华东师大版数学七年级下册7.4例说二元一次方程组解有关动物的趣题
- 格式:doc
- 大小:63.00 KB
- 文档页数:2
{ ) { )10.教材习题 7.1 第 2 题变式已知三组数值:{y =3;) {y) {7.1 二元一次方程组和它的解知识点 1 二元一次方程(组)的定义 1.下列方程中,是二元一次方程的是( )1 2 A .x + y 2=0 B .x + =62 yC .x +y +z =3D .x -4y =1 2.下列方程组中,是二元一次方程组的是( )1 1 x -y =1,A. B. -=3,{x 2+y =5){x y )x +y =9x y C. -=-3,x +y =5, D. 2 3y =3 ) {y -z =8)3. 若方程 mx -2y =3x +4 是关于 x ,y 的二元一次方程,则 m 的取值范围是( )A. m ≠0 B .m ≠3 C .m ≠-3 D .m ≠2 4. 若(a +1)x |a |+3y =1 是关于 x ,y 的二元一次方程,则 a =. 知识点 2二元一次方程(组)的解x =-1, 5. 下列各组数 x =0, 1x =0,x =4,中, 是方程 x + 4y =0 的解的有 {y =-4,){ y = , ){y =0,){y =-1)4()A.1 组 B .2 组 C .3 组 D .4 组x =-5,6. 下列方程组中,解是{ y =1 )的是( )A.{ x +y =6,x -y =4 x +y =-4,x +y =6, B. x -y =-6 x +y =-4, C.{ x -y =-6 ) D.{ x -y =-4 ) 2x +y =a , x =2,7. 若方程组{ x +y =b )的解为{y =1,)则 a ,b 的值分别为( )A .4,3B .5,3C .3,5D .3,4x =1,8. 如果 y =-1 是方程2x -ay =3 的一组解,那么 a 的值是 .x =-1,9. 写出一个解为{ y =2 )的二元一次方程:.13 x =6, x =7,x = ,2(1) 哪些是二元一次方程 3x -2y =12 的解? (2) 哪些是二元一次方程 x +2y =14 的解?2 y = .415 ;= ) 7 {))(3)二元一次方程组{3x-2y=12,x+2y=14 的解是什么?知识点 3 根据题意列二元一次方程组11.小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了 20 支笔和 2 盒笔芯,用了56 元;小丽买了2 支笔和3 盒笔芯,仅用了28 元.设每支中性笔x 元,每盒笔芯y 元,根据题意所列方程组正确的是( )A.{2x+20y=56,2x+3y=2820x+2y=28,B.{20x+2y=56,2x+3y=282x+2y=28,C.{2x+3y=56 )D.{20x+3y=56 )12.2018·河南《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合买羊,若每人出 5 钱,还差 45 钱;若每人出 7 钱,还差 3 钱,问人数、羊价各是多少?设人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A.{C.{y=5x+45,y=7x+3y=5x+45,y=7x-3B.{D.{y=5x-45,y=7x+3y=5x-45,y=7x-313.某景点门票价格:成人票每张 50 元,儿童票每张 30 元.小明买 8 张门票共花了 340 元.设其中有x 张成人票,y 张儿童票.请列出满足题意的方程组:.14.根据图 7-1-1 所给出的信息,求每件 T 恤衫和每瓶饮料的价格分别是多少元,请你根据题意列出方程组.图 7-1-1【能力提升】15.若x|2m-3|+(m-2)y=6 是关于x,y 的二元一次方程,则m 的值是( )A.1 B.任何数C.2 D.1 或216.下列方程中,与方程 5x+2y=-9 构成的方程组的解为{A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-8x=-2,1y=2 )的是( ))))))){ )10 17. 已知关于 x ,y 的二元一次方程 3x -4y +mx +2m +8=0,当x =-1,时,m =;{ y =2 )若无论 m 取任何有理数,该二元一次方程都有一个固定的解,则这个固定的解为 .18. 某学校七年级(1)班 40 名同学为“希望工程”捐款,共捐款 100 元.捐款情况如下表:表格中捐款 2 元和 3 元的人数不小心被墨水污染已看不清楚,根据题意适当设未知数并列出方程组(不解方程组).19. 小明在做作业时,不小心把墨水滴到了作业本上,有一道题中方程组的一个方程被盖住了一个常数,这个方程组是5x -2y =3,怎么办?小明想了想,便翻看作业本答案, {-2x -7y =K.)发现此方程组的解是 x =3,于是他很快就补好了这个常数,你能求出这个常数吗?y =6,20. 甲、乙两人同解方程组ax +5y =15,① 时,甲看错了方程①中的 a ,解得 x =-3,{ 4x =by -2② ) {y =-1,)x =5,b乙看错了方程②中的 b ,解得{y =4,)试求 a2018+(- )2019的值.)= ) { ){ ,教师详解详析1.D [解析] 紧扣二元一次方程的定义. 2.C 3.B4.1 [解析] 由(a +1)x |a |+3y =1 是关于 x ,y 的二元一次方程,得|a |=1 且 a +1≠0, 解得 a =1.故答案为 1.5.C [解析] 分别代入,看方程左右两边是否相等. 6.Cx =2, 2x +y =a , 4+1=a , a =5,7.B [解析] 把{ 故选 B.y =1)代入方程组{ x +y =b , )得{2+1=b ,)即{ b =3. )x =1,8.1 [解析] 把{y =-1)代入 2x -ay =3,得关于 a 的一元一次方程. 9. 答案不唯一,如 x +y =1x =6,10. 解:(1)将{ y =3 )代入方程的左右两边, 左边=3×6-2×3=12=右边,x =6,所以{ y =3 )是该方程的解;x =7,将{ y 7 )代入方程的左右两边, = 27左边=3×7-2× =14≠右边,2x =7,所以{y 7不是该方程的解; 2 13 x = , 将 2代入方程的左右两边,15 y =4 13 15 39 15左边=3× -2× = - =12=右边,2 4 2 2 13 x =所以2 )是该方程的解.15 y = (2)将{4x =6,y =3 代入方程的左右两边,左边=6+2×3=12≠右边,){ ))= ) { ), { = { 所以{x =6, y =3 不是该方程的解; x =7,将{ y 7 )代入方程的左右两边, = 27左边=7+2× =14=右边,2x =7,所以{y 7 是该方程的解; 2 13 x = , 将 2代入方程的左右两边,15 y =4 13 15左边= +2× =14=右边,2 4 13 x =所以2 )是该方程的解.15 y = 413 3x -2y =12,x = , 2(3)由(1)(2)可知方程组{ x +2y =14 )的解是1511.By = .4 [解析] 找出题目中的等量关系:20 支笔的金额+2 盒笔芯的金额=56,2 支笔的金额+320x +2y =56,盒笔芯的金额=28,把未知数代入数量关系得到方程组{12.A2x +3y =28. )故选 B.x +y =8,13.50x +30y =340 14.解:设 T 恤衫每件 x 元,饮料每瓶 y 元.根据题意,得{ 15.A2x +2y =44,x +3y =26. 1 116.D [解析] 当 x =-2,y = 时,x +2y =-2+2× =-1,3x +2y =-6+1=-5,5x +2 2x =-2,4y =-10+2=-8,3x -4y =-6-2=-8,即{ y 1 )是方程 3x -4y =-8 的解.故选 D. = 2x =-2,17.3y 1 2[解析] 把{x =-1,y =2 代入方程,得-3-8-m +2m +8=0,解得 m =3;方程整理得 3x -4y ){)){ )= , y = . 2 2 +m (x +2)+8=0,令 x +2=0,得到 x =-2,把 x =-2 代入方程,得-6-4y +8=0,解得 y =1x =-2, x =-2,,则方程固定的解为{ y1 )故答案为 3;{ 1 )18. 解:设捐款 2 元的有 x 名同学,捐款 3 元的有 y 名同学.x +y +10=40,根据题意得10 × 1+2x +3y =100.x =3,19. 解:设这个常数为 a ,把{ 即这个常数为-48.x =-3,y =6 )代入-2x -7y =a 中,得 a =-2×3-7×6=-48,20. 解:把{ 解得 b =10.x =5,y =-1 )代入方程②,得 4×(-3)=b ·(-1)-2, 把{ y =4 )代入方程①,得 5a +5×4=15,解得 a =-1,b 10所以 a 2018+(- )2019=(-1)2018+(- )2019=1+(-1)=0.10 102。
