浙教版九年级数学上册期末综合检测试卷(有答案)
- 格式:docx
- 大小:215.42 KB
- 文档页数:11
期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC ̂上的点,若∠BOC=40°,则∠D 的度数为( )A. 100°B. 110°C. 120°D. 130° 2.两个相似多边形一组对应边分别为3 cm ,4.5 cm ,那么它们的相似比为( ) A. 23 B. 32 C. 49 D. 94 3.在某幅地图上,AB 两地距离8.5cm ,实际距离为170km ,则比例尺为( ) A. 1:20 B. 1:20000 C. 1:200000 D. 1:2000000 4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC=5cm ,CD=8cm ,则AE=( )A. 8cmB. 5cmC. 3cmD. 2cm5.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①b <0;②4a+2b+c <0;③a ﹣b+c >0;④(a+c )2<b 2.其中正确的结论是( )A. ①②B. ①③C. ①③④D. ①②③④6.围棋盒子中有x 颗白色棋子和y 颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是23.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子( )A. 4颗B. 6颗C. 8颗D. 12颗7.一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。
如果任意抛掷小正方体两次,那么下列说法正确的是( )A. 得到的数字之和必然是4B. 得到的数字之和可能是3C. 得到的数字之和不可能是2D. 得到的数字之和有可能是1 8.函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( ).A. a>0B. a−b+c<0C. c<0D. 当−1<x<3时,y>09.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是()A. (-1.4,-1.4)B. (1.4,1.4)C. (- ,- )D. (,)10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是________.12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=________°.13.如图,AB、CD是⊙O的两条弦,若∠AOB+∠C=180°,∠COD=∠A,则∠AOB= ________14.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=________时,以A、D、E为顶点的三角形与△ABC相似.15.已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.16.某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t﹣1.5t2,那么飞机着陆后滑行________ 米才能停止.17.已知点P为平面内一点,若点P 到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为________.18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________19.如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为________ .20.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 √2,则另一直角边AE的长为________.三、解答题(共8题;共60分)21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图,一位测量人员,要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使ODOB =OEOA=13,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.23.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.24.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:.25.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)26.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?27.如图,直线BC与半径为6的⊙O相切于点B,点M是圆上的动点,过点M作MC⊥BC,垂足为C,MC与⊙O交于点D,AB为⊙O的直径,连接MA、MB,设MC的长为x,(6<x<12).(1)当x=9时,求BM的长和△ABM的面积;(2)是否存在点M,使MD•DC=20?若存在,请求出x的值;若不存在,请说明理由.28.甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨·千米”表示每吨水泥运送1千米所需要人民币).(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?答案解析部分一、单选题1.【答案】B2.【答案】A3.【答案】D4.【答案】A5.【答案】C6.【答案】C7.【答案】B8.【答案】B9.【答案】D 10.【答案】C二、填空题11.【答案】25 12.【答案】55 13.【答案】108° 14.【答案】125 , 5315.【答案】(0,10) 16.【答案】600 17.【答案】2或3 18.【答案】1319.【答案】2 20.【答案】10三、解答题21.【答案】解答:如图,∵∠BAD=∠CAE , ∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC . 又∵∠B=∠D , ∴△ABC ∽△ADE .22.【答案】解: ∵ ODOB =OEOA ,∠AOB =∠EOD (对顶角相等), ∴ △AOB ∼△EOD , ∴ ODOB =OE OA =13, ∴37.2AB =13, 解得AB =111.6米.所以,可以求出A 、B 之间的距离为111.6米23.【答案】解:图中的弧为BC,AB,AC,ACB,BAC,ABC. 24.【答案】解:∵共3红2黄1绿相等的六部分, ∴①指针指向红色的概率为36=12; ②指针指向绿色的概率为16; ③指针指向黄色的概率为26=13;④指针不指向黄色为56,(1)可能性最大的是④,最小的是②; (2)由题意得:②<③<①<④, 故答案为:②<③<①<④.25.【答案】解:设男同学标记为A 、B ;女学生标记为1、2,可能出现的所有结果列表如下:场参赛的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为212=16 26.【答案】解:连CO ∵DC ⊥AD ,CE ⊥OB CD=EC ∠1=∠227.【答案】证明:(1)∵直线BC 与半径为6的⊙O 相切于点B ,且AB 为⊙O 的直径, ∴AB ⊥BC , 又∵MC ⊥BC , ∴AB ∥MC , ∴∠BMC=∠ABM , ∵AB 是⊙O 的直径, ∴∠AMB=90°, ∴∠BCM=∠AMB=90°, ∴△BCM ∽△AMB , ∴BM AB=MC BM,∴BM 2=AB•MC=12×9=108, ∴BM=6√3, ∵BC 2+MC 2=BM 2, ∴BC=√BM 2−MC 2=3√3∴S △ABM =12AB•BC=12×12×3√3=18√3; (2)解:过O 作OE ⊥MC ,垂足为E , ∵MD 是⊙O 的弦,OE ⊥MD , ∴ME=ED ,又∵∠CEO=∠ECB=∠OBC=90°, ∴四边形OBCE 为矩形, ∴CE=OB=6, 又∵MC=x ,∴ME=ED=MC ﹣CE=x ﹣6,MD=2(x ﹣6), ∴CD=MC ﹣MD=x ﹣2(x ﹣6)=12﹣x ,∴MD•DC=2(x﹣6)•(12﹣x)=﹣2x2+36x﹣144=﹣2(x﹣9)2+18∵6<x<12,∴当x=9时,MD•DC的值最大,最大值是18,∴不存在点M,使MD•DC=20.28.【答案】(1)解:设甲库运往A地粮食x吨,则甲库运到B地(100-x)吨,乙库运往A地(70-x)吨,乙库运到B地[80-(70-x)]=(10+x)吨.根据题意得:w=12×20x+10×25(100-x)+12×15(70-x)+8×20(10+x)=-30x+39200(0≤x≤70).∴总运费w(元)关于x(吨)的函数关系式为w=-30x+39200(0≤x≤70).∵一次函数中w=-30x+39200中,k=-30<0∴w的值随x的增大而减小∴当x=70吨时,总运费w最省,最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元.(2)解:因为运费不能超过38000元,所以w=-30x+39200≤38000,所以x≥40.又因为40≤x≤70,所以满足题意的x值为40,50,60,70,所以总共有4种方案.。
期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC ̂上的点,若∠BOC=40°,则∠D 的度数为( )A. 100°B. 110°C. 120°D. 130°2.两个相似多边形一组对应边分别为3 cm ,4.5 cm ,那么它们的相似比为( ) A. 23 B. 32 C. 49 D. 94 3.在某幅地图上,AB 两地距离8.5cm ,实际距离为170km ,则比例尺为( )A. 1:20B. 1:20000C. 1:200000D. 1:2000000 4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC=5cm ,CD=8cm ,则AE=( )A. 8cmB. 5cmC. 3cmD. 2cm5.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①b <0;②4a+2b+c <0;③a ﹣b+c >0;④(a+c )2<b 2.其中正确的结论是( )A. ①②B. ①③C. ①③④D. ①②③④ 6.围棋盒子中有x 颗白色棋子和y 颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是23.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子( )A. 4颗B. 6颗C. 8颗D. 12颗7.一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。
如果任意抛掷小正方体两次,那么下列说法正确的是( )A. 得到的数字之和必然是4B. 得到的数字之和可能是3C. 得到的数字之和不可能是2D. 得到的数字之和有可能是1 8.函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( ).A. a>0B. a−b+c<0C. c<0D. 当−1<x<3时,y>09.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是()A. (-1.4,-1.4)B. (1.4,1.4)C. (- ,- )D. (,)10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是________.12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=________°.13.如图,AB、CD是⊙O的两条弦,若∠AOB+∠C=180°,∠COD=∠A,则∠AOB= ________14.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=________时,以A、D、E为顶点的三角形与△ABC相似.15.已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.16.某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t﹣1.5t2,那么飞机着陆后滑行________ 米才能停止.17.已知点P为平面内一点,若点P 到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为________.18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________19.如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为________ .20.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 √2,则另一直角边AE的长为________.三、解答题(共8题;共60分)21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图,一位测量人员,要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使ODOB =OEOA=13,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.23.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.24.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:.25.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)26.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?27.如图,直线BC与半径为6的⊙O相切于点B,点M是圆上的动点,过点M作MC⊥BC,垂足为C,MC 与⊙O交于点D,AB为⊙O的直径,连接MA、MB,设MC的长为x,(6<x<12).(1)当x=9时,求BM的长和△ABM的面积;(2)是否存在点M,使MD•DC=20?若存在,请求出x的值;若不存在,请说明理由.28.甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨·千米”表示每吨水泥运送1千米所需要人民币).(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?答案解析部分一、单选题 1.【答案】B 2.【答案】A 3.【答案】D 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】B 8.【答案】B 9.【答案】D 10.【答案】C 二、填空题 11.【答案】25 12.【答案】55 13.【答案】108° 14.【答案】125 , 5315.【答案】(0,10) 16.【答案】600 17.【答案】2或3 18.【答案】1319.【答案】2 20.【答案】10 三、解答题21.【答案】解答:如图,∵∠BAD=∠CAE , ∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC . 又∵∠B=∠D , ∴△ABC ∽△ADE .22.【答案】解: ∵ ODOB =OEOA ,∠AOB =∠EOD (对顶角相等), ∴ △AOB ∼△EOD , ∴ ODOB =OE OA =13, ∴37.2AB =13, 解得AB =111.6米.所以,可以求出A 、B 之间的距离为111.6米23.【答案】解:图中的弧为BC,AB,AC,ACB,BAC,ABC. 24.