的特点、工件材料和要求等因素,确定加工工艺路线和加工方法。
比如,确定零件需要进行的工艺流程,以及每道加工工序所使用的刀具和刀具的选用规则等等。
2.确定工件坐标系和基准点位置确定好加工的工艺路线之后,需要确定的就是工件坐标系和基准点位置。
在编写数控程序时,必须精确地规定工件坐标系及各工件表面的位置、形状、尺寸和位置关系。
3.确定切削参数根据零件的特点和工件材料确定切削参数,包括切削速度、切削深度、进给速度等。
4.建立加工刀具库数控车床零件编程,涉及到很多种刀具的选用,因此建立加工刀具库非常重要。
建立加工刀具库包括确定刀具的外形、长度、直径、刀头半径等。
5.编写加工程序这是最重要的一步,也是整个数控车床零件编程最为重要的环节。
在编写数控程序的时候,需要对加工坐标系、切削参数、工件坐标系、刀具库等方面进行设置。
二、数控车床模拟加工实训数控车床模拟加工实训是数控车床零件程序编制的一个重要环节,既可以前期预先评估程序的正确性,又可以及时调整程序,精调程序,同时也为后期工件的成功加工提供了把握。
数控车床模拟加工实训的步骤如下:1.安装模拟加工软件首先需要安装适合自己使用的模拟加工软件,一般选择的软件有VERICUT、UG等,然后根据需求进行设置。
2.加载数控程序在软件中加载零件数控程序,并且导入刀具库和工件坐标系。
软件会给出程序的加工路径,以便进行模拟加工。
3.进行模拟加工进行模拟加工的同时需要监控加工过程中的切削力、切削温度等情况。
数控车床的程序编制一、数控车床的编程特点数控车床的编程有如下特点:(1)在一个程序段中,依据图样上标注的尺寸,可以采纳肯定值编程、增量值编程或二者混合编程。
(2)由于被加工零件的径向尺寸在图样上和测量时都是以直径值表示,所以用肯定值编程时,X以直径值表示;用增量值编程时,以径向实际位移量的二倍值表示,并附上方向符号(正向可以省略)。
(3)为提高工件的径向尺寸精度,X向的脉冲当量取Z向的一半。
(4)由于车削加工常用棒料或锻料作为毛坯,加工余量较大,所以为简化编程,数控装置常具备不同形式的固定循环,可进行多次重复循环切削。
(5)编程时,常认为车刀刀尖是一个点,而实际上为了提高刀具寿命和工件表面质量,车刀刀尖常做成一个半径不大的圆弧,因此为提高加工精度,当编制圆头车刀程序时,需要对刀具半径进行补偿。
数控车床一般都具有刀具半径自动补偿功能(G41,G42),这时可直接按工件轮廓尺寸编程。
(6) 很多数控车床用X、Z表示肯定坐标指令,用U、W表示增量坐标指令。
而不用G90、G91指令。
数控车床的机床原点定义为主轴旋转中心线与车床端面的交点,图3-1中的O即为机床原点。
主轴轴线方向为Z轴,刀具远离工件的方向为Z轴正方向。
X轴为水平径向,且刀具远离工件的方向为正方向。
为了便利编程和简化数值计算,数控车床的工件坐标系原点一般选在工件的回转中心与工件右端面或左端面的交点上。
二、车削固定循环功能由于车削的毛坯多为棒料和铸锻件,因此车削加工多为大余量多次走刀。
所以在车床的数控装置中总是设置各种不同形式的固定循环功能。
如内外圆柱面循环,内外锥面循环,切槽循环和端面循环,内外螺纹循环以及各种复合面的粗车循环等。
各种数控车床的掌握系统不同,因此这些循环的指令代码及其程序格式也不尽相同。
必需依据使用说明书的详细规定进行编程。
1. 圆柱面切削循环编程格式: G90 X(U) — Z(W) — F—;其中:X、Z — 圆柱面切削的终点坐标值;U、W— 圆柱面切削的终点相对于循环起点坐标重量。
数控车工艺流程数控车工艺是一种高效、精密的加工方法,广泛应用于航空航天、汽车、机械制造等领域。
数控车工艺流程是指在数控车床上进行加工的整个过程,包括工件的加工准备、程序编制、数控车床的设置和操作等环节。