二元一次方程组的解法例1 解方程组⎩⎨⎧=++=++)2( .0765(1) ,0432y x y x例2 解方程组 ⎪⎩⎪⎨⎧-=-++=-+)2(5225123)1(0223x y x y x例3 解方程组⎩⎨⎧=--=)2(123)1(12y x x y例4 用代入法解方程组⎩⎨⎧≠=-+-=+).3()2(2)2(,5a x y a x y x例5 解下列方程组:(1)⎩⎨⎧=-++=--+6)(4)(22)(3)(5y x y x y x y x (2)⎪⎪⎩⎪⎪⎨⎧-=-=+1975432y x y x例6 解方程组⎩⎨⎧=-+--=-)()(2 .5)1()2(21 ),1(22y x y x例7 若⎩⎨⎧-==23y x 是方程组⎪⎩⎪⎨⎧=+=+53121ny mx ny mx 的解,求nm 2-的值.例8 解方程组⎪⎪⎩⎪⎪⎨⎧=-=+)()(2 .23431 ,21332yx y x例9 用代入法解二元一次方程组⎩⎨⎧=+=-)2(825)1(73y x y x参考答案例1 分析: 先从方程组中选出一个方程,如方程(1),用含有一个未知数的代数式表示另一个未知数,把它代入另一个方程中,得到一个一元一次方程,解这个方程求出一个未知数的值,再代入求另一个未知数的值.解: 由(1),得243--=y x , (3) 把(3)代入(2)中,得0762435=++--⋅y y ,解得2-=y 把2-=y 代入(3)中,得24)2(3--⨯-=x ,∴ 1=x ∴ ⎩⎨⎧-==.2,1y x 是原方程组的解. 例2 解:由(1)得 223=+y x (3)把(3)代入(2),得522512-=-+x ,解得 21=x . 把21=x 代入(3),得 22213=+⨯y ,解得 41=y . ∴ 方程组的解为 ⎪⎪⎩⎪⎪⎨⎧==.41,21y y 说明: 将y x 23+作为一个整体代入消元,这种方法称为整体代入法,本题把y x 23+看作一个整体代入消元比把(1)变形为232x y -=再代入(2)简单得多. 例3 分析:由于方程(1)和(2)中同一字母(未知数)表示同一个数,因此将(1)中y 的值代入(2)中就可消去y ,从而转化为关于x 的一元一次方程.解:将(1)代入(2),得 1)12(23=--x x ,解得,1=x .把1=x 代入(1)得 1112=-⨯=y ,∴ 方程组的解为 ⎩⎨⎧==.1,1y x例4 分析:首先观察方程组,发现方程x y a x =-+-)2(2)2(的形式不是很好,将其整理成)2(22)1(+=+-a y x a ,再由5=+y x 得y x -=5或x y -=5代入其中进行求解;也可由5=+y x 得x y -=-32代入原式第二个方程先求x ,再求y .解法一:化原方程组为⎩⎨⎧+=+-=+)()(2)2(22)1(1 5a y x a y x 由(1)得x y -=5. (3)把(3)代入(2),得 ).2(2)5(2)1(+=-+-a x x a即)3(2)3(-=-a x a .又 3≠a ,可得2=x .将2=x 代入(3),得3=y .所以⎩⎨⎧==.3,2y x 解法二:由5=+y x 得x y -=-32.将x y -=-32代入x y a x =-+-)2(2)2(,得x x a x =-+-)3(2)2(.即).3(2)3(-=-a x a又3≠a Θ,∴2=x .将2=x 代入5=+y x ,得.3=y∴⎩⎨⎧==.3,2y x 说明:用代入法解方程组,一种是一般代入;另一种是整体代入,这需要结合方程组的形式加以分析,此题用第一种方法解时,不能直接由)2(22)1(+=+-a y x a 得12)2(2--+=a y a x (为什么?). 例5 分析:(1)小题可以先去括号,把方程组整理为一般形式⎩⎨⎧=+=+222111c y b x a c y b x a 后再解;也可以把)(y x +、)(y x -看成一个整体,令m y x =+、n y x =-,把原方程组变形为⎩⎨⎧=+=-642235n m n m 求解. (2)小题可以设s x =1,t y =1,将原方程组化为⎩⎨⎧-=-=+1975432t s t s 来解.解:(1)设n y x m y x =-=+,则原方程组可化为:⎩⎨⎧=+=-642235n m n m解这个方程组得 ⎩⎨⎧==11n m 则有⎩⎨⎧=-=+11y x y x解这个方程组得 ⎩⎨⎧==01y x ∴ 原方程组的解为 ⎩⎨⎧==01y x (2)设s x =1,t y =1则原方程组可化为⎩⎨⎧-=-=+1975432t s t s 解这个方程组得 ⎩⎨⎧=-=21t s 则有⎪⎪⎩⎪⎪⎨⎧=-=2111y x 解得 ⎪⎩⎪⎨⎧=-=211y x 把⎪⎩⎪⎨⎧=-=211y x 代入原方程组检验,是原方程组的解. ∴ 原方程组的解为 ⎪⎩⎪⎨⎧=-=211y x 例6 解:把(1)代入(2),得.5)1()1(22=-+-⋅y y解得.2=y 把.2=y 代入(1),得)12(22-=-x ,∴.4=x ∴⎩⎨⎧==.2,4y x说明:本题考查用整体代入法解二元一次方程组,解题时应观察方程组的结构特征,找出其中技巧.例7 分析:把⎩⎨⎧-==23y x 代入方程组就可以得到关于的二元一次方程,解之即可求出n ,m 的值. 解:把⎩⎨⎧-==23y x 代入方程组得⎩⎨⎧=-=-)2(529)1(13n m n m 由(1)得13-=m n (3),把(3)代入(2)得51329=--)m (m ,解得1=m .把1=m 代入(3)得2=n ,∴ 32-=-n m说明:本题考查方程的解的性质,当一对数值是方程组的解时,它必能使方程组中每一个方程都成立.例8 解:原方程化简,得⎩⎨⎧=-=+)()(4 .18343 ,3923y x y x 由(3)得 .2339x y -=(5) 把(5)代入(4),得.18233934=-⨯-x x 解得.9=x 把.9=x 代入(5),得6=y . ∴原方程组的解为⎩⎨⎧==.6,9y x 说明:本题考查较复杂的二元一次方程组的用代入法求解,关键是先对方程组进行化简,再选取系数简单的方程进行变形.例9 分析:方程中y 的系数的绝对值为1,可选取对它进行变形,用含x 的代数式表示y .比较下面三种解法,看哪一种解法最简单.解法1:由(1)得.73-=x y (3)把(3)代入(2)得.8)73(25=-+x x 即.2,2211==x x把2=x 代入(3),得723-⨯=y ,即.1-=y ∴⎩⎨⎧-==12y x 是原方程组的解. 解法2:由(2)得.258x y -=(3) 把(3)代入(1)得.72583=-=x x 化简,得.2,2211==x x 把2=x 代入方程(3),得.1,2258-=⨯-=y y ∴⎩⎨⎧-==12y x 是方程组的解. 解法3:由(2),得.528y x -=(3) 把(3)代入(1),得.75283=--⨯y y 355624=--y y , ∴ .1-=y 把.1-=y 代入(3),得52)1(8⨯--=x , ∴.2=x ∴⎩⎨⎧-==1,2y x 是方程组的解.说明:本题考查用代入法解二元一次方程组,从上面三种解法可以看出,选择适当的方程变形可使计算简便.。
例说二元一次方程组解有关动物的趣题同学们,你们知道吗,早在2000多年前,我国最古老的经典数学著作《九章算术》中,便收录了18道一次方程组的问题,这是我国劳动人民智慧的结晶.例1 我国古代数学名著《孙子算经》上有这一道题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔个几何.解 设笼里有x 只鸡,y 只兔.根据题意,可得35,2494.x y x y +=⎧⎨+=⎩解方程组,得23,12.x y =⎧⎨=⎩ 答 笼里有23只鸡,12只兔.例2 《九章算术》第八章记载了这样一道题:今有牛五羊二,值金十两;牛二羊五,值金八两,问一牛、一羊各值几何.解 设一牛值金x 两,一羊值金y 两.根据题意,可得5210,258.x y x y +=⎧⎨+=⎩解方程组,得34,2120.21x y ⎧=⎪⎪⎨⎪=⎪⎩ 答 一头牛值金3421两,一只羊值金2021两. 例3 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中.一房七客多七客,一房九客一房空.”这首诗的意思是说:如果一间客房住7个人,那么就剩7个人安排不下;如果一间客房住9个人,那么就空出一间客房.问现有客房多少间?房客多少人?解 设现有客房x 间,房客y 人.根据题意,可得()77,91x y x y +=⎧⎪⎨-=⎪⎩解这个方程组,可得8,63.x y =⎧⎨=⎩ 答 现有客房8间,房客63人.例4 古希腊著名数学家欧几里德是欧几里德几何学的创造人,现在中、小学里学的几何学,基本上还是欧几里德几何学体系.下面这道题还与他有关呢! 驴子和骡子一同走,它们负着不同袋数的货物,但每袋货物都是一样重的.驴子抱怨负担太重.“你抱怨干嘛呢?”骡子说,“如果你给我一袋,那我所负担的就是你的两倍,如果我给你一袋,我们的负担恰恰相等.”驴子和骡子各负着几袋货物?请你也来解解大数学家的这道题.解设驴原负x袋,骡原负y袋.根据题意,可得()121,1 1.y xy x⎧+=-⎪⎨-=+⎪⎩解方程组,得5,7.xy=⎧⎨=⎩答驴原负5袋,骡原负7袋.。