【答案】解:∵共3红2黄1绿相等的六部分, ∴①指针指向红色的概率为36=12; ②指针指向绿色的概率为16; ③指针指向黄色的概率为26=13; ④指针不指向黄色为56,(1)可能性最大的是④,最小的是②; (2)由题意得:②<③<①<④, 故答案为:②<③<①<④.25.【答案】解:设男同学标记为A 、B ;女学生标记为1、2,可能出现的所有结果列表如下:的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为212=16 26.【答案】解:连CO ∵DC ⊥AD ,CE ⊥OB CD=EC ∠1=∠227.【答案】证明:(1)∵直线BC 与半径为6的⊙O 相切于点B ,且AB 为⊙O 的直径, ∴AB ⊥BC , 又∵MC ⊥BC , ∴AB ∥MC , ∴∠BMC=∠ABM , ∵AB 是⊙O 的直径, ∴∠AMB=90°, ∴∠BCM=∠AMB=90°, ∴△BCM ∽△AMB , ∴BM AB=MCBM ,∴BM 2=AB•MC=12×9=108, ∴BM=6√3, ∵BC 2+MC 2=BM 2, ∴BC=√BM 2−MC 2=3√3∴S △ABM =12AB•BC=12×12×3√3=18√3; (2)解:过O 作OE ⊥MC ,垂足为E , ∵MD 是⊙O 的弦,OE ⊥MD , ∴ME=ED ,又∵∠CEO=∠ECB=∠OBC=90°, ∴四边形OBCE 为矩形, ∴CE=OB=6, 又∵MC=x ,∴ME=ED=MC ﹣CE=x ﹣6,MD=2(x ﹣6), ∴CD=MC ﹣MD=x ﹣2(x ﹣6)=12﹣x ,∴MD•DC=2(x ﹣6)•(12﹣x )=﹣2x 2+36x ﹣144=﹣2(x ﹣9)2+18 ∵6<x <12,∴当x=9时,MD•DC的值最大,最大值是18,∴不存在点M,使MD•DC=20.28.【答案】(1)解:设甲库运往A地粮食x吨,则甲库运到B地(100-x)吨,乙库运往A地(70-x)吨,乙库运到B地[80-(70-x)]=(10+x)吨.根据题意得:w=12×20x+10×25(100-x)+12×15(70-x)+8×20(10+x)=-30x+39200(0≤x≤70).∴总运费w(元)关于x(吨)的函数关系式为w=-30x+39200(0≤x≤70).∵一次函数中w=-30x+39200中,k=-30<0∴w的值随x的增大而减小∴当x=70吨时,总运费w最省,最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元.(2)解:因为运费不能超过38000元,所以w=-30x+39200≤38000,所以x≥40.又因为40≤x≤70,所以满足题意的x值为40,50,60,70,所以总共有4种方案.。
【期末专题复习】浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A. 3B. 6C.D. 102.△ABC∽△A′B′C′,且∠A=68°,则∠A′=().A. 22°B. 44°C. 68°D. 80°3.如图,将△ABC绕点C顺时针方向旋转40°,得△A′B′C,若AC⊥A′B′,则∠A等于()A. 50°B. 60°C. 70°D. 80°4.随机掷一枚均匀的硬币20次,其中有8次出现正面,12次出现反面,则掷这枚均匀硬币出现正面的概率是()A. B. C. D.5.已知抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A. t>-5B. -5<t<3C. 3<t≤4D. -5<t≤4=()6.如图,在平行四边形ABCD中,E是BC延长线上一点,AE交CD于点F,且CE=BC,则 △△A. B. C. D.7.如图,已知矩形ABCD中,AB=3,BE=2,EF⊥BC.若四边形EFDC与四边形BEFA相似而不全等,则CE=()A.3B.3.5C.4D.4.58.如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD相交于点F,DE:EC=2:3,则S△DEF:S△ABF等于()A. 4:25B. 4:9C. 9:25D. 2:39.一条排水管的截面如图.已知排水管的截面圆半径OB=10,水面宽AB是16,则截面水深CD是()A. 3B. 4C. 5D. 610.如图,二次函数y=ax2+bx+c的图象过(1,-1)和(3,0),则下列关于这个二次函数的描述,正确的是()A. y的最小值大于-1B. 当x=0时,y的值大于0C. 当x=2时,y的值等于-1D. 当x>3时,y的值大于0二、填空题(共10题;共33分)11.若抛物线的开口向上,则的取值范围是________.12.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为________cm13.一个不透明的盒子中有一定数量的完全相同的小球,分别标号为1,2,3,其中标号为1的小球有3个,标号为2的小球2个,标号为3的小球有m个,若随机摸出一个小球,其标号为偶数的概率为,则m 的值为________.14.如图,在平面直角坐标系xOy中,△ABC外接圆的圆心坐标是 ________,半径是 ________.15.抛物线y=﹣2x2+4x﹣1的对称轴是直线________ .16.如图,是半圆的直径,是一条弦,是的中点,于点且交于点,交于点.若,则________.17.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为________.18.(2017•无锡)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于________.19.如图,在扇形AOB中,∠AOB=900,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积是________.20.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D,E分别是AB,AC的中点,点G,F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是________.三、解答题(共9题;共57分)21.如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).①画出△ABC关于y轴对称的△A1B1C1;②将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留)22.甲、乙两人做摸球游戏,在不透明的口袋里放入大小相同的两个黑球和两个白球,甲摸出两个球后放回,乙再摸出两个球,若摸出一黑一白甲赢,若摸出两个相同颜色的乙赢.这个游戏公平吗?为什么?23.已知函数y=(k﹣2)x k2﹣4k+5+2x是关于x的二次函数.求:(1)满足条件的k的值;(2)当k为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?24.某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x 元.(1)根据题意,完成下表:(2)T恤的销售单价定为多少元时,该批发商可获得最大利润?最大利润为多少?25.亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离,颖颖与楼之间的距离(,,在一条直线上),颖颖的身高,亮亮蹲地观测时眼睛到地面的距离.你能根据以上测量数据帮助他们求出住宅楼的高度吗?26.如图,在□ABCD中,AB=4,AD=6,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=.[MISSING IMAGE: , ](1)求AE的长;(2)求ΔCEF的周长和面积.27.某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.(1)求所获利润y (元)与售价x(元)之间的函数关系式;(2)为获利最大,商店应将价格定为多少元?(3)为了让利顾客,且获利最大,商店应将价格定为多少元?28.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).29.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A.D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】A4.【答案】B5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】B10.【答案】D二、填空题11.【答案】a>212.【答案】513.【答案】714.【答案】(5,2);15.【答案】x=116.【答案】17.【答案】18.【答案】3﹣﹣19.【答案】π20.【答案】≤l<13三、解答题21.【答案】①△A1B1C1如图所示②△A2BC2如图所示线段BC旋转过程中所扫过得面积S= = .22.【答案】解:画树状图如下:由树状图知,P(一黑一白), P(颜色相同),∵∴不公平23.【答案】解:(1)函数y=(k﹣2)x k2﹣4k+5+2x是关于x的二次函数,得,解得k=1或k=3;(2)当k=1时,函数y=﹣x2+2x有最高点;y=﹣(x﹣1)2+1,最高点的坐标为(1,1),当x<1时,y随x的增大而增大.24.【答案】解:(1)(2)设批发商可获得利润元,=当时,售价为:50-5=45(元),答:T恤的销售单价定为45元时该批发商可获得最大利润,最大利润为2250元.25.【答案】过A作CN的平行线交BD于E,交MN于F.由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,∠AEB=∠AFM=90°.又∵∠BAE=∠MAF,∴△ABE∽△AMF.∴,即:,解得MF=20m.∴MN=MF+FN=20+0.8=20.8m.∴住宅楼的高度为20.8m.26.【答案】27.【答案】解:(1)当x>120时,y1=﹣10x2+2500x﹣150000;当100<x<120时,y2=﹣30x2+6900x﹣390000;(2)y1=﹣10x2+2500x﹣150000=﹣10(x﹣125)2+6250;y2=﹣30x2+6900x﹣390000=﹣30(x﹣115)2+6750;6750>6250,所以当售价定为115元获得最大为6750元;(3)当涨价x=5(元)时,所获利润y1的最大值=6250(元);当降价x=5(元)时,所获利润y2的最大值=6750(元).∴为获利最大,应降价5元,即将价格定为115元.28.【答案】解:根据题意得:AB⊥BH,CD⊥BH,FG⊥BH,在Rt△ABE和Rt△CDE中,∵AB⊥BH,CD⊥BH,∴CD∥AB,可证得:△CDE∽△ABE∴①,同理:②,又CD=FG=1.7m,由①、②可得:,即,解之得:BD=7.5m,将BD=7.5代入①得:AB=5.95m≈6.0m.答:路灯杆AB的高度约为6.0m.29.【答案】(1)解:由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3(2)解:∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A.点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3 ,BC=∴△PBC的周长最小是:.(3)解:①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2)第11 页共11 页。
期末复习:浙教版九年级数学学上册期末综合检测试卷一、单选题(共10题;共30分)1.把标有1~10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是()A. B. C. D.2.已知圆锥侧面积为10πcm2,侧面展开图的圆心角为36º,圆锥的母线长为()A. 100cmB. 10cmC. cmD. cm3.已知⊙O的半径是10cm,是120°,那么弦AB的弦心距是()A. 5cmB. cmC. cmD. cm4.某中学周末有40人去体育场观看足球赛,40张票分别为A区第2排1号到40号,小明同学从40张票中随机抽取一张,则他抽取的座位号为10号的概率是A. B. C. D.5.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是A. B. C. D.6.如图,在△ABC中,AB=8,AC=6,点D在AC上,且AD=2,如果要在AB上找一点E,使△ADE与△ABC 相似,则AE的长为()A. B. C. 3 D. 或7.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,∠APD=30°,则∠ADP的度数为()A. 45°B. 40°C. 35°D. 30°8.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁9.若△ABC∽△DEF,且AB:DE=1:3,则S△ABC:S△DEF=()A. 1:3B. 1:9C. 1:D. 1:1.510.已知如图,圆锥的母线长6cm,底面半径是3cm,在B处有一只蚂蚁,在AC中点P处有一颗米粒,蚂蚁从B爬到P处的最短距离是()A. 3 cmB. 3 cmC. 9cmD. 6cm二、填空题(共10题;共30分)11.将抛物线y=x2-2向上平移一个单位后,得一新的抛物线,那么新的抛物线的表达式是________.12.质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是________13.若A(,),B(,),C(1,)为二次函数y= +4x﹣5的图象上的三点,则、、的大小关系是________.14.(2015•上海)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于________ .(只需写出一个符合要求的数)15.如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m<360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为________16.已知抛物线C1:y=﹣x2+4x﹣3,把抛物线C1先向右平移3个单位长度,再向上平移3个单位长度,得到抛物线C2,将抛物线C1和抛物线C2这两个图象在x轴及其上方的部分记作图象M.若直线y=kx+ 与图象M至少有2个不同的交点,则k的取值范围是________.17.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为________.18.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于________.19.如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=________°.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12,求⊙O的半径.22.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?23.一个口袋中有黑球10个,白球若干个,小明从袋中随机一次摸出10只球,记下其中黑球的数目,再把它们放回,搅均匀后重复上述过程20次,发现共有黑球18个,由此你能估计出袋中的白球是多少个吗?24.已知一抛物线与抛物线y=- x2+3形状相同,开口方向相反,顶点坐标是(-5,0),根据以上特点,试写出该抛物线的解析式.25.如图,在△ABC中,EF∥CD ,DE∥BC .求证:AF:FD=AD:DB .26.如图,在平面直角坐标系中,点O为坐标原点,平移抛物线y=x2﹣2x+3,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A,O,B为顶点的三角形是等腰直角三角形,求平移后的抛物线的解析式.27.如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。