下面将详细介绍数控车工艺流程的各个环节。
一、工件的加工准备。
在进行数控车工艺加工之前,首先需要对工件进行加工准备。
这包括工件的定位、夹紧和刀具的选择。
工件的定位和夹紧是为了保证工件在加工过程中的稳定性和精度,而刀具的选择则取决于工件的材料和加工要求。
在进行工件的加工准备时,需要根据实际情况进行调整和优化,以保证加工的顺利进行。
二、程序编制。
程序编制是数控车工艺流程中非常关键的一环。
在进行程序编制时,需要根据工件的形状、尺寸和加工要求,编写相应的加工程序。
这包括刀具的路径规划、进给速度、切削深度等参数的设定。
程序编制的质量直接影响到加工的精度和效率,因此需要进行严格的检查和测试。
三、数控车床的设置。
数控车床的设置是指根据加工程序,对数控车床进行相应的设置和调整。
这包括刀具的安装、工件的装夹、数控系统的参数设定等。
在进行数控车床的设置时,需要根据实际加工情况进行调整,以保证加工的精度和稳定性。
四、数控车床的操作。
数控车床的操作是数控车工艺流程中最直接的环节。
在进行数控车床的操作时,需要严格按照加工程序和数控系统的指令进行操作,保证加工的精度和安全。
同时,操作人员需要不断地监控加工过程,及时发现和解决问题,以保证加工的顺利进行。
五、加工质量检验。
加工质量检验是数控车工艺流程中非常重要的一环。
在进行加工质量检验时,需要对加工后的工件进行尺寸、形状、表面粗糙度等方面的检测,以保证加工的质量符合要求。
同时,还需要对加工过程中的各项参数进行记录和分析,为进一步优化加工工艺提供参考。
总之,数控车工艺流程是一个复杂而又精密的加工过程,需要各个环节的紧密配合和严格执行。
只有在每个环节都做到位,才能保证数控车工艺加工的高效、精密和稳定。
加工件1:根据下图零件,按GSK-980T数控系统要求编制加工程序;刀具装夹位置:粗、精车用1号外圆车刀,切断用4号切断刀;编程参考 1O 1001 ;说明:N10G50 X50 Z100 ;以换刀点定位工件坐标系N20M3 S560 ;启动主轴N30T0101 ;换1号刀N40G0 X25 Z2 ;快速移动到加工出发点N50G71 U0.8 R0.5 ;执行外圆粗加工循环N60G71 P70 Q140 U0.5 W0.2 F100 ;留余量X0.5 Z0.2,进给量100 mm/min N70G0 X0 ;轮廓加工起始行N80G1 Z0 F30 ;精加工进给量30N90G3 X10 Z-5 R5 ;N100G1 Z-15 ;N110X18 W-10 ;N120W-7 ;N130X21 ;N140X23 Z-33 ;N150Z-45 ;轮廓加工结束行N160G70 P70 Q140 ;执行精加工循环N170G0 X50 Z100 ;回换刀点N180T0404 ;换4号切断刀N190G0 X27 Z-40.1 ;定位切断起点,留0.1mm余量N200G1 X12 F15 ;N210G0 X25 ;N220Z-40 ;N230G1 X0 F10 ;切断,进给量10mm/minN240G0 X50 ;N250Z100 M5 ;回换刀点,停主轴N260T0100 ;换回基准刀N270M30 ;结束程序%加工件2:下图为待加工零件,材料:φ25铝合金棒料;粗、精车用1号外圆车刀,切断用4号切断刀;换刀点定在X50,Z100,请根据GSK-980T系统要求编制加工程序;编程参考2O 1002 ;说明:N10G50 X50 Z100 ;以换刀点定位工件坐标系N20M3 S560 ;启动主轴N30T0101 ;换1号刀N40G0 X25 Z2 ;快速移动到加工出发点N50G71 U0.8 R0.5 ;执行外圆粗加工循环N60G71 P70 Q140 U0.5 W0.2 F100 ;留余量X0.5 