二元一次方程组的解法例1 解方程组 ⎩⎨⎧=-=+)2(124)1(532y x y x 例2 解方程组⎪⎪⎩⎪⎪⎨⎧=-++=-++82323327332432y x y x y x y x 例3 用加减法解方程组⎩⎨⎧=-=+)2(1353)1(958y x y x例 4 解方程组⎩⎨⎧=-=+)2( .935)1( ,1323y x y x例5 若方程组⎩⎨⎧=+=+.12,2y x m y x 的解x 、y ,满足2≤+y x ,求正数m 的取值X 围.例6 已知方程组⎩⎨⎧=+=-31ay bx by ax 的解为⎪⎩⎪⎨⎧==211y x ,求a 、.b例7 解方程组 ⎪⎩⎪⎨⎧⨯=+-=+)2(%2040%25%15)1(43522y x y x y x例8 当1,3<>y x 时,解方程组.2873113152⎪⎩⎪⎨⎧=-+-=-+-y x y x ① ②参考答案例1 分析:观察方程组方程(2)中x 的系数是方程(1)中x 系数的2倍,用加减消元法解较简单.解:(1)×2,得 1064=+y x (3))2()3(-,得 98=y 解得 89=y 把89=y 代入(1)得 58932=⨯+x 解得 1613=x ∴ 方程组的解为 ⎪⎪⎩⎪⎪⎨⎧==891613y x 例2 分析:把方程变成⎩⎨⎧=+=+222111c y b x a c y b x a 形式. 解:化简方程得⎩⎨⎧=-=-4831084314y x y x ③-④得.x x 9364=∴=把9=x 代入④,得 .y ,y 1448390=∴=-⎩⎨⎧==∴.y x 149 此题还有另外的解法.解b,y x a,y x =-=+3232则原方程组变为⎪⎪⎩⎪⎪⎨⎧=+=+,b a b a 823734 解得⎩⎨⎧-==.b a 2460所以⎩⎨⎧==.y x 149 说明:这种解法叫做换元法,是数学中常见的解题方法.③④例3 分析:在这两个方程组中,未知数y 的系数互为相反数,把这两个方程的两边分别相加就可以消去未知数y.解:(1)+(2),得.x ,x 22211=∴=把2=x 代入方程(1),得57759528-=∴-==+⨯y .y ,y ⎪⎩⎪⎨⎧-==∴572y x 说明:解此题的关键在于消去未知数y ,把“二元”转化成“一元”,消元时,根据等式性质把两个方程两边分别相加(或减)的方法消去一个未知数.例4 分析: 方程组的两个方程中,同一个未知数的系数既不相等,也不互为相反数时,可以用适当的数去乘方程的两边,使某一个未知数的系数相等,或互为相反数,再把所得的两个方程相加减就可以消去一个未知数.解: (1)×3,得.3969=+y x (3)(2)×2,得.18610=-y x (4)(3)+(4),得5719=x ,∴3=x .把3=x 代入(1)中,得13233=+⨯y ,.2=y∴⎩⎨⎧==2,3y x 是原方程组的解.例5 解: 由⎩⎨⎧=+=+.12,2y x m y x 可解得⎪⎪⎩⎪⎪⎨⎧-=-=.312,32m y m x 又∵2≤+y x ,∴2312231232≤-+-=-+-m m m m , ∴5≤m∴ 满足条件的m 的X 围是50≤<m . 例 6 分析: 由于⎪⎩⎪⎨⎧==211y x 是二元一次方程组⎩⎨⎧=+=-31ay bx by ax 的解,根据方程组解的定义有⎪⎪⎩⎪⎪⎨⎧=+=-32112a b b a ,解此二元一次方程组即可求a 、b . 解:∵ ⎪⎩⎪⎨⎧==211y x 是方程组 ⎩⎨⎧=+=-31ay bx by ax 的解 ∴ ⎪⎪⎩⎪⎪⎨⎧=+=-321121a b b a 解这个方程组得 ⎩⎨⎧==22b a ∴ 2,2==b a .例7 分析:当方程比较复杂时,应先化简,如去分母、去括号、移项、合并同类项等. 解:由(1)得 05=-y x (3)由(2)得 16053=+y x (4))4()3(+,得 1604=x 解得 40=x把 40=x 代入(3),得 0540=-y 解得 8=y∴ 方程组的解为 ⎩⎨⎧==840y x 例8 分析:这是绝对值方程组,必须根据给出条件把未知数从绝对值符号内解脱出来,变成一般的二元一次方程组就可以解下去了.解:,01,02,3<-<-∴>x x x又.07,01,1>-<-∴<y y y原方程组可化为⎩⎨⎧=-=-.83105y x y x 解得⎩⎨⎧-==.15y x 说明:本题的关键是利用⎪⎩⎪⎨⎧=<->=)0(0)0()0(a a a a a a 化去题中的绝对值.。
(新课标)华东师大版七年级下册二元一次方程组解法练习题精选(含答案)一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1);(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.809625分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.点评: 本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组 (1)(2)(3)(4).考点: 解二元一次方程组.809625分析: (1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法评: 元.消元的方法有代入法和加减法.4.解方程组:考点: 解二元一次方程组.809625专题: 计算题.分析: 把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.5.解方程组:考解二元一次方程组.809625点:计算题;换元法.专题:分本题用加减消元法即可或运用换元法求解.析:解解:,答:①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.点评:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.809625专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.809625分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.即,①×2+②得:17x=51,x=3,将x=3代入x ﹣4y=3中得:y=0.∴方程组的解为. 点评: 这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.809625 专题:计算题. 分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.809625专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.所以y=﹣, 把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为. 点评: 此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.809625专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.评:的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a 看成了什么,乙把b 看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.809625专题:计算题.分析: (1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a 、b ,然后用适当的方法解方程组.解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.809625分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点评: 用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.809625分析:观察方程组中各方程的特点,用相应的方法求解.。
