Stiffness Estimation of the Flexure-based Five-bar Micro-manipulator翻译
- 格式:doc
- 大小:660.00 KB
- 文档页数:11
土木工程专业裂缝宽度容许值: allowable value of crack width使最优化: optimized次最优化: suboptimization主梁截面: girder section主梁: girder|main beam|king post桥主梁: bridge girder单墩: single pier结构优化设计: optimal structure designing多跨连续梁: continuous beam on many supports裂缝crackcrevice刚构桥: rigid frame bridge刚度比: ratio of rigidity|stiffness ratio等截面粱: uniform beam|uniform cross-section beam 桥梁工程: bridgeworks|LUSAS FEA|Bridge Engineering桥梁工程师: Bridge SE预应力混凝土: prestressed concrete|prestre edconcrete 预应力混凝土梁: prestressed concrete beam预应力混凝土管: prestressed concrete pipe最小配筋率minimum steel ratio轴向拉力, 轴向拉伸: axial tension英语重点词汇承台: bearing platform|cushioncap|pile caps桩承台: pile cap|platformonpiles低桩承台: low pile cap拱桥: hump bridge|arch bridge|arched bridge强度: intensity|Strength|Density刚强度: stiffness|stiffne|westbank stiffness箍筋: stirrup|reinforcement stirrup|hooping预应力元件: prestressed element等效荷载: equivalent load等效荷载原理: principle of equivalent loads模型matrixmodelmouldpattern承载能力极限状态: ultimate limit states正常使用极限状态: serviceability limit state 弹性: elasticity|Flexibility|stretch平截面假定: plane cross-section assumption抗拉强度intensity of tensiontensile strength安全系数safety factor标准值: standard value,|reference value作用标准值: characteristic value of an action重力标准值: gravity standard设计值: design value|value|designed value作用设计值: design value of an action荷载设计值: design value of a load可靠度: Reliability|degree of reliability不可靠度: Unreliability高可靠度: High Reliability几何特征: geometrical characteristic塑性plastic natureplasticity应力图: stress diagram|stress pattern压应力: compressive stress|compression stress配筋率: reinforcement ratio纵向配筋率: longitudinal steel ratio有限元分析: FEA|finite element analysis (FEA)|ABAQUS有限元法: finite element method线性有限元法: Linear Finite Element Method裂缝控制: crack control控制裂缝钢筋: crack-control reinforcement应力集中: stress concentration主拉应力: principal tensile stress非线性nonlinearity非线性振动: nonlinear vibration弯矩: bending moment|flexural moment|kN-m弯矩图: bending moment diagram|moment curve弯矩中心: center of moments|momentcenter剪力: shearing force|shear force|shear剪力墙: shear wall|shearing wall|shear panel弹性模量elasticity modulus剪力图: shear diagram|shearing force diagram剪力和弯矩图: Shear and Moment Diagrams剪力墙结构: shear wall structure轴力: shaft force|axial force框架结构frame construction板单元: plate unit曲率curvature材料力学mechanics of materials结构力学: Structural Mechanics|theory of structures 弯曲刚度: bending stiffness|flexural rigidity截面弯曲刚度: flexural rigidity of section弯曲刚度,抗弯劲度: bending stiffness钢管混凝土结构: encased structures极限荷载: ultimate load极限荷载设计: limit load design|ultimate load design 板壳力学: Plate Mechanic主钢筋: main reinforcement|Main Reinforcing Steel 钢筋混凝土的主钢筋: main bar悬臂梁: cantilever beam|cantilever|outrigger悬链线: Catenary,|catenary wire|chainetteribbed stiffener加劲肋: stiffening rib|stiffener|ribbed stiffener短加劲肋: short stiffener支承加劲肋: bearing stiffener技术标准technology standard水文: Hydrology招标invite public bidding连续梁: continuous beam|through beam多跨连续梁: continuous beam on many supports wind resistance抗风: Withstand Wind |wind resistance基础的basal初步设计predesignpreliminary plan技术设计: technical design|technical project施工图设计: construction documents design基础foundationbasebasis 