Z0.2,进给量100 mm/min N70G0 X4.307 ;轮廓加工起始行N80G1 Z0 F30 ;精加工进给量30N90G3 X8.268 Z-1.722 R2 ;N100G1 X12 Z-15 ;N110W-5 ;N120X14 ;N130G2 X23.5 Z-30 R15 ;N140Z-45 ;轮廓加工结束行N150G70 P70 Q140 ;执行精加工循环N160G0 X50 Z100 ;回换刀点N170T0404 ;换4号切断刀N180G0 X26 Z-36 ;定位切槽起点N190G1 X18 F10 ;切槽N200G4 X4 ;槽底暂停4秒N210G0 X26 ;N220Z-40.1 ;定位切断起点,留0.1mm余量N230G1 X12 F15 ;N240G0 X20 ;N250Z-39 ;退刀至倒角起点N260G1 X16 Z-40 F10 ;车尾端倒角N270X0 F10 ;切断,进给量10mm/minN280G0 X50 Z100 ;N290M5 ;回换刀点,停主轴N300T0100 ;换回基准刀N310M30 ;结束程序%加工件3:工件如下图所示,材料:φ25铝合金棒料;粗、精车用1号外圆车刀,60°螺纹刀装在3号刀位,切断用4号切断刀;换刀点定在X50,Z100,请根据GSK-980T系统要求编制加工程序;编程参考3O 1003 ;说明:N10G50 X50 Z100 ;以换刀点定位工件坐标系N20M3 S560 ;启动主轴N30T0101 ;换1号刀N40G0 X25 Z1 ;快速移动到加工出发点N50G71 U0.8 R0.5 ;执行外圆粗加工循环N60G71 P70 Q150 U0.5 W0.2 F100 ;留余量X0.5 Z0.2,进给量100 mm/min N70G0 X7.8 ;轮廓加工起始行N80G1 X11.8 Z-1 F30 ;车前端1×45°倒角N90Z-15 ;N100X12 ;N110X16 Z-27 ;车圆锥面N120W-8 ;N130X18 ;N140G2 X24 Z-40 R5.6 ;车凹圆弧N150Z-55 ;轮廓加工结束行N160G70 P70 Q140 ;执行精加工循环N170G0 X50 Z100 ;回换刀点N180T0303 ;换3号螺纹刀N190G0 X16 Z3 ;定位车螺纹起点N200G92 X11.1 Z-13.5 F1 ;分三刀车F1螺纹,第一刀0.7mmN210X10.7 ;第二刀0.4mmN220X10.5 ;第三刀0.2mmN230G0 X50 Z100 ;N240T0404 ;换4号切断刀N250G0 X27 Z-40.1 ;定位切断起点,留0.1mm余量N260G98 G1 X16 F15 ;预切一槽N270G0 X26 ;退刀N280Z-48 ;N290G1 X22 Z-50 F10 ;车尾端倒角,进给量10mm/minN300X0 ;切断N310G0 X50 ;N320Z100 M5 ;回换刀点,停主轴N330T0100 ;换回基准刀N340M30 ;结束程序。
数控车床程序编制的基本方法一、数控车床程序编制差不多方法Ⅰ1.快速移动指令G00用于快速移动并定位刀具,模态有效;快速移动的速度由机床数据设定,因此G00指令不需加进给量指令F,用G00指令能够实现单个坐标轴或两个坐标轴的快速移动。
快速移动指令G00的程序段格式:G00 X_ Z_程序段中X_ Z_是G00移动的终点坐标2.直线插补指令G01使刀具以直线方式从起点移动到终点,用F指令设定的进给速度,模态有效;能够实现单个坐标轴直线移动或两个坐标轴的同时直线移动。