1、仙鹤和乌龟是动物中的长寿星,一天鹤父,鹤女与龟祖,龟孙在聊天,他们发现鹤父的年龄是鹤女的二倍,龟祖的年龄是龟孙的5倍,它们四位的年龄和的3倍恰好是900岁,十年后,鹤父和鹤女年龄之和的5倍,加上龟祖,龟孙德年龄也是900岁,试求它们分别多少岁?2、某商场购进甲乙两种商品后甲商品加价50%,乙商品加价40%作为标价,适逢元旦,商场举办促销活动,甲商品打八折,乙商品八五折酬宾,某顾客购买甲、乙商品各一件,共付款538元,已知商场共盈利88元,求甲乙两种商品的进价各是多少元?3、某商场欲购进甲、乙两种商品共50件,甲种商品每件进价为35元,利润率是20%,乙种商品每件进价为20元,利润率是15%,共获利278元,则甲、乙两种商品各购进多少件?4、某储户存入银行甲、乙两种利息的存款共2万元,甲种存款的年利率是3%,乙种存款的年利率是1.5%,该储户一共得利息525元,试求甲、乙两种存款各是多少?5、两个两位数的和是85,当在较大的两位数的右边接着写较小的两位数时,得到一个4位数,当在较大的两位数的左边写较小的两位数时,也得到一4位数,已知前一个比后一个四位数大1287,求这两个两位数6、一个三位数和一个两位数的差为225,在三位数的左边写这个两位数,得到一个五位数,在三位数的右边写上这个两位数,也得到一个五位数。
已知前面的五位数比后面的五位数大225,求这个三位数和两位数。
7、一艘船航行于甲、乙两地之间,顺水需3h,逆水要比顺水多走1/2h,若水流速度为2km/h,求船在静水中的速度和甲、乙两地间的路程?8、在某条高速公路上依次排列着A,B,C三个加油站,A到B的距离为120千米,B到C的距离也是120千米.分别在A,C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A,C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?9、随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展.某区2012年和2013随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展.某区2012年和2011年小学入学儿童人数之比为8:7,且2011年入学人数的2倍比2012年入学人数的3倍少1500人.某人估计2013年入学儿童数将超过2300人.请你通过计算,判断他的估计是否符合当前的变化趋势.10、某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的4/5,现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?11、某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?12、某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下的未改装车辆每天燃料费用的3/20,,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天的燃料费用的2/5,问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本?13、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16t;如果进行精加工,每天可加工6t,但两种加式方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案.方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没有来得及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成,你认为选择哪种方案获利最多,为什么?14、某同学在A、B两购物中心发现他看中的运动服的单价相同,球鞋的单价也相同,运动服和球鞋的单价之和为452元,且运动服的单价比球鞋的单价的4倍少8元.(1)求该同学看中的运动服和球鞋的单价各是多少元?(2)某一天,该同学上街,恰好赶上商家促销,A所有的商品打八折销售,B全场每购物满100元返购物券30元销售(不足100元不返券,购物券全场通用,只限于购物),他只带了400元钱.如果他只在一家购物中心购买这两种物品,你能说明他可以选择哪一家购买更省钱吗?还有哪些购买方式?哪种方式更划算?。
(新课标)华东师大版七年级下册7.4.1由实际问题抽象出二元一次方程组一.选择题(共8小题)1.“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是()A.B.C.D.2.小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y元,根据题意列方程组正确的是()A.B.C.D.3.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.4.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A. B.C.D.5.某班为了奖励在上学年期末考试成绩进步的同学,花了400元购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元.求甲、乙两种奖品各买多少件?若设购买甲种奖品x件,乙种奖品y件,则下列所列方程组正确的是()A.B.C.D.6.已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为()A.B.C.D.7.成巴高速公路全长308km,一辆货车和一辆轿车同时从巴中、成都两地相向开出,经1小时45分钟到达同一地点,相遇时,轿车比货车多行30km.设轿车、货车的速度分别是x km/h,y km/h,则下列方程组正确的是()A. B.C.D.8.如图,用10块相同的长方形纸板拼成一个矩形,设长方形纸板的长和宽分别为xcm和ycm,则依题意列方程式组正确的是()A.B.C.D.二.填空题(共6小题)9.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为_________ .10.小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x元,每个圆规y 元.请列出满足题意的方程组_________ .11.某校举行“中国梦•劳动美”知识竞赛,其评分规则如下:答对一题得5分,答错一题得﹣5分,不作答得0分.已知试题共20道,满分100分,凡优秀(得分80分或以上)者才有资格参加决赛.小明同学在这次竞赛中有2道题未答,但刚好获得决赛资格.设小明答对x道题,答题y道题,则可列出满足题意的方程组为_________ .12.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组_________ .13.某单位招聘员工采取笔试与面试相结合的方式进行,两项成绩满分均为100分.根据规定,笔试成绩和面试成绩分别按一定的百分比折合综合成绩(综合成绩的满分仍为100分).已知小明应聘的笔试成绩为85分,面试成绩为90分,现得知小明的最后综合成绩为88分.设小明的笔试成绩所占的百分比为x,面试成绩所占的百分比为y,根据题意列方程组得_________ .14.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x元/束,礼盒y元/盒,则可列方程组为_________ .三.解答题(共7小题)15.恋恋买了如图所示的两种奥运邮票共20枚,用去16元8角.假设左边一种邮票有x枚,右边一种有y枚,请你列出关于x,y的二元一次方程组,并写出能求解这个方程组的方法.16.一条船顺流航行,每小时行24km,逆流航行,每小时行18km.为了求轮船在静水中的速度x与水的速度y,你能列出方程组来吗?17.列二元一次方程组:某企业去年国内、国外销售共1000万元,因金融风暴,今年比去年降低1O%,其国内销售收入下降了5%,国外销售收入下降了15%.18.