结构形式: Type of construction|form of structure屋顶结构形式: roof form地震earthquake地震活动: Seismic activity|seismic motion耐久性: durability|permanence|endurance耐久性试验: endurance test|life test|durability test短暂状况: transient situation偶然状况: accidental situation永久作用: permanent action永久作用标准值: characteristic value of permanent action可变作用: variable action可变作用标准值: characteristic value of variable action可变光阑作用: iris action偶然作用: accidental action作用效应偶然组合: accidental combination for action effects作用代表值: representative value of an action作用标准值: characteristic value of an action地震作用标准值: characteristic value of earthquake action可变作用标准值: characteristic value of variable action作用频遇值Frequent value of an action安全等级: safety class|Security Level|safeclass设计基准期: design reference period作用效应: effects of actions|effect of an action作用效应设计值Design value of an action effect分项系数: partial safety factor|partial factor作用分项系数: partial safety factor for action抗力分项系数: partial safety factor for resistance作用效应组合: combination for action effects结构重要性系数Coefficient for importance of a structure桥涵桥涵跟桥梁比较类似,主要区别在于:单孔跨径小于5m或多孔跨径之和小于8m的为桥涵,大于这个标准的为桥梁水力: hydraulic power|water power|water stress跨度span人行道sidewalk无压力: stress-free净高clear height矩形rectangle无铰拱: arch without articulation|fixed end arch荷载load荷载强度: loading intensity|loading inte ity荷载系数: load factor|loading coefficient桥头堡bridgeheadbridge tower美观pleasing to the eyebeautifulartistic经济的economicaloecumenicaleconomic适用be applicable防水waterproof剪切模量: shear modulus|rigidity modulus|GXY剪切强度: shear strength|shearing strength|Fe-Fe扭转剪切强度: torsional shear strength剪切破坏: shear failure|shear fracture|shear damage 纯剪切破坏: complete shear failure局部剪切破坏: local shear failure永久冻土: permafrost|perennial frost土的侧压力: earth lateral pressure收缩shrinkpull backcontract徐变: creep摩擦系数: coefficient of friction|friction factor风荷载: wind load|wind loading风荷载标准值: characteristi cvalue of windload 风荷载体型系数: shape factor of windload温度作用: temperature action支座: support|bearing|carrier 外支座: outer support|outersu ort代表值: central value|representative value结构自重: self-weightstructure|dead load最不利分布: Least favorable distribution,抗震antiknockquake-proofearthquake proofing constructionearthquake-resistanceearthquake proof钢结构steel structure钢结构设计: Design Of Steel Structure钢结构设计规范: Code for design of steel structures 混凝土结构设计规范: Code for design of concrete structures预应力混凝土结构设计软件: PREC温度梯度: temperature gradient|thermal gradient动力系数: dynamic coefficient制动力系数: Braking force coefficient动力学kineticsdynamicsdyn内摩擦角: angle of internal friction有效内摩擦角: effective angle of internal friction主效应main effect主效应: Main effect,主效应模型: Main effect model超静定的: hyperstatic超静定结构: statically indeterminate structure静定: statically determinate静定梁: statically determinate beam附属设备: accessories|accessory equipment稳定系数: coefficient of stabilizationearth pressure at rest静土压力: earthpressureatrest挡土墙retaining wallabamurus主动土压力: active earth pressure被动土压力: passive earth pressure土层soil horizon土层剖面: soil profile土层剖面特性: soil-profile characteristics密度densitythickness宽度width净距: clear distance|gabarit|Clearance钢筋强度标准值: characteristic value of strength of steel bar钢材强度标准值: characteristic value of strength of steel折减系数: reduction factor|discount coefficient强度折减系数: strength reduction factor线性linearity线性代数linear algebra位移displacement位移角: angle of displacement|angle of slip应变量: dependent variable|strain capacityuniform stress均布应力: uniform stress非均布应力: non-uniform stress均布荷载: uniformly distributed load集中荷载: concentrated load|point load可变集中荷载: variable concentrated load法向集中荷载: normal point load影响线: influence line反力影响线: influence line for reaction影响线方程: equation of the influence line车辆荷载: car load|vehicular load|traffic load计算跨径: calculated span重力加速度: acceleration of gravity膨胀系数: coefficient of expansion|expansivity术语termterminology恒载: dead load|deadloading|permanent load活载: live load楼面活载: floor live load概率分布: probability distribution 联合概率分布: Joint probability distribution,边缘概率分布: Marginal probability distribution,拱腹: soffit|intrados|arch soffit三铰拱: three hinged arch土木工程系: Department of Civil Engineering土木工程师协会: ICE土木工程师协会: Institute of Civil Engineers作用准永久值: quasi-permanentvalueofanaction 直径diameter验算: checking|check calculation验算公式: check formula变形验算: deformation analysis建筑材料tignum刚度rigidityseveritystiffness单元: cell|Unit|module节点node位移方程式: strain displacement equation三维three dimensional 3d插值: Interpolation|interpolate|Spline插值法: interpolation|method of interpolation轴对称axial symmetryrotational symetryaxisymmetric(al)应变矩阵strain matrix应变矩阵: strain matrix单元应变矩阵: element strain matrix应力应变矩阵: stress-strainmatrix阻尼矩阵: damping matrix|daraf|damped matrix 弹性系数矩阵: elastic coefficient matrix雅可比矩阵: Jacobi matrix|jacobian matrix刚度矩阵: stiffness matrix|rigidity matrix质量矩阵: mass matrix|ma matrix节点力: nodal forces等效节点力: equivalent nodal force节点荷载: joint load|nodal loads节点荷载: joint load|nodal loads一致节点荷载: consistent nodal load应力矩阵: stress matrix挠度: deflection|flexivity|flexure转角: corners|intersection angle|rotor angle单元刚度矩阵: element stiffness matrix边界条件: boundary condition|edge conditions疲劳强度: fatigue strength|endurance strength抗疲劳强度: fatigue resistance工程局: construction bureau沉井基础: open caisson foundation水泥cement水泥砂浆cement mortar石膏: Gypsum|plaster|Plaster of Paris简支梁: simply supported beam|simple beam简支梁桥: simple supported girder bridge平衡条件: equilibrium condition|balance condition约束条件: constraint condition|constraint数值解: numerical solution|arithmeticsolution力法: force method|brute force method位移法: displacement method|di lacement method力矩分配法: moment distribution method|moment diagram理论力学: Theoretical Mechanics弹性力学: Theory of Elastic Mechanics结构动力学: Structural Dynamics|Clough高等结构动力学: Advancd Dynamics of Structures测量学: surveying|metrology|geodesy道路工程: road works|highway construction铁路工程: railway engineering|rairoad engineering隧道: Tunnels|subway|underpass轨道: orbit|track|trajectory砂子: sand抗压强度pressive strength焊接技术: Welding Engineering Technology (WET)断裂力学: Fracture Mechanics|fracturing mechanics基础工程: foundation engineering|foundation works 地质学: geology|die Geologie, opl.