浙教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.若32y x =,则x yx +的值为()A .32B .5C .52D .122.在一个不透明的盒子中有1个白球和3个红球,它们除颜色外其余都相同,从盒子里任意摸出1个球,摸到白球的概率是()A .12B .13C .14D .153.将抛物线2y x =-向左平移3个单位,再向上平移5个单位,则平移后的抛物线解析式为()A .2(3)5y x =-++B .2(3)5y x =-+-C .2(3)5y x =--+D .2(3)5y x =---4.如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则EC 的长为()A .1B .2C .3D .45.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为()A .12cmB .18cmC .20cmD .24cm6.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则tan ADC ∠的值为()A .21313B .31313C .23D .327.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A 、B 、C 、D 、E 、O 均是正六边形的顶点.则点O 是下列哪个三角形的外心()A .AEDB .ABD △C .BCD △D .ACD△8.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=()A .30°B .36︒C .54︒D .45︒9.如图,CD 是Rt ABC 斜边AB 上的高,8AC =,6BC =,点O 是CD 上的动点,以O 为圆心作半径为1的圆,若该圆与ABC 重叠部分的面积为π,则OC 的最小值为()A .54B .43C .75D .5310.已知ABC 为直角三角形,且30A ∠=︒,若ABC 的三个顶点均在双曲线(0)ky k x=>上,斜边AB 经过坐标原点,且B 点的纵坐标比横坐标少3个单位长度,C 点的纵坐标与B 点横坐标相等,则k =()A .4B .92C .32D .5二、填空题11.正五边形每个内角的度数是_______.12.在一个有10万人的小镇随机调查了1000人,其中有100人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是_______.13.如图,已知⊙O 上三点A ,B ,C ,切线PA 交OC 延长线于点P ,若2OP OC =,则ABC ∠=_______.14.如图所示,正方形的顶点A 在矩形DEFG 的边EF 上,矩形DEFG 的顶点G 在正方形的边BC 上.已知正方形的边长为4,DG 的长为6,则DE 的长为_______.15.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).16.如图,直角ABC 的直角边长4AB BC ==,D 是AB 中点,线段PQ 在边AC 上运动,322PQ =PDBQ 面积的最大值为_______,周长的最小值为_______.三、解答题17.(1)计算:022sin 30(2021)tan 60π︒+--︒.(2)已知线段4a =,9b =,求线段a ,b 的比例中项.18.在一个不透明的盒子中有3个颜色、大小、形状完全相同的小球,小球上分别标有1,2,3这3个号码.(1)搅匀后从中随机抽出1个小球,抽到1号球的概率是_______.(2)搅匀后先从中随机抽出1个小球(不放回),再从余下的2个球中随机抽出1个球,求抽到的2个小球的号码的和为奇数的概率.19.如图,某海防哨所(O )发现在它的北偏西30°,距离哨所500m 的A 处有一艘船,该船向正东方向航行,经过3分钟到达哨所东北方向的B 处,求该船的航速.(精确到1/km h )20.如图,在ABC 中,点D ,E ,F 分别在AB ,BC ,AC 边上,//DE AC ,//EF AB .(1)求证:BDE EFC :△△.(2)若35AF FC =,EFC 的面积是25,求ABC 的面积.21.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x (元/千克)55606570销售量y (千克)70605040(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?22.如图,在ABC 中,点O 是BC 中点,以O 为圆心,BC 为直径作圆刚好经过A 点,延长BC 于点D ,连接AD .已知CAD B ∠=∠.(1)求证:①AD 是⊙O 的切线;②ACD BAD :△△;(2)若8BD =,1tan 2B =,求⊙O 的半径.23.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,ABC 中,点D 是BC 边上一点,连接AD ,若2AD BD CD =⋅,则称点D 是ABC 中BC 边上的“好点”.(1)如图2,ABC 的顶点是43⨯网格图的格点,请仅用直尺画出(或在图中直接描出)AB 边上的“好点”;(2)ABC 中,14BC =,3tan 4B =,tan 1C =,点D 是BC 边上的“好点”,求线段BD 的长;(3)如图3,ABC 是⊙O 的内接三角形,点H 在AB 上,连结CH 并延长交⊙O 于点D .若点H 是BCD △中CD 边上的“好点”.①求证:OH AB ⊥;②若//OH BD ,⊙O 的半径为r ,且3r OH =,求CHDH的值.24.如图,在平面直角坐标系中,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,且∠OBC =30°,OB =3OA .(1)求抛物线y =ax 2+bx +3的解析式;(2)点P 为直线BC 上方抛物线上的一动点,P 点横坐标为m ,过点P 作PF //y 轴交直线BC 于点F ,写出线段PF 的长度l 关于m 的函数关系式;(3)过点P 作PD ⊥BC 于点D ,当 PDF 的周长最大时,求出 PDF 周长的最大值及此时点P 的坐标.参考答案【分析】由32y x =,设()30,y k k =≠则2,x k =再代入求值即可得到答案.【详解】解:32y x =,∴设()30,y k k =≠则2,x k =∴2355.222x y k k k x k k ++===故选:.C 【点睛】本题考查的是比例的基本性质,掌握设参数的方法解决有关比例的问题是解题的关键.2.C 【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案.【详解】解: 不透明的口袋里装有1个白球、3个红球,共有4个球,∴现随机从袋里摸出1个球是白球的概率为14;故选:C .【点睛】本题考查了概率的计算,熟练掌握概率公式是解题的关键.3.A 【分析】根据图象向左平移加,向上平移加,可得答案.【详解】解:将抛物线y=-x 2向左平移3个单位,再向上平移5个单位,平移后抛物线的解析式是y=-(x+3)2+5,故选:A .【点睛】本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减,上加下减.【详解】试题分析:根据平行线分线段成比例可得AD AEDB EC =,代入计算可得:643EC=,即可解EC=2,故选B .考点:平行线分线段成比例5.D 【分析】连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,由题意可知CD 为8,然后根据勾股定理求出BD 的长,进而可得出AB 的长.【详解】如图,连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,则AB=2BD ,∵圆的直径为26cm ,∴圆的半径r=OB=13cm ,由题意可知,CD=8cm ,∴OD=13-8=5(cm ),∴()12BD cm ==,∴AB=24cm ,故选:D .【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.6.C 【分析】根据圆周角定理可知,∠ABC=∠ADC.在Rt△ACB中,根据锐角三角函数的定义即可求出∠ABC的正切值,从而得出答案.【详解】连接BC、AC.∵∠ADC和∠ABC所对的弧都是 AC,∴根据圆周角定理知,∠ABC=∠ADC,∴在Rt△ACB中,2 tan3ACABCBC∠==,∴tan∠ADC=2 3,故选C.【点睛】本题主要考查锐角三角函数的定义和圆周角的知识点,解答本题的关键是利用圆周角定理把求∠ADC的正切值转化成求∠ABC的正切值.7.D【分析】根据三角形外心的性质,到三个顶点的距离相等,可以依次判断.【详解】答:因为三角形的外心到三角形的三个顶点的距离相等,所以由正六边形性质可知,点O 到A,B,C,D,E的距离中,只有OA=OC=OD.故选:D.【点睛】此题主要考查了三角形外心的性质,即到三角形三个顶点的距离相等.8.B【分析】连接OC ,易得四边形CDOE 是矩形,△DOE ≌△CEO ,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC ,∵∠AOB =90°,CD ⊥OA ,CE ⊥OB ,∴四边形CDOE 是矩形,∴CD ∥OE ,∴∠DEO =∠CDE ,由矩形CDOE 易得到△DOE ≌△CEO ,∴图中阴影部分的面积=扇形OBC 的面积,∵S 扇形OBC =210360n π⨯=10π,解得:n=36,∴CDE ∠=∠DEO=∠COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.9.D【分析】根据勾股定理求出AB=10,由OC 取最小值时,O 与BC 相切,证明△OCP ∽△BCD ∽△BAC 得出::3:4:5OP PC CO =,从而求出OC 的最小值.【详解】解:2S r ππ==∵圆O 的半径为1,且圆与ABC 重叠部分的面积为π,∴此圆全部在△ABC 内,如图,在Rt ABC 中,8AC =,6BC =,∴10AB =若OC 取最小值时,O 与BC 相切,设切点为P ,连接OP ,则OP ⊥BC∵CD ⊥AB∴∠OPC=∠CDB∵∠OCP=∠BCD∴△OCP ∽△BCD同理可证△BAC ∽△BCD∴△OCP ∽△BCD ∽△BAC∵::6:8:103:4:5BC AC AB ==∴::3:4:5OP PC CO =又∵OP=1∴OC=15533⨯=故选:D .【点睛】此题主要考查了相似三角形的判定与性质,勾股定理以及直线与圆的位置关系,证明△OCP ∽△BCD ∽△BAC 是解答此题的关键.10.B【分析】设(,)(0)k B x k x>,再分别表示出B ,C ,由直角三角形的性质得出BC OB =,联立方程组求出k 的值即可.【详解】解:在k y x =中,设(,)(0)k B x k x >,则3k x x+=,(,)k C x x ∵AB 经过坐标原点,∴(,)k A x x--∵ABC 为直角三角形,且30A ∠=︒,∴∠60B =︒∴1,22BC AB AB BC ==又∵2AB OB=∴BC OB=∴3k x x ⎪+=⎪⎩解得,92=k 故选:B .【点睛】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,中心对称的性质等知识,解题的关键是学会利用中心对称的性质解决问题.11.108︒【分析】先求出正n 边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为2180()n -⨯︒,∴正五边形的内角和是5218540(0)-⨯︒=︒,则每个内角的度数是5405108︒÷=︒.故答案为:108︒【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.12.10%【分析】由随机调查了1000人,其中100人看中央电视台的早间新闻,直接利用概率公式求解即可求得答案.【详解】解:∵随机调查了1000人,其中100人看中央电视台的早间新闻,∴在该镇随便问一个人,他看中央电视台早间新闻的概率大约是:10=10%100,故答案为:10%.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.30︒【分析】如图,连接,OA 先证明2,OP OA =再证明90,OAP ∠=︒利用三角函数求解60AOP ∠=︒,从而可得答案.【详解】解:如图,连接,OA ,2,OA OC OP OC == 2,OP OA ∴=PA 是O 的切线,90,OAP ∴∠=︒1cos ,2OA AOP OP ∴∠==60AOP ∴∠=︒,,AC AC= 11603022ABC AOC ∴∠=∠=⨯︒=︒,故答案为:30.︒【点睛】本题考查的是圆周角定理,圆的切线的性质,锐角三角函数的应用,掌握以上知识是解题的关键.14.83【分析】根据两角对应相等得出 AED CGD ,再根据相似三角形的性质得出=AD DE DG DC,从而得出DE 的长;【详解】解:∵四边形ABCD 是正方形,∴AD=DC=4,∠ADC=∠C=90°,∴∠GDC+∠ADG=90°,∵四边形DEFG 是矩形,∴∠EDG=∠E =90°,∴∠EDA+∠ADG=90°,∴∠GDC=∠EDA∴ AED CGD ,∴=AD DE DG DC ,∵DG=6∴4=64DE ∴83DE =【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的性质和判定是解题的关键15.③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0,b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1,∴12ba -=,∴b=-2a ;∵c+a+b >0,∴c-a >0,∴a-c <0,∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x 当p <0时,()()120<--p m x m x ∴()()120p m x m x --≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.16.11222+【分析】(1)连接DQ ,则可得四边形PDBQ DPQ BDQ S S S =+△△,根据已知条件分别表示出DPQ S 和BDQ S ,再根据AC 和PQ 的值求得四边形PDBQ 面积的最大值;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,设1BH D E ⊥于点H ,交AC 于点F ,据此可得,四边形1PD EQ 为平行四边形,因为四边形PDBQ的周长2BD PQ DP BQ EQ BQ =+++=++,周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,此时EQ BQ BE +=,再根据勾股定理求得BE 的长即可.【详解】(1)如图,连接DQ ,∴四边形PDBQ DPQ BDQ S S S =+△△,∵直角ABC 的直角边长4AB BC ==,D 是AB 中点,∴ABC 为等腰直角三角形,122BD AD AB ===,∴AC =设AP x =,∴AQ AP PQ x =+=+,∴CQ AC AQ x x =-==,设DPQ V 底边PQ 上的高为1h ,∴2h ===∴113222DPQ S PQ h =⨯⨯=⨯△,设BDQ △底边PQ 上的高为2h ,∴22h AQ ==,∴2113222222BDQ S BD h x x =⨯⨯=⨯⨯=+△,∴四边形PDBQ 3332222S x x =++=+,∴当x 最大时,四边形PDBQ 的面积最大,∵x 的最大值AC PQ =-=∴四边形PDBQ 的面积最大值1132=;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,∴四边形1PD EQ 为平行四边形,1DG AG D G ==,∴1DP D P EQ ==,又∵四边形PDBQ 的周长2BD PQ DP BQ EQ BQ =+++=++,∴周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,∴此时EQ BQ BE +=,设1BH D E ⊥于点H ,交AC 于点F ,∴BF AC ⊥,∴1DG AG D G FH ===∴BF AF ==∴BH BF FH =+==∴1FG D H AF AG ==-==∴112EH D E D H =-==,∴在Rt BEH 中,BE ==∴四边形PDBQ 的周长最小值2=.