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?19.根据题意列二元一次方程组:(1)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?(2)某校课外小组的学生准备外出活动;若每组7人,则余下3人;若每组8人,则有一组只有3人;求这个课外小组分成几组?共有多少人?20.根据条件,设出适当的未知数,并列出二元一次方程或方程组.(1)摩托车的速度是货车的倍,它们速度之和是150km/h;(2)某时装的价格是某皮装价格的1.4倍,5件皮装要比3件时装贵2800元.7.4.1由实际问题抽象出二元一次方程组参考答案与试题解析一.选择题(共8小题)1.“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.菁优网版权所有专题:应用题.分析:设购买A型童装x套,B型童装y套,根据超市用3360元购进A,B 两种童装共120套,列方程组求解.解答:解:设购买A型童装x套,B型童装y套,由题意得,.故选:B.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.2.小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y元,根据题意列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:设每支中性笔x元和每盒笔芯y元,根据20支笔和2盒笔芯,用了56元;买了2支笔和3盒笔芯,用了28元.列出方程组成方程组即可.解答:解:设每支中性笔x元和每盒笔芯y元,由题意得,.故选:B.点评:此题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.3.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.菁优网版权所有专题:应用题.分析:设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.解答:解:设男生有x人,女生有y人,根据题意得,.故选:D.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.4.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A. B.C.D.考点:由实际问题抽象出二元一次方程组.菁优网版权所有专题:年龄问题.分析:由弟弟的年龄是x岁,哥哥的年龄是y岁,根据“哥哥与弟弟的年龄和是18岁,”,哥哥与弟弟的年龄差不变得出18﹣y=y﹣x,列出方程组即可.解答:解:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选:D.点评:此题考查由实际问题列方程组,注意找出题目蕴含的数量关系解决问题.5.某班为了奖励在上学年期末考试成绩进步的同学,花了400元购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元.求甲、乙两种奖品各买多少件?若设购买甲种奖品x件,乙种奖品y件,则下列所列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:根据题意可得等量关系:①甲商品数量+乙商品数量=30件;②甲商品的总价+乙商品的总价=400,然后列出方程组.解答:解:设购买甲种奖品x件,乙种奖品y件,由题意得:,故选:D.点评:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,找出等量关系,列出方程组.6.已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为()A.B.C.D.考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:根据题意可得等量关系:①∠1+∠2=180°,②∠1=3∠2+20°,根据等量关系列出方程组即可.解答:解:设∠1=x°,∠2=y°,由题意得:,故选:C.点评:此题主要考查了由实际问题列出方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.7.成巴高速公路全长308km,一辆货车和一辆轿车同时从巴中、成都两地相向开出,经1小时45分钟到达同一地点,相遇时,轿车比货车多行30km.设轿车、货车的速度分别是x km/h,y km/h,则下列方程组正确的是()A. B.C.D.考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:设轿车、货车的速度分别是x km/h,y km/h,根据经1小时45分钟到达同一地点,相遇时,轿车比货车多行30km,列方程组即可.解答:解:设轿车、货车的速度分别是x km/h,y km/h,由题意得.故选C.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.8.如图,用10块相同的长方形纸板拼成一个矩形,设长方形纸板的长和宽分别为xcm和ycm,则依题意列方程式组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.菁优网版权所有专题:几何图形问题.分析:设小长方形的长为xcm,宽为ycm,根据图形可得:大长方形的宽=小长方形的长+小长方形的宽,小长方形的长=小长方形的宽×4,列出方程中即可.解答:解:设小长方形的长为xcm,宽为ycm,则可列方程组:.故选:B.点评:此题考查了由实际问题抽象出二元一次方程,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组,注意弄清小正方形的长与宽的关系.二.填空题(共6小题)9.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.考点:由实际问题抽象出二元一次方程组.菁优网版权所有专题:应用题.分析:设获得一等奖的学生有x名,二等奖的学生有y名,根据“一等奖和二等奖共30名学生,”“一等奖和二等奖共花费528元,”列出方程组即可.解答:解:设获得一等奖的学生有x名,二等奖的学生有y名,由题意得.故答案为:.点评:此题考查从实际问题中抽出二元一次方程组,注意找出题目蕴含的数量关系.10.小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x元,每个圆规y 元.请列出满足题意的方程组.考点:由实际问题抽象出二元一次方程组.菁优网版权所有专题:销售问题.分析:设每支笔x元,每个圆规y元,根据买3支笔和2个圆规共花19元;买5支笔和4个圆规共花35元,列方程组.解答:解:设每支笔x元,每个圆规y元,由题意得,.故答案为:.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.11.某校举行“中国梦•劳动美”知识竞赛,其评分规则如下:答对一题得5分,答错一题得﹣5分,不作答得0分.已知试题共20道,满分100分,凡优秀(得分80分或以上)者才有资格参加决赛.小明同学在这次竞赛中有2道题未答,但刚好获得决赛资格.设小明答对x道题,答题y道题,则可列出满足题意的方程组为.考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:根据题意可得等量关系:①答对题数+答错题数=20道;②5×答对题数﹣5×答错题数=80分,根据等量关系列出方程组即可.解答:解:设小明答对x道题,答题y道题,由题意得:,故答案为:.点评:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.12.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:根据关键语句“单位组织34人分别到井冈山和瑞金进行革命传统教育”可得方程x+y=34,“到井冈山的人数是到瑞金的人数的2倍多1人”可得x=2y+1,联立两个方程即可.解答:解:设到井冈山的人数为x人,到瑞金的人数为y人,由题意得:故答案为:.点评:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.13.某单位招聘员工采取笔试与面试相结合的方式进行,两项成绩满分均为100分.根据规定,笔试成绩和面试成绩分别按一定的百分比折合综合成绩(综合成绩的满分仍为100分).