|geognosy岩土力学: rock mechanics|rock-soil mechanics工程力学: engineering mechanics轴线axes拱脚: arch springing|abutment|spring木桥: timber bridge|wodden bridge|Woodbridge枕木sleeper crosstie残余应力: residual stress|remaining stress 复合应力: combined stress|compound stress初始应力: initial stress|primary stress屈服极限: yield limit|minimum yield|yield strength疲劳屈服极限: fatigue yield limit应力幅值: stress amplitude冲击韧性: impact toughness|Impelling strength反弯点: knick point|pointofcontraflexure桁架: truss|tru|Girder网架结构: space truss structure|grid structure锚孔: anchor eye大跨度: High-span柱: column|pillar|Clmn. Coloumn常微分方程: Ordinary Differentical Equations|ODE|ODEs增大系数: enhancementcoefficient浮桥flying bridge raft bridgepontoon bridge pontoonfloat bridge浮桥: pontoon bridge|pontoon|floating bridge轮渡: Ferry|Ferries|ferry boat钢桥: steel bridge立面图: elevation|elevation drawing|profile背立面图: back elevation平面图: plan|plan view|planar graph泥石流: debris flow|rollsteinfluten|mud-rock flow大型泥石流: macrosolifluction滑坡泥石流: landslide模板: template|die plate, front board|formwork沉降: settlement|sedimentation|subside沉降缝: settlement joint伸缩缝: expansion joint路灯street lamp排水系统: drainage system|sewerage system泄水管: drain pipe|Scupper Pipe|tap pipe土力学: soil mechanics|Bodenmechanik高等土力学: Advanced Soil Mechanics扩展(扩大)基础: spread foundation桩基础: pile foundation|pile footing|Pile砂桩基础: sand pile foundation群桩基础: multi-column pier foundation沉箱基础caisson foundation沉箱基础: caisson foundation|laying foundation管状沉箱基础: cylinder caisson foundation气压沉箱基础: pneumatic caisson foundation桩承台: pile cap|platformonpiles桩: pile|pile group|pale灌注桩: cast-in-place pile|cast in place管灌注桩: driven cast-in-place pile灌注混凝土基础: cast-in-place concrete foundation 承台结构: suspended deck structure工作机理working mechanism铆钉: rivet|rivet riv|clinch bolt卵石: cobble|gravel|pebble钢筋混凝土结构: reinforced concrete structure预应力混凝土结构: prestressed concrete structure软化: softening|mollification|malacia强化: reinforcement|consolidate|intensification固体力学: solid mechanics|механика твердого тела 虚功原理: principle of virtual work偏心距: eccentricity|throw of eccentric偏心距增大系数: amplified coefficient of eccentricity 强度准则: strength criterion变形: Deformation|Transforms|deform工程建设: engineering construction石油工程建设: Petroleum Engineering Construction 偏心受压: eccentric compression偏心受压构件: eccentric compression member弹性支承: elastomeric bearing|yielding support temperature load温度荷载: temperature load施工控制: construction control经纬仪theodolite transit instrument夹具jig tongs clamp切线: tangent|Tangent line,|tangential line水平角: horizontal angle|inclination高程index elevation height altitude沼泽marsh swamp glade水准仪water level公寓apartment砂浆mortar sand pulp骨料skeletal material aggregate骨料级配: aggregate grading|aggregate gradation碱性的: alkalic|basic|alkalescent耐碱性的: alkali-proof风洞试验: wind tunnel test先张法: pre-tensioning|pretensioning method配合比设计: mix design|design of mix proportion 和易性: workability渗透性osmosis penetrability水泥浆: grout|cement slurry|cement paste对称的symmetrical symmetric(al)扭转reverseturn around (an undesirable situation)扭转应力: torsion stress|warping stress容许扭转应力: allowable twisting stress扭转角: angle of torsion|angle of twist夯实回填土: tamped backfill|tamped/compacted backfill圆锥贯入仪: cone penetrometer水化(作用): hydration水化热: heat of hydration|heat of hydratation振捣器: vibrating tamper|vibrorammer|vibrator板振捣器: slab vibrator破裂fracture burst结合力: binding force|Adhesion|cohesion碎石gravel gravely脆性brittleness脆性材料: brittleness material|brittle material脆性破坏: brittle failure|brittle fracture素混凝土: plain concrete素混凝土结构: plain concrete construction含水量liquid water content钢筋: Reinforcement|bar tendon主钢筋: main reinforcement|Main Reinforcing