【点睛】本题考查了等腰直角三角形的性质、三角形的面积、四边形面积、四边形周长等知识,解答本题的关键是正确的作出辅助线.17.(1)1-;(2)6.【分析】(1)先计算特殊角的正弦与正切值、零指数幂,再计算实数的混合运算即可得;(2)根据比例中项的定义列出式子计算即可得.【详解】(1)原式21212⨯+-=113=+-1=-;(2)设线段a ,b 的比例中项为x ,则::a x x b =,4a = ,9b =,4::9x x ∴=,解得6x =或6x =-(不符题意,舍去),即线段a ,b 的比例中项为6.【点睛】本题考查了特殊角的正弦与正切值、零指数幂、比例中项,熟记各定义和运算法则是解题关键.18.(1)13;(2)23【分析】(1)用列举法列出所有可能出现的结果,其中“抽到1号”的有1种,即可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.【详解】(1)共有3种可能出现的结果,其中“抽到1号球”的有1种,∴“抽到1号球”的概率为13;(2)用列表法表示出所有可能出现的结果情况如下:∴由表可知,共有6种等可能结果,其中其中“和为奇数”的有4种,∴4263P ==.【点睛】本题考查了列举法、列表法求随机事件发生的概率,列举出所有可能出现的结果是解答本题的关键.19.14/km h【分析】设AB 与正北方向线交于点C ,根据已知及三角函数求得AC 、OC 的长,再根据等腰直角三角形的性质求得BC 的长,利用AB=AC+BC 求出AB 的长,再除以该船航行的时间即可求解;【详解】如图所示:设AB 与正北方向线交于点C ,∵在Rt △AOC 中,∠AOC=30°,OA=500m ,∴sin 30250AC OA m =︒= ,cos30OC OA =︒= ,∵△OBC 是等腰直角三角形,∴BC OC ==,∴250AB AC BC =+=+,∴该船的航速为:2503=5100060+÷+【点睛】本题考查了解直角三角形的知识,解一般三角形的问题一般可以转化为解直角三角形的问题,解决方法为构造直角三角形,难度一般;20.(1)见解析;(2)64【分析】(1)由平行线的性质可得∠DEB=∠FCE ,∠DBE=∠FEC ,再根据相似三角形的判定可得结论;(2)先根据35AF FC =得出58CF AC =,再根据相似三角形的判定与性质即可得出答案.【详解】(1)∵DE ∥AC ,∴∠DEB=∠FCE ,∵EF ∥AB ,∴∠DBE=∠FEC ,∴△BDE ∽△EFC ;(2)∵35AF FC =,∴58CF AC =,∵//EF AB ,∴△BAC ∽△EFC ,∴22564⎛⎫== ⎪⎝⎭ EFC ABC CF AC S S ,∵25= EFC S ,∴64= ABC S ,即△ABC 的面积为64.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的判定和性质是本题的关键.21.(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得:55706060k b k b +=⎧⎨+=⎩,解得:2180k b =-⎧⎨=⎩,∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.22.(1)①见解析;②见解析;(2)3r =【分析】(1)①直接用直径所对圆周角是90°进行解题即可;②找到∠CAD=∠ABD 和∠ADC=∠BDA ,两个角相等即可证明两个三角形相似;(2)利用锐角三角函数和相似三角形的性质即可求出半径的长度;【详解】(1)①如图所示,连接AO ,由BC 是直径得90BAC ∠= ,∵OB=OA ,∴∠B=∠OAB ,∵∠CAD=∠B ,∴∠OAD=∠OAC+∠CAD=∠OAC+∠OAB=90°,∴AD 为圆的切线;②在△ACD 和△BAD 中,∠CAD=∠ABD ,∠ADC=∠BDA ,∴△ACD ∽△BAD(2)由(1)知△ACD ∽△BAD ∴DA DC AC DB DA AB==,∵1tan 2B =,∴1tan 2AC B AB ==,∴12DA DC DB DA ==,则2AD CD =,即182AD AD BD ==,得AD=4,∴122CD AD ==,∴BC=BD-CD=8-2=6,∴半径3r =;【点睛】本题考查了直径所对圆周角等于90°,相似三角形的判定以及锐角三角函数,正确掌握知识点是解题的关键;23.(1)见解析;(2)5或10;(3)①见解析;②23.【分析】(1)分两种情况讨论,如图①,取格点,,E F 且2,3,EF AC CE CB ====连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2.CD AD BD = 从而可作出图形;(2)作BC 边上的高AH ,由3tan 4AH B BH ==tan 1,AH C CH ==可得:4,,3BH AH CH AH ==再列方程414,3AH AH +=求解6,8,6,AH BH CH ===设BD x =,则由222,AD AH DH =+2AD BD CD =⋅可得22(8)6(14)x x x -+=-,解方程可得答案;(3)①首先证得,AHC DHB ∽则该相似三角形的对应边成比例:,AH CH DH BH=即••AH BH CH DH =,由点H 是BCD △中CD 边上的“好点”,可得2•,BH CH DH =再证明,AH BH =再利用垂径定理的推论可得结论;②如图④,连接,AD 证明90,ABD ∠=︒可得AD 是直径,所以,,A O D 共线,设,OH x =则3,OA OD x ==2,BD x =再分别求解,,CH DH 从而可得答案.【详解】解:(1)如图①,取格点,,E F 且2,3,EF AC CE CB ====连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2,CD AD BD = 即D 为ABC 中边AB 上的“好点”.理由如下:如图①,90ACB CEF ∠=∠=︒,2,4,EF AC CE CB ====(),CEF BCA SAS ∴ ≌,ECF CBA ∴∠=∠90,ECF BCD ∠+∠=︒ 90BCD CBA ∴∠+∠=︒,90CDB ∴∠=︒,∴90CDA CDB ∠=∠=︒,,ACD CBD ∴ ∽,CDADBD CD ∴=2,CD AD BD ∴= 如图②, 矩形,ANBC ,CD ND AD BD ∴===2.CD AD BD ∴= (2)如图③,作BC 边上的高AH ,3tan 4AHB BH ==tan 1,AHC CH ==4,,3BH AH CH AH ∴==14,BC BH CH =+= ∴414,3AH AH +=6,8,6,AH BH CH ∴===设BD x =,则8,14,DH x CD x =-=- 222,AD AH DH =+2AD BD CD =⋅,∴22(8)6(14)x x x -+=-,215500,x x ∴-+=()()5100,x x ∴--=∴5x =或10x =,经检验:5x =或10x =都符合题意,所以BD 的长为5或10.(3)①∵,,CHA BHD ACH DBH ∠=∠∠=∠∴,AHC DHB ∽∴,AH CH DH BH =即••AH BH CH DH =,∵点H 是BCD △中CD 边上的“好点”,2•,BH CH DH ∴=2•,BH AH BH ∴=,BH AH ∴=.OH AB ∴⊥②2.3CH DH =理由如下:如图④,连接,AD //,OH BD ,OH AB ⊥∴90,ABD ∠=︒∴AD 是直径,所以,,A O D 共线,3,r OH = ∴设,OH x =则3,OA OD x ==2,BD x ∴=22223642,AB AD BD x x x ∴=-=-=,OH AB ⊥ 22222,483,AH BH x HD BD HB x x x ∴===+=+=2•,BH CH DH =22,3BH CH x DH ∴==2.3x CH DH ∴=【点睛】本题考查的是直角三角形斜边上的中线等于斜边的一半,三角形的中位线的性质,勾股定理的应用,相似三角形的判定与性质,解直角三角形的应用,垂径定理,圆周角定理,掌握以上知识是解题的关键.24.(1)y =﹣13x 2+3;(2)l==213m -+;(3,P 15)4【分析】(1)由抛物线y =ax 2+bx +3的表达式知:C (0,3),根据∠OBC =30°,得B (0),而OB =3OA ,得A0),再用待定系数法即可得y =﹣13x 2+3;(2)延长PF 交x 轴于点E ,先由B (0),C (0,3)得直线BC 的表达式为y=3-x +3,设点P (m,21333m -++),则点F (m,3-m +3),故PF =l=213m -+;(3)先证明∠OBC =30°=∠P ,在Rt △PDF 中,PD =cos30°⋅PF,DF =sin30°⋅PF =12PF ,故△PDF 的周长=PD +PF +DF+1+12)PF,可知PF 最大时,△PDF 的周长最大,而当m=2时,l 最大=94,即PF 最大为94,即可得到答案.【详解】解:(1)由抛物线y =ax 2+bx +3的表达式知:C (0,3),∴OC =3,∵∠OBC =30°,∴OB=tan 30°OC∴B(0),又OB =3OA,即3OA ,∴OA∴A(0),将A(0),B(0)代入y =ax 2+bx +3,得:0330273a a ⎧=-+⎪⎨=++⎪⎩,解得:13a b ⎧=-⎪⎪⎨⎪=⎪⎩∴y =﹣13x 2+3;(2)延长PF 交x 轴于点E,如图:设直线BC 表达式为y =sx +t ,将B(0),C (0,3)代入得:3t t ⎧+⎪⎨=⎪⎩,解得3s t ⎧=⎪⎨⎪=⎩∴直线BC 的表达式为y=3-x +3,设点P (m,2133m -++),则点F (m,+3),∴PF =l=21(3)(3)3m -++--+=213m -;(3)∵∠OBC =30°,∴∠BFE =60°=∠PFD ,∵PD ⊥BC ,∴∠P =30°,在Rt △PDF 中,PD =cos 30°⋅PFPF ,DF =sin 30°⋅PF =12PF,∴△PDF 的周长=PD +PF +DF 12)PF PF ,∴PF 最大时,△PDF 的周长最大,而由(2)知:PF =l =213m -=219()324x --+,∴当m l 最大=94,即PF 最大为94,此时,△PDF∴点P 的坐标为15()24,△PDF 的周长最大值为278+.【点睛】本题考查二次函数综合应用,涉及待定系数法、二次函数图象上点坐标的特征、解直角三角形、三角形周长等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.。
期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC ̂上的点,若∠BOC=40°,则∠D 的度数为( )A. 100°B. 110°C. 120°D. 130° 2.两个相似多边形一组对应边分别为3 cm ,4.5 cm ,那么它们的相似比为( ) A. 23 B. 32 C. 49 D. 94 3.在某幅地图上,AB 两地距离8.5cm ,实际距离为170km ,则比例尺为( ) A. 1:20 B. 1:20000 C. 1:200000 D. 1:2000000 4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC=5cm ,CD=8cm ,则AE=( )A. 8cmB. 5cmC. 3cmD. 2cm5.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①b <0;②4a+2b+c <0;③a ﹣b+c >0;④(a+c )2<b 2.其中正确的结论是( )A. ①②B. ①③C. ①③④D. ①②③④6.围棋盒子中有x 颗白色棋子和y 颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是23.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子( )A. 4颗B. 6颗C. 8颗D. 12颗7.一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。
如果任意抛掷小正方体两次,那么下列说法正确的是( )A. 得到的数字之和必然是4B. 得到的数字之和可能是3C. 得到的数字之和不可能是2D. 得到的数字之和有可能是1 8.函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( ).A. a>0B. a−b+c<0C. c<0D. 当−1<x<3时,y>09.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是()A. (-1.4,-1.4)B. (1.4,1.4)C. (- ,- )D. (,)10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是________.12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=________°.13.如图,AB、CD是⊙O的两条弦,若∠AOB+∠C=180°,∠COD=∠A,则∠AOB= ________14.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=________时,以A、D、E为顶点的三角形与△ABC相似.15.已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.16.某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t﹣1.5t2,那么飞机着陆后滑行________ 米才能停止.17.已知点P为平面内一点,若点P 到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为________.18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________19.如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为________ .20.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 √2,则另一直角边AE的长为________.三、解答题(共8题;共60分)21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图,一位测量人员,要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使ODOB =OEOA=13,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.23.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.24.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:.25.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)26.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?27.如图,直线BC与半径为6的⊙O相切于点B,点M是圆上的动点,过点M作MC⊥BC,垂足为C,MC与⊙O交于点D,AB为⊙O的直径,连接MA、MB,设MC的长为x,(6<x<12).(1)当x=9时,求BM的长和△ABM的面积;(2)是否存在点M,使MD•DC=20?若存在,请求出x的值;若不存在,请说明理由.28.甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨·千米”表示每吨水泥运送1千米所需要人民币).(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?