已知小明应聘的笔试成绩为85分,面试成绩为90分,现得知小明的最后综合成绩为88分.设小明的笔试成绩所占的百分比为x,面试成绩所占的百分比为y,根据题意列方程组得.考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:设小明的笔试成绩所占的百分比为x,面试成绩所占的百分比为y,根据题意可知:笔试成绩所占的百分比和面试成绩所占的百分比之和为1,小明的最后综合成绩为88分,列方程组求解.解答:解:设小明的笔试成绩所占的百分比为x,面试成绩所占的百分比为y,由题意得,.故答案为:.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.14.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:由图示可得:1束鲜花+2个礼品盒=55元;2束鲜花+3个礼品盒=90元,根据等量关系列方程组即可.解答:解:设鲜花x元/束,礼盒y元/盒,则可列方程组为:,故答案为:.点评:此题主要考查了二元一次方程组的应用,需仔细分析图形,找出题目中的等量关系,然后利用方程组即可解决问题.三.解答题(共7小题)15.恋恋买了如图所示的两种奥运邮票共20枚,用去16元8角.假设左边一种邮票有x枚,右边一种有y枚,请你列出关于x,y的二元一次方程组,并写出能求解这个方程组的方法.考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:设左边一种邮票有x枚,右边一种有y枚,根据两种奥运邮票共20枚,用去16元8角,可列方程求解.解答:解:设左边一种邮票有x枚,右边一种有y枚,列方程组如下:,可用代入法消元和加减消元法来解这个方程组.点评:本题考查理解题意的能力,设出不同的枚数,根据邮票总枚数和钱数做为等量关系列方程组.16.一条船顺流航行,每小时行24km,逆流航行,每小时行18km.为了求轮船在静水中的速度x与水的速度y,你能列出方程组来吗?考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:根据:顺水速度=静水速度+水流速度,逆水速度=静水速度﹣水流速度,即可列出方程.解答:解:由题意得:.点评:该题主要考查了由实际问题抽象出二元一次方程组的问题;解题的关键是深刻把握题意,准确找出命题中隐含的等量关系,正确列出方程.17.列二元一次方程组:某企业去年国内、国外销售共1000万元,因金融风暴,今年比去年降低1O%,其国内销售收入下降了5%,国外销售收入下降了15%.考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:设去年国内和国外销售各为x元和y元,根据去年总销售1000万元,然后表示出今年的销售额,据此列方程组.解答:解:设去年国内和国外销售各为x元和y元,点评:本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.18.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:(1)等量关系为:0.8元邮票的枚数+2元的邮票枚数=13;0.8×0.8元邮票的枚数+2×2元的邮票枚数=20;(2)等量关系为:4×鸡笼数+1=鸡数;5×(鸡笼数﹣1)=鸡数.解答:(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得.(2)解:设有x只鸡,y个笼,根据题意得.点评:读懂题意,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.19.根据题意列二元一次方程组:(1)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?(2)某校课外小组的学生准备外出活动;若每组7人,则余下3人;若每组8人,则有一组只有3人;求这个课外小组分成几组?共有多少人?考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:本题的等量关系有:(1)用5节火车皮和12辆汽车正好装360吨,用7节火车皮和16辆汽车正好装500吨;(2)每组7人×组数+3人=总人数,每组8人×(组数﹣1)+3人=总人数.解答:解:(1)设每节火车皮、每辆汽车分别装x吨、y吨,则;解得:,答:每节火车皮、每辆汽车分别装60吨、5吨;(2)设分成x组,共有y人,则.解得:,答:有8组,共有59人.点评:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组,找到两个等量关系是解决本题的关键.20.根据条件,设出适当的未知数,并列出二元一次方程或方程组.(1)摩托车的速度是货车的倍,它们速度之和是150km/h;(2)某时装的价格是某皮装价格的1.4倍,5件皮装要比3件时装贵2800元.考点:由实际问题抽象出二元一次方程组.菁优网版权所有专题:行程问题;经济问题.分析:(1)两个等量关系为:摩托车的速度=货车速度×,摩托车的速度+货车速度=150,把相关数值代入即可;(2)两个等量关系为:某时装的价格=某皮装价格×1.4;5件皮装总价﹣3件时装价格=2800,把相关数值代入即可.解答:解:(1)设摩托车的速度为xkm/h,货车的速度为ykm/h,∵摩托车的速度是货车的倍,∴x=y,∵它们速度之和是150km/h,∴x+y=150,故列的方程组为:;(2)设时装的单价为x元,皮衣的单价为y元,∵时装的价格是某皮装价格的1.4倍,∴x=1.4y,∵5件皮装要比3件时装贵2800元.∴5y﹣3x=2800,∴列的方程组为:.点评:考查列二元一次方程组,得到和未知数有关的两个等量关系是解决问题的关键.。
《二元一次方程组和它的解》典型例题例1 判断下列方程是不是二元一次方程或二元一次方程组,并说明理由.(1)0934=-+y x ; (2)432=++z y x ; (3)64=+yx ; (4)0203=+-xy x ; (5)⎩⎨⎧-==;5,8y x (6)⎩⎨⎧=-=+.323,54y x y x 例2 下列三对数值中,哪一对是方程组⎩⎨⎧=+=-.12,02y x y x 的解?(1)⎪⎪⎩⎪⎪⎨⎧==;23,21y x (2)⎪⎩⎪⎨⎧==;21,1y x (3)⎪⎪⎩⎪⎪⎨⎧==.41,21y x 例3 已知方程组:(1)⎩⎨⎧=-=+;43,02y x y x (2)⎩⎨⎧=+-=-;843,12z y y x (3)⎩⎨⎧==;0,5y x (4)⎪⎩⎪⎨⎧=+=+=-.423,1,3y x y x y x 正确的说法是( )A .只有(1),(3)是二元一次方程组B .只有(3),(4)是二元一次方程组C .只有(1),(4)是二元一次方程组D .只有(2)不是二元一次方程组例4 方程组⎩⎨⎧=-=+.82,25y x y x 的解是否满足82=-y x ? 满足82=-y x 的一对y ,x 值是否是方程组⎩⎨⎧=-=+.82,25y x y x 的解?例5 已知二元一次方程0532=++y x ,(1)将已知方程写成用y 的代数式表示x 的式子;(2)任意求出方程的5个解.例6 下列方程中,哪些是二元一次方程?不是的说明理由.(1)123=+y x ;(2)71-=+yx ;(3)83-=pq ;(4)1622=-y y ;(5)4)32(2)(5=-+-y x y x例7 若⎩⎨⎧==32y x 是方程22=-y kx 的解,求k .例8 判断下列括号内的各组数是不是它前面二元一次方程的解.(1)523=+y x (⎩⎨⎧==20y x ); (2)23=-x y (⎩⎨⎧==51y x );(3)32=+y x (⎩⎨⎧-==11y x ); (4)0821=-+y x (⎩⎨⎧==72y x ) 例9 已知⎩⎨⎧==21y x 是方程组⎩⎨⎧=+=-342y nx m x 的解,求m 和n 的值. 例10 求二元一次方程103=+y x 的正整数解.。