Steel钢筋条: reinforcement bar|steel bar极限抗拉应力: ultimate tensile strength极限抗拉强度: ultimate tensile strength|UTS混凝土板: concrete slab预制混凝土板: precast concrete plank锚固: anchoring|anchorage|Anchor锚具: anchorage|anchorage device|ground tackle削弱weaken埋置: embedding|elutriator|imbedment预应力钢筋: prestressed reinforcement回弹: resilience|spring back|rebound有说服力的: persuasive|convincing|convictive形心centre of figurecentre of formcentroid重心center of gravity(n) core; main part惯性矩: moment of inertia极惯性矩: polar moment of inertia质心centroid center of mass回转半径: radius of gyration|turning radius容许应力: allowable stress|permissible stress排架: shelving|bent frame|bent桩排架: pile bent纵梁longeron carling横梁: beam|cross beam|transverse beam缆索cable thick rope阻尼damping刚架: rigid frame|frame|stiffframe缀板batten plate缀板: batten plate|stay plate|batte latebatten plate缀板: batten plate|stay plate|batte late上部缀板: upper stay plate推力: thrust|Push|Push Power槽钢channel steel特征值: Eigenvalue,|characteristic value冷拔钢丝: cold drawn wire自振频率: natural frequency of vibration自振周期: natural period of vibration土壤加固工程: soil stabilization works结构加固工程: structural fortification应力分析: stress analysis|stress distribution结构分析: structural analysis|ETABS NL结构稳定性: structural stability结构工程: Structural Engineering|structural works 认可标准: recognized standard|approved standard 官方认可标准: officially recognized standard,再循环: recycle|recirculation|recycling快硬水泥: rapid hardening cement|ferrocrete曲率半径: radius of curvature|curve radius|ρ刚性系数: coefficient of rigidity乡郊地区: rural area饱和saturation饱和密度: saturated density|Saturation density脚手架staging scaffold falsework立体剖面图: sectional axonometric drawing结构控制: structural control收缩量: Shrinkage|amount of shrinkage间距space between 钢管steel tube工字钢桩: steel H pile钢绞线: Steel Strand|Steel Stranded Wire|strand群震: swarm earthquake系统误差: systematic error|fixed error|system error最大剪应力: maximum shear|maximum shearing stress最大剪应变: maximum shear strain千斤顶: jack|lifting jack|Wheeljack地震系数: seismic coefficient|seismic factor。
某城市轨道交通车辆柔性拖车转向架的研制马晓光1,肖遥1,金雄峰1,王康*,2(1.中车南京浦镇车辆有限公司,江苏南京 210031;2.西南交通大学牵引动力国家重点实验室,四川成都 610031)摘要:介绍了一种用于城市轨道交通永磁直驱列车的柔性拖车转向架,该转向架采用了小轴距、小轮径的设计方法。
转向架的构架采用“交叉板式”横梁实现柔性,能提供较低的扭转刚度和合适的抗菱刚度,适应线路不平顺的能力更强。
对构架进行强度计算和疲劳试验之后,发现测试结果满足标准要求。
对拖车柔性转向架的扭曲减载性能进行了测试,发现该转向架的轮重减载率较传统转向架偏低。
同时对拖车柔性转向架的构架模态进行了测试,更加全面地掌握了该转向架的特性。
最终得到结论:该新型转向架的各项指标均满足设计和标准要求,满足线路实际运用要求。
关键词:拖车转向架;柔性构架;永磁直驱列车中图分类号:U270.33 文献标志码:A doi:10.3969/j.issn.1006-0316.2022.02.004文章编号:1006-0316 (2022) 02-0022-08All Rights Reserved.Study on Flexible Trailer Bogie for Urban Rail TransitMA Xiaoguang1,XIAO Yao1,JIN Xiongfeng1,WANG Kang2( 1.CRRC Nanjing Puzhen Co., Ltd., Nanjing 210031, China;2.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China )Abstract:This article introduces a flexible trailer bogie for permanent magnet direct-drive trains in urban railtransit. The bogie adopts a design method of small wheelbase and small wheel diameter. The bogie frame adoptsthe "cross-plate" beam for flexibility, which can provide lower torsional stiffness and appropriate diamondstiffness, and has a stronger adaptability to line irregularities. After the strength calculation and fatigue test of theframe, it is found that the test results meet the standard