直线插补指令的格式:G01 X_ Z_ F_程序段中X_ Z_是G01移动的终点坐标3.用G94和G95设定F指令进给量单位G94设定的F指令进给量单位是毫米/分钟(mm/min);G95设定的F指令进给量单位是毫米/转(mm/r)。
进给量的换算:如主轴的转速是S(单位为r/min),G94设定的F指令进给量是F(mm/min),G95设定的F指令进给量是f(单位是mm/r),换算公式:F=fS4.编程实例编程实例图刀具表T01 93°外圆正偏刀切削用量主轴速度S 500r/min进给量F 0.2mm/r切削深度a p小于4mm 加工程序程序注释SK01.MPF 主程序名N10 G90 G54 G95 G23 S500 M03 T01 设定工件坐标系,主轴转速为500 r/min,选择1号刀,用G95设定进给量F单位(N10 G90G54G94G23S500 M03 T01)或用G94设定进给量F单位N20 G00 X18 Z2 快速移动点定位N30 G01 X18 Z-15 F0.2 车ø18外圆,进给量F=0.2mm/r(N30 G01 Z-15 F100) 车ø18外圆,进给量F=100mm/minN40 X24 车台阶面N50 Z-30 车ø24外圆长30mm(比零件总长加割刀宽度略长)N60 X26 车出毛坯外圆N70 G00 X50 Z200 快速移动点定位至换刀点N80 M05 主轴停止N90 M02 程序终止二、数控车床程序编制差不多方法Ⅱ1.绝对尺寸G90和增量尺寸G91分别代表绝对尺寸数据输入和增量尺寸数据输入,模态有效。
数控车床的程序编制数控车床是一种高精度、高效率的现代化机械设备,广泛应用于各种制造行业中。
作为一种数控设备,它需要通过编写程序来实现对零件的加工。
因此,程序编制是数控车床加工过程中不可或缺的一部分。
下面,我们将详细介绍数控车床的程序编制。
一、基本概念数控车床的程序编制其实就是将机床轴的位置、刀具路径、加工参数等信息输入到计算机中,使计算机能够自动控制车床进行加工。
其中,程序包括几何程序和加工参数程序。
几何程序是指需要加工零件的图形和轮廓,也就是加工轨迹;而加工参数则包括切削速度、切削深度、进给速度等。
在程序编制过程中,需要使用数控编程软件。
常见的数控编程软件有EdgeCAM、MasterCAM、PowerMill 等。
这些软件种类繁多,但它们的作用都是一样的。
用户通过这些软件可以编制出符合机床条件的加工程序,并输出G代码到数控机床中,即可自动进行加工操作。
二、程序编制步骤数控车床的程序编制主要包括以下步骤:1. 绘制零件图形:首先需要将需要加工的零件进行绘图,用计算机辅助设计(CAD)软件绘制出准确的零件图形。
在绘制的过程中,需要按照一定的标准进行绘制,包括设计尺寸、精度等方面。
2. 确定坐标系:将零件图形中的坐标系与机床坐标系进行对应,确定数控机床中的X、Y、Z三个坐标轴与设计图中的坐标轴的对应关系。
在编程过程中,需要明确这些坐标的位置、初始值、相对数值等参数。
3. 编写几何程序:将零件图形转化为机床轴的运动轨迹,编写出G代码。
这个过程中需要考虑机床加工的工艺,包括加工方式、刀具方向、切削方式、刀具规格等。
4. 编写加工参数程序:根据要加工的材料,确定加工参数,包括进给速度、切削速度、切削深度、冷却液的使用等参数,并将这些参数编写成M代码。
5. 存储程序:将编写好的几何程序和加工参数程序存储到机床中,可以直接使用或在需要时进行修改。
三、常见的几个注意点1. 选取合适的加工路径:加工路径的选取需要考虑到机床刀具和工件的特性,比如刀具材质、切削方向,工件的形状、材料。
数控车床的程序编制步骤数控车床程序编制是将零件加工的工艺要求和加工参数转换为机床能够执行的指令序列并载入数控系统,使机床按照程序要求自动完成加工过程。