答案解析部分一、单选题1.【答案】B2.【答案】A3.【答案】D4.【答案】A5.【答案】C6.【答案】C7.【答案】B8.【答案】B9.【答案】D 10.【答案】C二、填空题11.【答案】25 12.【答案】55 13.【答案】108° 14.【答案】125 , 5315.【答案】(0,10) 16.【答案】600 17.【答案】2或3 18.【答案】1319.【答案】2 20.【答案】10三、解答题21.【答案】解答:如图,∵∠BAD=∠CAE , ∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC . 又∵∠B=∠D , ∴△ABC ∽△ADE .22.【答案】解: ∵ ODOB =OEOA ,∠AOB =∠EOD (对顶角相等), ∴ △AOB ∼△EOD , ∴ ODOB =OE OA =13, ∴37.2AB =13, 解得AB =111.6米.所以,可以求出A 、B 之间的距离为111.6米23.【答案】解:图中的弧为BC,AB,AC,ACB,BAC,ABC. 24.【答案】解:∵共3红2黄1绿相等的六部分, ∴①指针指向红色的概率为36=12; ②指针指向绿色的概率为16; ③指针指向黄色的概率为26=13;④指针不指向黄色为56,(1)可能性最大的是④,最小的是②; (2)由题意得:②<③<①<④, 故答案为:②<③<①<④.25.【答案】解:设男同学标记为A 、B ;女学生标记为1、2,可能出现的所有结果列表如下:场参赛的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为212=16 26.【答案】解:连CO ∵DC ⊥AD ,CE ⊥OB CD=EC ∠1=∠227.【答案】证明:(1)∵直线BC 与半径为6的⊙O 相切于点B ,且AB 为⊙O 的直径, ∴AB ⊥BC , 又∵MC ⊥BC , ∴AB ∥MC , ∴∠BMC=∠ABM , ∵AB 是⊙O 的直径, ∴∠AMB=90°, ∴∠BCM=∠AMB=90°, ∴△BCM ∽△AMB , ∴BM AB=MC BM,∴BM 2=AB•MC=12×9=108, ∴BM=6√3, ∵BC 2+MC 2=BM 2, ∴BC=√BM 2−MC 2=3√3∴S △ABM =12AB•BC=12×12×3√3=18√3; (2)解:过O 作OE ⊥MC ,垂足为E , ∵MD 是⊙O 的弦,OE ⊥MD , ∴ME=ED ,又∵∠CEO=∠ECB=∠OBC=90°, ∴四边形OBCE 为矩形, ∴CE=OB=6, 又∵MC=x ,∴ME=ED=MC ﹣CE=x ﹣6,MD=2(x ﹣6), ∴CD=MC ﹣MD=x ﹣2(x ﹣6)=12﹣x ,∴MD•DC=2(x﹣6)•(12﹣x)=﹣2x2+36x﹣144=﹣2(x﹣9)2+18∵6<x<12,∴当x=9时,MD•DC的值最大,最大值是18,∴不存在点M,使MD•DC=20.28.【答案】(1)解:设甲库运往A地粮食x吨,则甲库运到B地(100-x)吨,乙库运往A地(70-x)吨,乙库运到B地[80-(70-x)]=(10+x)吨.根据题意得:w=12×20x+10×25(100-x)+12×15(70-x)+8×20(10+x)=-30x+39200(0≤x≤70).∴总运费w(元)关于x(吨)的函数关系式为w=-30x+39200(0≤x≤70).∵一次函数中w=-30x+39200中,k=-30<0∴w的值随x的增大而减小∴当x=70吨时,总运费w最省,最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元.(2)解:因为运费不能超过38000元,所以w=-30x+39200≤38000,所以x≥40.又因为40≤x≤70,所以满足题意的x值为40,50,60,70,所以总共有4种方案.。
浙教版九年级数学第一学期期末教学质量检测试题卷考生须知:1. 本试卷满分120分,考试时间为100分钟.2. 答题前,在答题纸上写姓名和准考证号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效,答题方式详见答题纸上的说明,考试结束后,上交答题纸.一、选择题(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1.已知反比例函数是xy 2=,则它的图象在( ▲ ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 2.已知31=-a b a ,则ab的值为( ▲ ) A .2 B .21 C .23D .323.在Rt △ABC 中,∠A =Rt ∠,AB =3,BC =4,则cosB =( ▲ ) A .43 B .47 C .53 D .544.如图,DE 是△ABC 的中位线,则△ADE 与四边形BCED 的面积的比是( ▲ ) A .1:5 B .1:4 C .1:3 D .1:2 5.若函数xm y 2+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ )A .2-<mB .0<mC .2->mD .0>m6.如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是( ▲ )A .点PB .点QC .点RD .点M(第4题图) (第6题图) (第7题图) 7.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( ▲ )A .36°B .46°C .27°D .63°8.已知直线l 1∥l 2∥l 3∥l 4,相邻的两条平行直线间的距离均为h ,矩形ABCD 的四个顶点分别在这四条直线上,放置方式如图所示,AB =4,BC =6,则tanα的值等于( ) A .23 B .43 C .34D .32(第8题图) (第9题图)9.如图,一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…如此进行下去,直至得C 13.若P (38,m )在第13段抛物线C 13上,则m 的值为( ▲ ) A .5B .4C .3D .210.若实数a ,b ,c ,满足a ≥b ≥c ,4a +2b +c =0且a ≠0,抛物线y =ax 2+bx +c 与x 轴交于A (x 1,0),B (x 2,0),则线段AB 的最大值是( ▲ ) A .2B .3C .4D .5二、填空题(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.已知:锐角α满足sinα=22,则α= ▲ 12.用一圆心角为120°,半径为6㎝的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是 ▲ ㎝13.如图,D 是△ABC 的边BC 上一点,已知AB =4,AD =2,∠DAC =∠B ,若△ABC 的面积为m ,则△ACD 的面积为 ▲14.对于抛物线y =-(x +1)2+3,下列结论:①抛物线开口向下;②对称轴为直线x =1;③顶点坐标为(-1,3);④x ≥1时,y 随x 的增大而减小,其中正确的结论是 ▲ .(第13题图) (第15题图) (第16题图)15.如图,AB 是⊙O 的直径,弦BC =4㎝,F 是弦BC 的中点,∠ABC =60°,若动点E 以1㎝/s 的速度从A 点出发在AB 上沿着A →B →A 运动,设运动时间为t (s )(0≤t <16),连接EF ,当△BEF 是直角三角形时,t (s )的值为 ▲16.如图,已知Rt △ABC ,AB ∥y 轴,BC ∥x 轴,且点B 的坐标为(-1,-3),∠A =30°,点A 、C 在反比例函数()0<=k xky 图象上,线段AC 过原点O ,若M (a ,b )是该反比例函数图象在第二象限上的点,且满足∠BMC >30°,则a 的取值范围是 ▲ . 三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤。
期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC ̂上的点,若∠BOC=40°,则∠D 的度数为( )A. 100°B. 110°C. 120°D. 130° 2.两个相似多边形一组对应边分别为3 cm ,4.5 cm ,那么它们的相似比为( ) A. 23 B. 32 C. 49 D. 94 3.在某幅地图上,AB 两地距离8.5cm ,实际距离为170km ,则比例尺为( ) A. 1:20 B. 1:20000 C. 1:200000 D. 1:2000000 4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC=5cm ,CD=8cm ,则AE=( )A. 8cmB. 5cmC. 3cmD. 2cm5.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①b <0;②4a+2b+c <0;③a ﹣b+c >0;④(a+c )2<b 2.其中正确的结论是( )A. ①②B. ①③C. ①③④D. ①②③④6.围棋盒子中有x 颗白色棋子和y 颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是23.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子( )A. 4颗B. 6颗C. 8颗D. 12颗7.一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。
如果任意抛掷小正方体两次,那么下列说法正确的是( )A. 得到的数字之和必然是4B. 得到的数字之和可能是3C. 得到的数字之和不可能是2D. 得到的数字之和有可能是1 8.函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( ).A. a>0B. a−b+c<0C. c<0D. 当−1<x<3时,y>09.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是()A. (-1.4,-1.4)B. (1.4,1.4)C. (- ,- )D. (,)10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是________.12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=________°.13.如图,AB、CD是⊙O的两条弦,若∠AOB+∠C=180°,∠COD=∠A,则∠AOB= ________14.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=________时,以A、D、E为顶点的三角形与△ABC相似.15.已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.16.某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t﹣1.5t2,那么飞机着陆后滑行________ 米才能停止.17.已知点P为平面内一点,若点P 到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为________.18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________19.如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为________ .20.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 √2,则另一直角边AE的长为________.三、解答题(共8题;共60分)21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图,一位测量人员,要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使ODOB =OEOA=13,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.23.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.24.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:.25.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)26.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?27.如图,直线BC与半径为6的⊙O相切于点B,点M是圆上的动点,过点M作MC⊥BC,垂足为C,MC与⊙O交于点D,AB为⊙O的直径,连接MA、MB,设MC的长为x,(6<x<12).(1)当x=9时,求BM的长和△ABM的面积;(2)是否存在点M,使MD•DC=20?若存在,请求出x的值;若不存在,请说明理由.28.甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨·千米”表示每吨水泥运送1千米所需要人民币).(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?答案解析部分一、单选题1.【答案】B2.【答案】A3.【答案】D4.【答案】A5.【答案】C6.【答案】C7.【答案】B8.【答案】B9.【答案】D 10.【答案】C二、填空题11.【答案】25 12.【答案】55 13.【答案】108° 14.【答案】125 , 5315.【答案】(0,10) 16.【答案】600 17.【答案】2或3 18.【答案】1319.【答案】2 20.【答案】10三、解答题21.【答案】解答:如图,∵∠BAD=∠CAE , ∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC . 又∵∠B=∠D , ∴△ABC ∽△ADE .22.【答案】解: ∵ ODOB =OEOA ,∠AOB =∠EOD (对顶角相等), ∴ △AOB ∼△EOD , ∴ ODOB =OE OA =13, ∴37.2AB =13, 解得AB =111.6米.所以,可以求出A 、B 之间的距离为111.6米23.【答案】解:图中的弧为BC,AB,AC,ACB,BAC,ABC. 24.【答案】解:∵共3红2黄1绿相等的六部分, ∴①指针指向红色的概率为36=12; ②指针指向绿色的概率为16; ③指针指向黄色的概率为26=13;④指针不指向黄色为56,(1)可能性最大的是④,最小的是②; (2)由题意得:②<③<①<④, 故答案为:②<③<①<④.25.【答案】解:设男同学标记为A 、B ;女学生标记为1、2,可能出现的所有结果列表如下:场参赛的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为212=16 26.【答案】解:连CO ∵DC ⊥AD ,CE ⊥OB CD=EC ∠1=∠227.【答案】证明:(1)∵直线BC 与半径为6的⊙O 相切于点B ,且AB 为⊙O 的直径, ∴AB ⊥BC , 又∵MC ⊥BC , ∴AB ∥MC , ∴∠BMC=∠ABM , ∵AB 是⊙O 的直径, ∴∠AMB=90°, ∴∠BCM=∠AMB=90°, ∴△BCM ∽△AMB , ∴BM AB=MC BM,∴BM 2=AB•MC=12×9=108, ∴BM=6√3, ∵BC 2+MC 2=BM 2, ∴BC=√BM 2−MC 2=3√3∴S △ABM =12AB•BC=12×12×3√3=18√3; (2)解:过O 作OE ⊥MC ,垂足为E , ∵MD 是⊙O 的弦,OE ⊥MD , ∴ME=ED ,又∵∠CEO=∠ECB=∠OBC=90°, ∴四边形OBCE 为矩形, ∴CE=OB=6, 又∵MC=x ,∴ME=ED=MC ﹣CE=x ﹣6,MD=2(x ﹣6), ∴CD=MC ﹣MD=x ﹣2(x ﹣6)=12﹣x ,∴MD•DC=2(x﹣6)•(12﹣x)=﹣2x2+36x﹣144=﹣2(x﹣9)2+18∵6<x<12,∴当x=9时,MD•DC的值最大,最大值是18,∴不存在点M,使MD•DC=20.28.【答案】(1)解:设甲库运往A地粮食x吨,则甲库运到B地(100-x)吨,乙库运往A地(70-x)吨,乙库运到B地[80-(70-x)]=(10+x)吨.根据题意得:w=12×20x+10×25(100-x)+12×15(70-x)+8×20(10+x)=-30x+39200(0≤x≤70).∴总运费w(元)关于x(吨)的函数关系式为w=-30x+39200(0≤x≤70).∵一次函数中w=-30x+39200中,k=-30<0∴w的值随x的增大而减小∴当x=70吨时,总运费w最省,最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元.(2)解:因为运费不能超过38000元,所以w=-30x+39200≤38000,所以x≥40.又因为40≤x≤70,所以满足题意的x值为40,50,60,70,所以总共有4种方案.。