requirements. The torsion load reduction performance ofthe trailer's flexible bogie is tested, and it is found that the wheel load reduction rate of the bogie is lower thanthat of the traditional bogie. At the same time, the frame mode of the trailer's flexible bogie is tested, and thecharacteristics of the bogie are more comprehensively grasped. Finally, it is concluded that all the indicators ofthe new bogie meet the design and standard requirements and meet the actual application requirements of the line.Key words:trailer bogie;flexible frame;permanent magnet direct-drive train———————————————收稿日期:2021-07-21基金项目:国家重点研发计划:轨道交通列车高效变流装置(2017YFB1200903)城市轨道交通车辆简称为城轨车辆。
上册:立方体抗压强度cube strength 极限状态limit state ultimate state预制混凝土prefabricated concrete 现浇混凝土Cast-in-situ concrete预应力混凝土prestressed concrete 设计基准期design reference period设计使用年限design working life 收缩shrinkage双筋梁doubly reinforced section 轴心受压柱axially loaded column偏心受压柱eccentrically loaded column 偏心距eccentricity 恒荷载permanent load or dead load 活荷载variable load or live load组合系数combination reduction factor 准永久值系数quasi-permanent reducing coefficient结构重要性系数coefficient of structural importance 界限配筋balanced reinforcement超筋over-reinforced 适筋under-reinforced等效应力矩形equivalent stress block 最小配筋率minimum steel ratio 最大配筋率balanced steel ratio 截面有效高度effective depth双筋梁doubly reinforced section T形截面翼缘flangeT形截面腹板web 有效翼缘宽度effective flange width主压应力迹线trajectories of the principal compressive stress 斜裂缝diagonal crack腹筋transverse reinforcement; web reinforcement 箍筋ties or stirrups弯起钢筋inclined bars bent-up bars 斜拉破坏diagonal splitting剪压破坏shear compression 斜压破坏diagonal compression剪跨比shear span ratio 名义剪跨比generalized shear span配箍率transverse tie ratio 材料弯矩抵抗图diagram of bending resistance不需要面cut-off section 充分利用面fully-developed section充分利用点fully usable point of bar 理论截断点theoretical cutting point of bar实际截断点real cutting point of bar 锚固长度anchorage length 绑扎搭接binding lapped splice 钢筋表bar schedule连接区段connection sector 肋梁楼板结构girder-beam-slab structural system现浇楼板cast-in-place slab 预应力楼板pre-cast slab刚度rigidity 弯矩包络图moment envelope diagram ;ultimate moment diagram剪力包络图shear envelope diagram塑性铰plastic hinge无梁楼盖flat slab塑性内力重分布法plastic redistribution of stresses analysis method弯矩调幅法the method of amplitude modulation for bending moment CHAPTER 1Plain Concrete 素混凝土,Reinforced Concrete 钢筋混凝土,Prestressed Concrete 预应力混凝土,reinforcement steel bar 钢筋(也有人直接用bar,fiber),Portland cement 波特兰水泥Light-weight concrete 轻质混凝土,high-strength concrete 高强混凝土,Fiber reinforcedconcrete(FRC)纤维混凝土load 荷载,span 跨径,strain 应变,stress 应力,compression 压力,tension 拉力,moment 弯矩,torsion 扭矩,扭转thermal expansion coefficients 热膨胀系数,corrosion protection 防腐蚀,Fire resistance耐火,hollow floor 空心楼板,wall 墙面,girder 主梁,beam 横梁,column 柱,footing 基础allowable stress design method 允许应力法,ultimate strength design method 极限强度设计法,limit state design method 极限状态设计法,composite structure 混合结构CHAPTER 2smooth bar 光圆钢筋,deformed bar 螺纹钢筋,hot rolled bar 热轧钢筋,cold drawn bar冷拉钢筋,steel wires 钢绞线,heat treated steel bar 热处理钢筋stress-strain curve 应力应变曲线,yield plateau 屈服平台deformation 变形,deflection 挠度,yield strength 屈服强度,ultimate strength 极限强度,ductility 韧性,hardening 强化,cold drawn 冷拉,tempering treatment 回火,quenching treatment 