2017-2018学年(新课标)华东师大版七年级下册二元一次方程组解法练习题一.解答题(共16小题)1.解下列方程组(1)(2)(3))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+(4)(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9)(10)⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.809625分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.809625分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:, ①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为. 点评: 利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法: ①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.809625 专题:计算题. 分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法. 解答: 解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评: ;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.809625 专题:计算题. 分析: 把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答: 解:(1)原方程组化为, ①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为. 点评: 要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.809625专题:计算题;换元法. 分析:本题用加减消元法即可或运用换元法求解. 解答: 解:, ①﹣②,得s+t=4,①+②,得s ﹣t=6,即, 解得.所以方程组的解为. 点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值.(3)当x 为何值时,y=3?考点:解二元一次方程组.809625 专计算题.题:分析:(1)将两组x ,y 的值代入方程得出关于k 、b 的二元一次方程组,再运用加减消元法求出k 、b 的值.(2)将(1)中的k 、b 代入,再把x=2代入化简即可得出y 的值.(3)将(1)中的k 、b 和y=3代入方程化简即可得出x 的值.解答: 解:(1)依题意得:①﹣②得:2=4k ,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评: 本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.809625分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解. 解答: 解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评: 解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.809625专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答: 解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得. 点评: 本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.809625 专题:计算题. 分此题根据观察可知:析: (1)运用代入法,把①代入②,可得出x ,y 的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答: 解:(1),由①,得x=4+y ③,代入②,得4(4+y )+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评: 此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考解二元一次方程组.809625点:专题:计算题;换元法.分析: 方程组(1)需要先化简,再根据方程组的特点选择解法; 方程组(2)采用换元法较简单,设x+y=a ,x ﹣y=b ,然后解新方程组即可求解.解答:解:(1)原方程组可化简为, 解得.(2)设x+y=a ,x ﹣y=b ,∴原方程组可化为, 解得, ∴∴原方程组的解为. 点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1); (2).考点:解二元一次方程组.809625专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.809625专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.809625分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1); (2). 考点:解二元一次方程组.809625分析:将两个方程先化简,再选择正确的方法进行消元. 解答: 解:(1)化简整理为, ①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为, ①×5,得10x+15y=75③,②×2,得10x ﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.809625分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。
7.4.3二元一次方程组解决工程问题一.选择题(共4小题)1.2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收制机和2台小收割机同时工作5h共收割小麦8hm2,1台大收割机和1台小收割机每小时各收割小麦多少hm2?若设1台大收割机和1台小收割机每小时各收割小麦xhm2和yhm2.根据题意,可得方程组()A.B.C.D.2.一个存有一些水的水池,有一个进水口和若干个口径相同的出水口,进水口每分钟进水3立方米,若同时打开进水口和三个出水口,池中水16分钟放完,若同时打开进水口和五个出水口,池中水9分钟放完,池中原有水()立方米.A.288B.296C.302D.3163.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有45张白铁皮,设用x张制盒身,y张制盒底,恰好配套.则下列方程组中符合题意的是()A.B.C.D.4.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x人,y辆车,可列方程组为()A.B.C.D.二.填空题(共3小题)5.某市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工两天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米.设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,列出方程组.6.为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花4200元购进洗手液与84消毒液共300瓶,已知洗手液的价格是20元/瓶,84消毒液的价格是5元/瓶.该校购进洗手液和84消毒液各多少瓶?设该校购进洗手液x瓶,购进84消毒液y瓶,则可列方程组为.7.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为.三.解答题(共5小题)8.在《二元一次方程组》这一章的复习课上,王老师让同学们根据下列条件探索还能求出哪些量:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.(1)小红同学根据题意,列出了一个尚不完整的方程组请写出小红所列方程组中未知数x,y表示的意义:x表示,y表示;并写出该方程组中?处的数应是,*处的数应是;(2)小芳同学的思路是想设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.下面请你按照小芳的设想列出方程组,并求出乙队修建了多少天?9.某家具厂生产一种方桌,设计时1m3的木材可做50个桌面或300条桌腿.现有10m3的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套.(一张桌面配四条桌腿)10.有一批机器零件共418个,若甲先做2天,乙再加入合作,则再做2天可超产2个;若乙先做3天,然后两人再共做2天,则还有8个未完成.问甲、乙两人每天各做多少个零件?11.