第4题图浙教版九年级数学第一学期期末检测试卷满分150分,考试时间为120分钟,不能使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线2y ax bx c =++的顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,一、选择题(每小题4分,共48分) 1. 反比例函数xy 3-= 的图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 2.若抛物线2y ax =经过点P (1,-3),则此抛物线也经过点( ) A .P (1,3)- B .P (1,3)-- C .P (1,3) D .P (3,1)- 3. 二次函数y =ax 2+ bx , 若a +b =1,则它的图象必经过点( )A .(1,1)--B .(1,1)-C .(1,1)-D .(1, 1) 4.如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于点B ,若S △AOB =3,则k 的值为( ) A .1.5 B .3C .6D .3或3-5.如图,点D 在△ABC 边BC 上,且ADC BAC ∠=∠,若CD =2, BC =8,则AC 的长为( ) A.33+B.3 C .1或4D .46.底面半径3cm ,高为4cm 的圆锥的侧面积为( )cm 2A .12πB .15πC .30πD .24π7.已知P 是线段AB 的黄金分割点,且AP PB >,10AB =,则AP 长约为( ) A .0.618 B . 6.18 C . 3.82 D .0.3828.如图,C 是以AB 为直径的⊙O 上一点,已知AB =5,BC =3,则圆心O 到弦BC 的距离是( ) A .1.5 B .2 C .2.5 D .3 9.把抛物线2y x =向右平移2个单位得到的抛物线是( )A .22y x =+B .22y x =-C .2(2)y x =+D .2(2)y x =-10.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 ( )BA第8题图第5题图y–1 33O x第10题图P1 第15题图11. 直线l 1∥l 2∥l 3,且l 1与l 2的距离为1,l 2与l 3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A ,B ,C 恰好分别落在三条直线上,AC 与直线l 2交于点D ,则线段BD 的长度为( ) A .254B .253C .203D .15412.如图,在直角坐标系xOy 中,点O 为坐标原点,等腰直角△OAB 的顶点A 、B 在某反比例函数的图象上,且点A 在第一象限横坐标为4,则△OAB 的面积是( )A .8B .16C .2045-D .4085- 二、填空题(每题4分,共24分)13. 如图,∠1=∠2,添加一个条件使得△ADE ∽△ABC ,你添加的是14. 把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =16(cm ),则球的半径为cm .15. 如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠D = ° 16.已知抛物线2223y x x m m =-++-的图象经过(1,0),则m =___________ 17.如图,点D 、E 分别在△ABC 的边上AB 、AC 上,且AB C AED ∠=∠,若DE =4,BC =6,AB =8,则AE 的长为___________18.如图△ABC 中,∠C =90°, AC =3,BC =4,CD 是AB 边上的高,分别以AC 、BC 为直径的半圆交于 C 、D 两点,则图中的阴影部分的面积是 三、解答题(共78分)D_ C_ B_ A第18题图EDCBA第17题图第11题图第12题图YX86422468510BAOABC DO12第21题图19. (6分)点P (2,1)在反比例函数xky =的图象上. (1)求该反比例函数解析式;(2)如果A (-1,1b ),B (-2,2b )也是该图象上的两点,试比较1b 与2b 的大小.20. (6分)如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.21.(8分)已知:如图,A 、B 、C 、D 是⊙O 上的点,∠1=∠2,AC =3cm . (1)求证:AC BD =;(2)能否求出BD 的长?如能,求出BD 的长;如不能,说明理由.22.(8分)如图,扇形OAB 的圆心角为120°,半径为6cm .(1) 请用尺规作出此扇形的对称轴(不写作法,保留作图痕迹); (2)此扇形围成一个圆锥的侧面 (不计接缝),求圆锥的底面半径.23.(12分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?24.(12分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C'处,BC′交AD于点G;E、F分别是C D'和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D'处,点D'恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求AGAB的值;(3)求EF的长.25.(12分)如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数12(0)y xx=>图象上任意一点,以P(1)求证:线段AB为⊙P的直径;(2)求△AOB的面积;(3)如图2,Q是反比例函数12(0)y xx=>图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D。
期末综合达标测试卷
(满分:120分时间:120分钟)
一、选择题(每小题3分,共30分)
1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有(B) A.4个B.3个
C.2个D.1个
2.如图,在△ABC中,D、E两点分别在BC、AC边上.若BD=CD,∠B=∠CDE,DE=2,则AB的长为(A)
第2题
A.4 B.5
C.6 D.7
3.如图,⊙O的直径CD⊥AB,∠AOC=50°,则∠CDB的度数为(A)
第3题
A.25°B.30°
C.40°D.50°
4.如图,在△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的点C′处,并且C′D∥BC,则CD的长是(A)
第4题
A.40
9
B.
50
9
C.15
4
D.
25
4
5.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,。
期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是AĈ上的点,若∠BOC=40°,则∠D的度数为()A. 100°B. 110°C. 120°D. 130°2.两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为( )A. 23B.32C.4 9D. 943.在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为()A. 1:20B. 1:20000 C. 1:200000 D. 1:20000004.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A. 8cmB. 5cmC. 3cmD. 2cm5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正确的结论是()A. ①②B. ①③C. ①③④D. ①②③④6.围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是23.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()颗 D. 12颗7.一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。
如果任意抛掷小正方体两次,那么下列说法正确的是()A. 得到的数字之和必然是4 B. 得到的数字之和可能是3C. 得到的数字之和不可能是2 D. 得到的数字之和有可能是18.函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是().A. a>0B. a−b+c<0 C. c<0D. 当−1<x<3时,y>09.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是()A. (-1.4,-1.4)B. (1.4,1.4)C. (-,- ) D. (,)10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.个 D. 4个二、填空题(共10题;共30分)11.在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是________.12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=________°.13.如图,AB、CD是⊙O的两条弦,若∠AOB+∠C=180°,∠COD=∠A,则∠AOB=________14.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= ________时,以A、D、E为顶点的三角形与△ABC相似.15.已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.16.某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t﹣1.5t2,那么飞机着陆后滑行________ 米才能停止.17.已知点P为平面内一点,若点P 到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为________.18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________19.如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为________ .20.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 √2,则另一直角边AE的长为________.三、解答题(共8题;共60分)21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图,一位测量人员,要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使ODOB =OEOA=13,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.23.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.24.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:.25.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)26.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?27.如图,直线BC与半径为6的⊙O相切于点B,点M是圆上的动点,过点M作MC⊥BC,垂足为C,MC与⊙O 交于点D,AB为⊙O的直径,连接MA、MB,设MC的长为x,(6<x<12).(1)当x=9时,求BM的长和△ABM的面积;(2)是否存在点M,使MD•DC=20?若存在,请求出x的值;若不存在,请说明理由.28.甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨·千米”表示每吨水泥运送1千米所需要人民币).(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?答案解析部分一、单选题 1.【答案】B 2.【答案】A 3.【答案】D 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】B 8.【答案】B 9.【答案】D 10.【答案】C 二、填空题 11.【答案】25 12.【答案】55 13.【答案】108° 14.【答案】125 , 53 15.【答案】(0,10) 16.【答案】600 17.【答案】2或3 18.【答案】1319.【答案】2 20.【答案】10 三、解答题21.【答案】解答:如图,∵∠BAD=∠CAE , ∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC . 又∵∠B=∠D , ∴△ABC∽△ADE .22.【答案】解: ∵ ODOB =OEOA ,∠AOB =∠EOD (对顶角相等), ∴ △AOB ∼△EOD , ∴ ODOB =OEOA =13, ∴ 37.2AB =13, 解得AB =111.6米.所以,可以求出A 、B 之间的距离为111.6米23.【答案】解:图中的弧为BC,AB,AC,ACB,BAC,ABC. 24.【答案】解:∵共3红2黄1绿相等的六部分, ∴①指针指向红色的概率为36=12; ②指针指向绿色的概率为16; ③指针指向黄色的概率为26=13;④指针不指向黄色为56,(1)可能性最大的是④,最小的是②; (2)由题意得:②<③<①<④, 故答案为:②<③<①<④.25.【答案】解:设男同学标记为A 、B ;女学生标记为1、2,可能出现的所有结果列表如下:的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为212=16 26.【答案】解:连CO ∵DC⊥AD,CE⊥OB CD=EC ∠1=∠227.【答案】证明:(1)∵直线BC 与半径为6的⊙O 相切于点B ,且AB 为⊙O 的直径, ∴AB⊥BC, 又∵MC⊥BC, ∴AB∥MC, ∴∠BMC=∠ABM, ∵AB 是⊙O 的直径, ∴∠AMB=90°, ∴∠BCM=∠AMB=90°, ∴△BCM∽△AMB, ∴BMAB =MCBM ,∴BM 2=AB•MC=12×9=108, ∴BM=6√3, ∵BC 2+MC 2=BM 2, ∴BC=√BM 2−MC 2=3√3∴S △ABM =12AB•BC=12×12×3√3=18√3; (2)解:过O 作OE⊥MC,垂足为E , ∵MD 是⊙O 的弦,OE⊥MD, ∴ME=ED,又∵∠CEO=∠ECB=∠OBC=90°, ∴四边形OBCE 为矩形, ∴CE=OB=6, 又∵MC=x,∴ME=ED=MC﹣CE=x ﹣6,MD=2(x ﹣6), ∴CD=MC﹣MD=x ﹣2(x ﹣6)=12﹣x ,∴MD•DC=2(x﹣6)•(12﹣x)=﹣2x2+36x﹣144=﹣2(x﹣9)2+18∵6<x<12,∴当x=9时,MD•DC的值最大,最大值是18,∴不存在点M,使MD•DC=20.28.【答案】(1)解:设甲库运往A地粮食x吨,则甲库运到B地(100-x)吨,乙库运往A地(70-x)吨,乙库运到B地 [80-(70-x)]=(10+x)吨.根据题意得:w=12×20x+10×25(100-x)+12×15(70-x)+8×20(10+x)=-30x+39200(0≤x≤70).∴总运费w(元)关于x(吨)的函数关系式为w=-30x+39200(0≤x≤70).∵一次函数中w=-30x+39200中,k=-30<0∴w的值随x的增大而减小∴当x=70吨时,总运费w最省,最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元.(2)解:因为运费不能超过38000元,所以w=-30x+39200≤38000,所以x≥40.又因为40≤x≤70,所以满足题意的x值为40,50,60,70,所以总共有4种方案.。