下面是数控车床程序编制的典型步骤:1.了解零件图纸和工艺要求:仔细研究零件图纸,了解零件的尺寸要求、形状要求以及表面质量要求等,还要确定零件的加工顺序和工艺路线。
2.选择工具和刀具:根据零件的要求和加工工艺,选择合适的车刀、镗刀、钻刀及其加工参数。
3.制定加工工艺:根据零件的尺寸要求和形状要求,制定适当的车削切削参数和轮廓刀补偿值,并确定刀具路径。
4.确定坐标系和参考点:选择适当的坐标系和参考点,并确定零点的坐标位置。
5.数控系统参数设置:根据机床和数控系统的特点,设置数控系统的参数,如坐标系、移动速度、进给量等。
6.编写数控程序:使用数控编程语言,按照零件加工工艺要求,逐步编写数控程序。
7.先练习:在计算机仿真软件中,根据编写的数控程序进行仿真操作,以验证程序正确性。
修正程序错误。
8.载入数控系统:将编写好的数控程序,通过U盘、本地网络等方式,载入数控系统中。
9.导入刀具和工件坐标:确定刀具的初始位置、起刀点和工作零点,导入数控系统中。
10.设置工件坐标系:根据图纸和实际加工需求,设置工件坐标系和坐标偏移。
11.调试程序:使用手动操作或自动操作,对数控系统进行调试,确保程序的安全性和准确性。
12.加工实践:进行实际加工操作,监控加工过程中各项参数的变化,并及时调整。
13.检验零件:完成加工后,根据图纸要求进行零件的测量和检验,确保零件质量满足要求。
14.优化程序:根据实际加工情况,调整和优化数控程序,提高加工效率和质量。
15.存档和备份:将编写好的数控程序进行保存和备份,以备后续使用。
总结起来,数控车床程序编制是一项精细的工作,需要熟悉机床、工具和数控系统的基本原理,同时要具备良好的图纸分析和数控编程能力。
通过以上步骤的严格执行,可以确保数控车床加工过程的准确性和安全性。
数控车床程序的编制及操作数控车床是一种将数字化程序与机械系统相结合的机床,它可以通过程序控制工件在旋转的工作台上实现各种加工操作。
数控车床的编制和操作是现代制造业中非常重要的一环,下面将详细介绍数控车床程序的编制及操作。
一、数控车床程序的编制1.确定工件的加工要求:首先需要明确工件的尺寸、形状、加工方式等基本要求。
2.设计加工工艺:根据工件的要求,设计出合适的加工工艺,包括加工顺序、刀具的选择和切削参数的设定等。
3.编写数控程序:根据设计好的加工工艺,将其转化为数控程序。
数控程序包括程序头、工件坐标系、刀具半径补偿、各种指令和参数等。
4.数控程序的调试:将编写好的数控程序加载到数控系统中,并进行调试,确保程序的正确性和可靠性。
二、数控车床程序的操作1.将数控程序加载到数控系统中:将编写好的数控程序上传到数控系统中,通常会使用USB、网络连接等方式进行传输。
2.设置加工工件坐标系:按照数控程序中设定的工件坐标系进行相应的参数设置,包括工件起点、刀库位置等。
3.安装刀具和夹具:根据加工工艺的要求,选择适当的刀具和夹具,并进行安装和调整。
4.开始加工:调试完毕后,可以开始加工了。
通常会将机床切换到自动模式,并按照数控程序的要求进行操作。
数控系统会自动控制工件的运动轨迹、刀具进给速度等。
5.监测加工过程:在加工过程中,需要时刻监测工件的加工情况,包括切削力、切削温度等。
可以通过控制面板上的显示和报警信息来监测和调整加工过程。
6.完成加工:当加工完成后,数控系统会自动结束加工,并将机床切换到手动模式。
此时可以将加工好的工件取出,并进行检查和质量评估。
三、常见问题及解决方法在数控车床程序的编制和操作过程中,可能会出现一些问题,常见的问题及解决方法如下:1.程序错误:在编写程序时可能会出现语法错误或逻辑错误。
可以通过调试程序来查找错误所在,并进行修正。
2.程序冲突:如果多个程序同时运行可能导致程序冲突。
可以通过调整程序执行顺序或增加程序之间的时间间隔来解决冲突。