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?12.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机10060乙型挖掘机12080(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?7.4.3二元一次方程组解决工程问题参考答案与试题解析一.选择题(共4小题)1.2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收制机和2台小收割机同时工作5h共收割小麦8hm2,1台大收割机和1台小收割机每小时各收割小麦多少hm2?若设1台大收割机和1台小收割机每小时各收割小麦xhm2和yhm2.根据题意,可得方程组()A.B.C.D.【解答】解:设1台大收割机和1台小收割机每小时各收割小麦x公顷,y公顷,由题意得,,故选:A.2.一个存有一些水的水池,有一个进水口和若干个口径相同的出水口,进水口每分钟进水3立方米,若同时打开进水口和三个出水口,池中水16分钟放完,若同时打开进水口和五个出水口,池中水9分钟放完,池中原有水()立方米.A.288B.296C.302D.316【解答】解:设池中原有水为a立方米,出水速度为每分钟x立方米,则有:,解得:a=288,x=7.即池中原有水288立方米.故选:A.3.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有45张白铁皮,设用x张制盒身,y张制盒底,恰好配套.则下列方程组中符合题意的是()A.B.C.D.【解答】解:设用x张制作盒身,y张制作盒底,根据题意得:.故选:C.4.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x人,y辆车,可列方程组为()A.B.C.D.【解答】解:∵每三人共乘一车,最终剩余2辆车,∴3(y﹣2)=x;∵若每2人共乘一车,最终剩余9个人无车可乘,∴x=2y+9.∴可列方程组为.故选:C.二.填空题(共3小题)5.某市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工两天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米.设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,列出方程组.【解答】解:由题意可得,,故答案是:.6.为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花4200元购进洗手液与84消毒液共300瓶,已知洗手液的价格是20元/瓶,84消毒液的价格是5元/瓶.该校购进洗手液和84消毒液各多少瓶?设该校购进洗手液x瓶,购进84消毒液y瓶,则可列方程组为.【解答】解:设该校购进洗手液x瓶,该校购进84消毒液y瓶,根据题意可得:,故答案为:.7.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20.【解答】解:由题意,得,解得:.∴x+y=20.故答案为:20.三.解答题(共5小题)8.在《二元一次方程组》这一章的复习课上,王老师让同学们根据下列条件探索还能求出哪些量:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.(1)小红同学根据题意,列出了一个尚不完整的方程组请写出小红所列方程组中未知数x,y表示的意义:x表示甲队修路的天数,y表示乙队修路的天数;并写出该方程组中?处的数应是15,*处的数应是335;(2)小芳同学的思路是想设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.下面请你按照小芳的设想列出方程组,并求出乙队修建了多少天?【解答】解:(1)根据方程组中第二个方程可得x是与甲队每天修建的长度相乘,y是与乙队每天修建的长度相乘,这样可得出x、y分别是甲、乙两队各自修路的天数,从而得到x+y=15,20x+25y=335;故答案为:甲队修路的天数;乙队修路的天数;15;335;(2)方程组为:,由①得,x=335﹣y③,将③式代入②式得,,解得,y=175,所以,乙队修建了175米,修建的天数为(天).答:乙队修建了175米,修建了7天.9.某家具厂生产一种方桌,设计时1m3的木材可做50个桌面或300条桌腿.现有10m3的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套.(一张桌面配四条桌腿)【解答】解:设用xm3的木材做桌面,用ym3的木材做桌腿,根据题意得出:,解得:,答:用6m3的木材做桌面,用4m3的木材做桌腿,才能使桌面和桌腿刚好配套.10.有一批机器零件共418个,若甲先做2天,乙再加入合作,则再做2天可超产2个;若乙先做3天,然后两人再共做2天,则还有8个未完成.问甲、乙两人每天各做多少个零件?【解答】解:设甲每天做x个零件,乙每天做y个零件,则,解得.故甲每天做80个零件,乙每天做50个零件.11.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?【解答】解:设改进加工方法前用了x天,改进加工方法后用了y天,依题意,得:,解得:.答:该合作社改进加工方法前用了4天,改进加工方法后用了2天.12.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机10060乙型挖掘机12080(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?【解答】解:(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:,解得.答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.∴m=9﹣n,∴方程的解为或或.当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额;当m=1,n=6时,支付租金:100×1+120×6=820元<850元,符合要求;当m=9,n=0时,支付租金:100×9+120×0=900元>850元,超出限额;答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.。
例说二元一次方程组解有关动物的趣题
同学们,你们知道吗,早在2000多年前,我国最古老的经典数学著作《九章算术》中,便收录了18道一次方程组的问题,这是我国劳动人民智慧的结晶.
例1 我国古代数学名著《孙子算经》上有这一道题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔个几何.
解 设笼里有x 只鸡,y 只兔.
根据题意,可得35,2494.x y x y +=⎧⎨+=⎩解方程组,得23,12.x y =⎧⎨=⎩
答 笼里有23只鸡,12只兔.
例2 《九章算术》第八章记载了这样一道题:今有牛五羊二,值金十两;牛二羊五,值金八两,问一牛、一羊各值几何.
解 设一牛值金x 两,一羊值金y 两.
根据题意,可得5210,258.x y x y +=⎧⎨+=⎩解方程组,得34,2120.21
x y ⎧=⎪⎪⎨⎪=⎪⎩ 答 一头牛值金3421两,一只羊值金2021
两. 例3 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中.一房七客多七客,一房九客一房空.”这首诗的意思是说:如果一间客房住7个人,那么就剩7个人安排不下;如果一间客房住9个人,那么就空出一间客房.问现有客房多少间?房客多少人?
解 设现有客房x 间,房客y 人.
根据题意,可得()77,91x y x y +=⎧⎪⎨-=⎪⎩
解这个方程组,可得8,63.x y =⎧⎨=⎩ 答 现有客房8间,房客63人.
例4 古希腊著名数学家欧几里德是欧几里德几何学的创造人,现在中、小学里学的几何学,基本上还是欧几里德几何学体系.下面这道题还与他有关呢!
驴子和骡子一同走,它们负着不同袋数的货物,但每袋货物都是一样重的.驴子抱怨负担太重.“你抱怨干嘛呢?”骡子说,“如果你给我一袋,那我所负担的就是你的两倍,如果我给你一袋,我们的负担恰恰相等.”驴子和骡子各负着几袋货物?
请你也来解解大数学家的这道题. 解设驴原负x袋,骡原负y袋.
根据题意,可得
()
121,
1 1.
y x
y x
⎧+=-
⎪
⎨
-=+
⎪⎩
解方程组,得5,
7.
x
y
=
⎧
⎨
=
⎩
答驴原负5袋,骡原负7袋.。