期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB 是半圆的直径,0为圆心,C 是半圆上的点,D 是 上的点,若/ BOC=40,则/ D 的度数为()A. 100 °B. 110 °C.120 °D. 1302•两个相似多边形一组对应边分别为 3 cm , 4.5 cm ,那么它们的相似比为()A. -B.C.D. 3. 在某幅地图上,AB 两地距离8.5cm ,实际距离为170km ,则比例尺为( ) A. 1:20" B.1 20000" C.1 200000D.1 20000004. 如图,AB 是O O 的直径,弦 CD 丄 AB 于点 E , OC=5cm , CD=8cm,贝U AE=()6.围棋盒子中有x 颗白色棋子和y 颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是-•如果在原有的棋子中再放进 4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是 -,则原来盒子中有白色棋子( )A. 4 颗B. 6 颗C. 8 颗D. 12 颗B. 5cmC. 3cmD. 2 cm2 .. ..5. 已知二次函数y=ax+bx+c ( a 工0的图象如图所示,下列结v 0;② 4a+2b+c v 0;③a - b+c > 0;C.①③④D.①②③④ A. 8cm A.①② B.①③7•—个质地均匀的小正方体的六面上都标有数字, 下列说法正确的是()A. (-1.4,-1.4)B.( 1.4,1.4)C.(-」,-,r)D.(」,」)210. 如图,二次函数 y=ax+bx+c (a 工)的图象与x 轴交于点A 、B 两点,与y 轴交于点C,对称轴为直线 x= -1,点B 的坐标为(1, 0),则下列结论: ①AB=4 ;②b 2 - 4ac > 0;③ab v 0;④a 2- ab+ac v 0,其中 正确的结论有()个.111J\ ! A \\0 p xA. 1个B.个乙填空题(共10题;共30分)11. 在一个不透明的纸箱内放有除颜色外无其他差别的 2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是 __________ .12. 如图,把△ ABC 绕C 点顺时针旋转 35 °得到厶A ' B,'AC' 交 AC 于点D,若/ A ' DC=90则/ A= _________1, 2,3, 4,5, 6。
浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm2.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A. ∠ABD=∠CB. ∠ADB=∠ABCC.D.3.抛物线y=3x2,y=-3x2,y= x2+3共有的性质是()A. 开口向上B. 对称轴是y轴C. 都有最高点D. y随x值的增大而增大4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()A. k>-B. k>- 且k≠0C. k≥-D. k≥- 且k≠05.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A. 0.5mB. 0.55mC. 0.6mD. 2.2m6.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,若AD=2BD,则的值为()A. B. C. D.7.平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为( )A. (1,)B. ( -1,)C. (0,2)D. (2,0)8.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A. 70°B. 50°C. 40°D. 35°9.两个相似三角形的相似比为2:3,它们的面积之差为25cm2,则较大三角形的面积是()A. 75cm2B. 65cm2C. 50cm2D. 45cm210.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有()A. 2个B. 3个C. 4个D. 5个二、填空题(共10题;共30分)11.如图,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形,如________.12. 如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.15.如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB交BC于E,交AC于F.若AB=12,那么EF=________.16.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为________ 元时,可获得最大利润.17.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).18.如果2+ 是方程的一个根,那么c的值是________.19.如图,在直角坐标系中,点A在y轴上,△OAB是等腰直角三角形,斜边OA=2,将△OAB绕点O逆时针旋转90°得△′′,则点′的坐标为________20.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m (0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________ .三、解答题(共8题;共60分)21.如图,已知△ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)(1)画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转180°后的△A2B2C2,并写出点A2的坐标;(3)直接回答:∠AOB与∠A2OB2有什么关系?22.已知:如图所示,AD=BC。
浙教版九年级数学上册综合检测试卷(全册)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.甲乙两人做游戏,同时掷两枚相同的硬币,双方约定:同面朝上甲胜,异面朝上则乙胜,则这个游戏对双方()A.公平B.对甲有利C.对乙有利D.无法确定公平性2.两个相似多边形对应边之比等于,那么这两个相似多边形面积之比等于()A. B. C. D.3.将二次函数的图象先向右平移个单位,再向上平移个单位后得到的抛物线的函数表达式为()A. B.C. D.4.下列说法正确的是()A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆5.如图,的两弦、相交于点,,是的中点,,则A. B. C. D.6.已知二次函数,当时,的最大值和最小值是()A.,B.,C.,D.,7.如图,、、、四点在同一个圆上.下列判断正确的是()A. B.当为圆心时,C.若是的中点,则一定是此圆的圆心D.8.先作半径为的圆的内接正方形,接着作上述内接正方形的内切圆,再作上述内切圆的内接正方形,…,则按以上规律作出的第个圆的内接正方形的边长为()A. B. C. D.9.把二次函数化成(其中、是常数)的形式的结果为()A. B.C. D.10.如图,将腰长为的等腰绕点旋转至的位置,使、、三点在同一条直线上,则点经过的最短路线长是()A. B.C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.若二次函数的图象如图所示,则________;方程的根是________,________,对称轴是________.12.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过分钟旋转了________.13.已知二次函数的图象如图所示,则关于的一元二次方程的根为________;不等式的解集是________;当________时,随的增大而减小.14.如图,在四边形中,,将绕点顺时针旋转后,点的对应点恰好与点重合,得到,若,,则________(提示:可连接)15.如图,直线和抛物线都经过点,,不等式的解集为________.16.某种商品每件的进价为元,在某段时间内若以每件元出售,可卖出件,设这种商品的利润为元,则与的函数关系式为________(化成一般式).17.飞机着陆后滑行的距离(米)关于滑行的时间(秒)的函数解析式是.则飞机着陆后滑行到停下来滑行的距离为________米.18.如图所示,顶角为的第一个黄金三角形的腰,底边与腰之比为,三角形为第二个黄金三角形,依此类推,第个黄金三角形的周长为________.19.如图,中,,,,,则________.20.如图,长方形中,,,是边上一点(不与、重合),是边上一点(不与、重合).若和是相似三角形,则________.三、解答题(共 8 小题,共 60 分)21.(4分) 在平面直角坐标系中,的顶点坐标分别是,,.作出关于原点成中心对称的;以点为位似中心,在的同侧作出相似比为,放大后的.22.(8分) 如图,是的内接三角形,,是上一点,的延长线交于点.(1)与相似吗?为什么?图中还有哪几对相似三角形?23.(8分) 如图,在四边形中,,,是延长线上一点,若,,连接,.求证:;试求出线段的长.24.(8分)中央电视台“幸运”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在个商标牌中,有个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?25.(8分)如图,为半圆直径,为上一点,分别在半圆上取点、,使,,过作的垂线,交半圆于.求证:平分.26.(8分)已知:如图所示,要在高,底边的三角形余料中截出一个正方形板材.求正方形的边长.27.(8分)给你枚骰子,如何检测这枚骰子质地是否均匀?(骰子均匀的标准是:出现、、、、、向上的概率相同,概率越接近骰子质地越均匀)请你设计一个表格,用统计的方法检测枚骰予的质量.28.(8分) 如图,在中,,以点为圆心,长为半径的圆交于点,的延长线交于点,连接,,是上一点,点与点位于两侧,且,连接.(1)证:;(2),,求的长及的值.答案1.A2.A3.D4.D5.B6.B7.B8.A9.A10.B11.12.13.或14.15.16.17.18.19.20.或21.解:如图所示:,即为所求;如图所示:,即为所求..22.解:∵,∴,∴,,∴;解:,,相似三角形有:,,.23.解:证明:在四边形中,∵,∴,∴,又∵,∴,在和中,,∴;∴,∵∴,∵,∴.解:∵,∴,,∵,∴,∴是等腰直角三角形,∵,∴,∴.24.解:∵个商标中个已翻出,还剩张,张中还有张有奖的,∴第三次翻牌获奖的概率是:.25.证明:如图,分别过点、作的垂线,、为垂足,连、.易知:,.二式相减得:,或.于是:,或.∴.显然,.故平分.26.解:设正方形的边长为,∵四边形是正方形,∴,,∴,∴,∵,,,∴,∴,∴正方形的边长为.27.解:填表如下:28.∵,∴,∵是的直径,∴,∴,∵,∴,∴,∵,,∴,∴,∵,,∴,,∴,在中,,∴,,过点作于,∵,,∴,∴,∵,∴,,∴,过点作于,∴,∵,∴,∴,∴四边形是矩形,∴,,∴,在中,,在中,.。
浙教版九年级数学上册综合检测试卷(全册)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.甲乙两人做游戏,同时掷两枚相同的硬币,双方约定:同面朝上甲胜,异面朝上则乙胜,则这个游戏对双方()A.公平B.对甲有利C.对乙有利D.无法确定公平性2.两个相似多边形对应边之比等于,那么这两个相似多边形面积之比等于()A. B. C. D.3.将二次函数的图象先向右平移个单位,再向上平移个单位后得到的抛物线的函数表达式为()A. B.C. D.4.下列说法正确的是()A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆5.如图,的两弦、相交于点,,是的中点,,则A. B. C. D.6.已知二次函数,当时,的最大值和最小值是()A.,B.,C.,D.,7.如图,、、、四点在同一个圆上.下列判断正确的是()A. B.当为圆心时,C.若是的中点,则一定是此圆的圆心D.8.先作半径为的圆的内接正方形,接着作上述内接正方形的内切圆,再作上述内切圆的内接正方形,…,则按以上规律作出的第个圆的内接正方形的边长为()A. B. C. D.9.把二次函数化成(其中、是常数)的形式的结果为()A. B.C. D.10.如图,将腰长为的等腰绕点旋转至的位置,使、、三点在同一条直线上,则点经过的最短路线长是()A. B.C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.若二次函数的图象如图所示,则________;方程的根是________,________,对称轴是________.12.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过分钟旋转了________.13.已知二次函数的图象如图所示,则关于的一元二次方程的根为________;不等式的解集是________;当________时,随的增大而减小.14.如图,在四边形中,,将绕点顺时针旋转后,点的对应点恰好与点重合,得到,若,,则________(提示:可连接)15.如图,直线和抛物线都经过点,,不等式的解集为________.16.某种商品每件的进价为元,在某段时间内若以每件元出售,可卖出件,设这种商品的利润为元,则与的函数关系式为________(化成一般式).17.飞机着陆后滑行的距离(米)关于滑行的时间(秒)的函数解析式是.则飞机着陆后滑行到停下来滑行的距离为________米.18.如图所示,顶角为的第一个黄金三角形的腰,底边与腰之比为,三角形为第二个黄金三角形,依此类推,第个黄金三角形的周长为________.19.如图,中,,,,,则________.20.如图,长方形中,,,是边上一点(不与、重合),是边上一点(不与、重合).若和是相似三角形,则________.三、解答题(共 8 小题,共 60 分)21.(4分) 在平面直角坐标系中,的顶点坐标分别是,,.作出关于原点成中心对称的;以点为位似中心,在的同侧作出相似比为,放大后的.22.(8分) 如图,是的内接三角形,,是上一点,的延长线交于点.(1)与相似吗?为什么?图中还有哪几对相似三角形?23.(8分) 如图,在四边形中,,,是延长线上一点,若,,连接,.求证:;试求出线段的长.24.(8分)中央电视台“幸运”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在个商标牌中,有个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?25.(8分)如图,为半圆直径,为上一点,分别在半圆上取点、,使,,过作的垂线,交半圆于.求证:平分.26.(8分)已知:如图所示,要在高,底边的三角形余料中截出一个正方形板材.求正方形的边长.27.(8分)给你枚骰子,如何检测这枚骰子质地是否均匀?(骰子均匀的标准是:出现、、、、、向上的概率相同,概率越接近骰子质地越均匀)请你设计一个表格,用统计的方法检测枚骰予的质量.28.(8分) 如图,在中,,以点为圆心,长为半径的圆交于点,的延长线交于点,连接,,是上一点,点与点位于两侧,且,连接.(1)证:;(2),,求的长及的值.答案1.A2.A3.D4.D5.B6.B7.B8.A9.A10.B11.12.13.或14.15.16.17.18.19.20.或21.解:如图所示:,即为所求;如图所示:,即为所求..22.解:∵,∴,∴,,∴;解:,,相似三角形有:,,.23.解:证明:在四边形中,∵,∴,∴,又∵,∴,在和中,,∴;∴,∵∴,∵,∴.解:∵,∴,,∵,∴,∴是等腰直角三角形,∵,∴,∴.24.解:∵个商标中个已翻出,还剩张,张中还有张有奖的,∴第三次翻牌获奖的概率是:.25.证明:如图,分别过点、作的垂线,、为垂足,连、.易知:,.二式相减得:,或.于是:,或.∴.显然,.故平分.26.解:设正方形的边长为,∵四边形是正方形,∴,,∴,∴,∵,,,∴,∴,∴正方形的边长为.27.解:填表如下:28.∵,∴,∵是的直径,∴,∴,∵,∴,∴,∵,,∴,∴,∵,,∴,,∴,在中,,∴,,过点作于,∵,,∴,∴,∵,∴,,∴,过点作于,∴,∵,∴,∴,∴四边形是矩形,∴,,∴,在中,,在中,.。
浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm2.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A. ∠ABD=∠CB. ∠ADB=∠ABCC.D.3.抛物线y=3x2,y=-3x2,y= x2+3共有的性质是()A. 开口向上B. 对称轴是y轴C. 都有最高点D. y随x值的增大而增大4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()A. k>-B. k>- 且k≠0C. k≥-D. k≥- 且k≠05.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A. 0.5mB. 0.55mC. 0.6mD. 2.2m6.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,若AD=2BD,则的值为()A. B. C. D.7.平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为( )A. (1,)B. ( -1,)C. (0,2)D. (2,0)8.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A. 70°B. 50°C. 40°D. 35°9.两个相似三角形的相似比为2:3,它们的面积之差为25cm2,则较大三角形的面积是()A. 75cm2B. 65cm2C. 50cm2D. 45cm210.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有()A. 2个B. 3个C. 4个D. 5个二、填空题(共10题;共30分)11.如图,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形,如________.12. 如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.15.如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB交BC于E,交AC于F.若AB=12,那么EF=________.16.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为________ 元时,可获得最大利润.17.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).18.如果2+ 是方程的一个根,那么c的值是________.19.如图,在直角坐标系中,点A在y轴上,△OAB是等腰直角三角形,斜边OA=2,将△OAB绕点O逆时针旋转90°得△′′,则点′的坐标为________20.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m (0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________ .三、解答题(共8题;共60分)21.如图,已知△ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)(1)画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转180°后的△A2B2C2,并写出点A2的坐标;(3)直接回答:∠AOB与∠A2OB2有什么关系?22.已知:如图所示,AD=BC。
浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5 cm ,则它的最长边为( )A. 3cmB. 4cmC. 4.5cmD. 5cm2.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( )A. ∠ABD=∠CB. ∠ADB=∠ABCC. AB BD =CB CDD. AD AB =AB AC 3.抛物线y=3x 2, y=-3x 2, y= x 2+3共有的性质是( ) A. 开口向上 B. 对称轴是y 轴 C. 都有最高点 D. y 随x 值的增大而增大 4.已知二次函数y=kx 2-7x-7的图象与x 轴有两个交点,则k 的取值范围为( )A. k >- 74B. k >- 74且k≠0C. k≥- 74D. k≥- 74且k≠05.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A. 0.5mB. 0.55mC. 0.6mD. 2.2m6.如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF ∥AB ,若AD=2BD ,则CF CB 的值为( )A. 12B. 13C. 14D. 237.平面直角坐标系中,O 为坐标原点,点A 的坐标为(√3,1),将OA 绕原点按逆时针方向旋转30°得OB ,则点B 的坐标为( )A. (1,√3)B. ( -1,√3)C. (0,2)D. (2,0)8.如图,A 、B 、C 是⊙O 上的点,若∠AOB =70°,则∠ACB 的度数为( )A. 70°B. 50°C. 40°D. 35°9.两个相似三角形的相似比为2:3,它们的面积之差为25cm 2,则较大三角形的面积是( )A. 75cm 2B. 65cm 2C. 50cm 2D. 45cm 210.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下面四个结论:①CF=2AF ;②tan ∠CAD=√22;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=5S△ABF ,其中正确的结论有()2A. 2个B. 3个C. 4个D. 5个二、填空题(共10题;共30分)11.如图,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形,如________.12. 如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的1,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.214.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.15.如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB交BC于E,交AC于F.若AB=12,那么EF=________.16.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为________ 元时,可获得最大利润.17.如图,抛物线y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点P (m ,n ).给出下列结论:①2a+c <0;②若(﹣32,y 1),(﹣12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③关于x 的方程ax 2+bx+k=0有实数解,则k >c ﹣n ;④当n=﹣1a 时,△ABP 为等腰直角三角形.其中正确结论是________(填写序号).18.如果2+ √3是方程x 2−cx +1=0的一个根,那么c 的值是________.19.如图,在直角坐标系中,点A在y 轴上,△OAB 是等腰直角三角形,斜边OA=2,将△OAB 绕点O 逆时针旋转90°得△OA ′B ′,则点B ′的坐标为________20.如图,△ABC 中,已知∠C=90°,∠B=55°,点D 在边BC 上,BD=2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=________ .三、解答题(共8题;共60分)21.如图,已知△ABC 三个顶点的坐标分别是A (-2,3),B (-3,-1),C (-1,1)(1)画出△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1,并写出点A 1的坐标;(2)画出△ABC 绕点O 逆时针旋转180°后的△A 2B 2C 2,并写出点A 2的坐标;(3)直接回答:∠AOB 与∠A 2OB 2有什么关系?22.已知:如图所示,AD=BC。
求证:AB=CD。
23.如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P ,在近岸取点Q和S ,使点P、Q、S 共线且直线PS与河垂直,接着再过点S且与PS垂直的直线a上选择适当的点T ,确定PT与过点Q且垂直PS的直线b的交点R .如果测得QS=45m ,ST=90m ,QR=60m ,求河的宽度PQ .24.如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.25.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是几个单位长度;(2)△AOC与△BOD关于直线对称,则对称轴是。
(3)△AOC绕原点O顺时针旋转可以得到△DOB,则旋转角度是多少度,在此旋转过程中,△AOC扫过的图形的面积是多少.26.盒子里装有12张红色卡片,16张黄色卡片,4张黑色卡片和若干张蓝色卡片,每张卡片除颜色外都相同,从中任意摸出一张卡片,摸到红色卡片的概率是0.24.(1)从中任意摸出一张卡片,摸到黑色卡片的概率是多少?(2)求盒子里蓝色卡片的个数.27.有两个可以自由转动的均匀转盘,都被分成了3等分,并在每份内均标有数字,如图所示,规则如下:分别转动转盘,两个转盘停止后,将两个指针所指份内的数字相乘,(若指针停止在等分析线上,那么重转一次,直到指针指向某份为止)。
(1)用列表或画树状图分别求出数字之积为3的倍数和数字之积为5的倍数的概率;(2)小明和小亮想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小明得2分;数字之积为5的倍数时,小亮得3分.这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏对双方公平.28.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD 是矩形,且DE⊥CF.则DE·CD CF·AD(填“<”或“=”或“>”);(2)如图2,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得DE·CD=CF·AD成立?并证明你的结论;(3)如图3,若BA=BC= 3,DA=DC= 4,∠BAD= 90°,DE⊥CF.则DE的值为.CF图1 图2 图3答案解析部分一、单选题1.【答案】C2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】B7.【答案】A8.【答案】D9.【答案】D10.【答案】D二、填空题11.【答案】△ABF ∽△DBE 或△ACE ∽△DCF 或△EDB ∽△FDC12.【答案】50°13.【答案】52或15214.【答案】215.【答案】816.【答案】6517.【答案】②③④18.【答案】419.【答案】(-1,1)20.【答案】70°或120°三、解答题21.【答案】解:(1)作图如下,点A 1的坐标(-4,-2).(2)作图如下,点A 2的坐标(2,-3).(3)相等.22.【答案】解:23.【答案】解答:根据题意得出:QR∥ST ,则△PQR∽△PST ,故= ,∵QS=45m,ST=90m,QR=60m,∴= ,解得:PQ=90(m),∴河的宽度为90米.24.【答案】解:△PBQ的面积S随出发时间t(s)成二次函数关系变化,∵在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,∴BP=12﹣2t,BQ=4t,∴△PBQ的面积S随出发时间t(s)的解析式为:y= (12﹣2t)×4t=﹣4t2+24t,(0<t<6)25.【答案】(1)∵A(-2,0),∴OA=2.∵△AOC沿x轴向右平移得到△OBD,∴△AOC≌△OBD,∴AO=OB,∴OB=2,∴平移的距离是2个单位长度.(2)∵△AOC与△BOD关于直线对称,∴△AOC≌△BOD,∴AO=BO.∴y轴是AB的垂直平分线,∴对称轴是y轴,(3)∵△AOC和△OBD都是等边三角形,∴∠AOC=∠DOB=60°,∴∠AO=120°,∴旋转角度是120°.△AOC扫过的图形的面积是π×22×=2π.26.【答案】解:(1)由题意得卡片的总张数为120.24=50,则任意摸出一张卡片,摸到黑色卡片的概率是450=0.08;(2)盒子里蓝色卡片的个数是:50﹣12﹣16﹣4=18.27.【答案】解:(1)每次游戏可能出现的所有结果列表如下:表格中共有9种等可能的结果,则数字之积为3的倍数的有五种,其概率为59;数字之积为5的倍数的有三种,其概率为39= 13.(2)这个游戏对双方不公平.∵小亮平均每次得分为2×59=109(分),小芸平均每次得分为3×39=99(分),∵109≠1,∴游戏对双方不公平.修改得分规定为:若数字之积为3的倍数时,小亮得3分;若数字之积为5的倍数时,小芸得5分即可.28.【答案】解(1)证明:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴DECF =ADCD,即DE·CD=CF·AD.(2)当∠B+∠EGC=180°时,DE·CD=CF·AD成立.证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∵∠FDG=∠EDA,∴△DFG∽△DEA,∴DEAD =DFDG,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴DFDG =CFCD,∴DEAD =CFCD,∴DECF =ADCD,即当∠B+∠EGC=180°时,DECF =ADCD成立.(3)解:DECF =2524.理由是:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,∵在△BAD和△BCD中{AD=CD AB=BC BD=BD∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠CBM=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴CMCN =BCCD,∴CMX =68∴CM=34x在Rt△CMB中,CM=34x,BM=AM﹣AB=x﹣6,由勾股定理得:BM2+CM2=BC2,∴(x−6)2+(34x)2=62,解得 x=0(舍去),x=19225∴CN=19225,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴DECF =ADCN=819225=2524。