淬火fatigue 疲劳,shrinkage 收缩,creep 徐变,crack 开裂,crush 压溃water-cement ratio 水灰比cubic compressive strength 立方体抗压强度,prismatic compressive strength 棱柱体抗压强度elasticity modulus 弹性模量(杨氏模量),secant modulus 割线模量,tangent modulus 切线模量,shear modulus 剪切模量,poisson’s ratio 泊松比uniaxial tension 单轴拉伸,biaxial loading 双轴加载,triaxial loading 三轴加载CHAPTER 3bond 粘结,anchorage 锚固,bar splicing 钢筋搭接,splitting 撕裂,crush 压溃,pull-out failure 刮出式破坏splice length 搭接长度,embedded length 埋置长度,development length 锚固长度shape coefficient 外形系数ribs 钢筋肋CHAPTER 4axial load 轴向加载,axial tension 轴向拉伸,axial compression 轴向压力elasticity 弹性,plasticity 塑性longitudinal bars 主筋(纵向钢筋),stirrup 箍筋,hanger bar 架立筋,bent bar 弯起钢筋brittle failure 脆性破坏,load carrying capacity 承载能力short column 短柱,slender column 长柱,stability coefficient 稳定系数cross section 截面,cross-sectional dimension 截面尺寸spiral stirrup 螺旋箍筋CHAPTER 5box section 箱形截面,hollow slab 空心板,T-section T 形截面over-reinforced beam 超筋梁,under-reinforced beam 少筋梁,balanced-reinforced beam适筋梁brittle failure 脆性破坏concrete cover 混凝土保护层minimum reinforcement ratio 最小配筋率flexure theory 弯曲理论,plane section assumption 平截面假定neutral axis 中性轴,coefficient 系数,parameter 参数,constant 常数stress distribution 应力分布,shear span ratio 剪跨比stress block depth 应力区高度(受压区高度),relative stress block depth 相对应力区高度(相对受压区高度),nominal stress block depth 名义应力区高度(名义受压区高度),flexural capacity 抗弯承载能力symmetry reinforcement 对称配筋effective flange width 有效翼缘宽度,flange 翼缘,web 腹板shear-lag effect 剪力滞效应simple-supported beam 简支梁,continuous beam 连续梁deep-bending member 深受弯构件,deep beam 深梁,transfer girder 转换梁,tie-reinforcement 拉结筋,horizontal distributing reinforcement 水平分布钢筋spacing 间距CHAPTER 6eccentricity 偏心率,second-order effect 二阶效应ultimate limit state 使用极限状态additional eccentricity 附加偏心距eccentricity magnifying coefficient 偏心距放大系数tensile failure 受拉破坏,compressive failure 受压破坏larger eccentricity 大偏心,small eccentricity 小偏心out-plane strength 片面外强度geometric central axis 几何中心轴CHAPTER 7shear failure 剪切破坏diagonal tension 斜向拉应力shear flow 剪力流diagonal cracks 斜裂缝,flexural crack 弯曲裂缝,compression strut 受压杆web reinforcement 腹筋(抗剪钢筋)truss model 桁架模型slope angle 倾角upper end of the crack 裂缝上端maximum spacing of stirrup 箍筋最大间距concentrated load 集中荷载,uniform load 均布荷载detailing requirement 构造要求moment envelope 弯矩包络图,moment diagram 弯矩图embedded length 锚固长度points of bend 弯起点CHAPTER 8equilibrium torsion 均衡扭转,compatibility torsion 协调扭转static equilibrium 静力平衡principal stress 主应力cracking torque 开裂弯曲transverse reinforcement 横向钢筋elasto-plastic mode 弹塑性模型Plastic space truss design method 塑性空间桁架设计方法,Skew bending design method斜弯设计方法hollow section 空心截面perimeter 周长hook 弯钩minimum stirrup ratio 最小配箍率distribution of reinforcement 钢筋分布CHAPTER 9punching shear 冲切,local compression 局部受压two way shear 双向剪切slab-column joint 板柱交接点column cap 柱帽,drop panel 托板linear interpolation 线形内插effective depth 有效高度critical width 临界宽度punching shear cone 冲压椎体polar moment of inertia 极惯性矩net area 净面积spiral stirrup 螺旋箍筋,mat reinforcement 钢筋网splitting 劈裂,chipping 崩裂CHAPTER 10prestressed concrete 预应力混凝土pretensioning system 先张法,post-tensioning system 后张法wire 钢丝,strand 钢绞线,tendon 钢束bottom 台座,casting-yard 预制场duct 孔道,jack 张拉,grout 灌浆,bond 粘结,unbond 无粘结friction 摩擦full prestressing 全预应力,partial prestressing 部分预应力creep 徐变,shrinkage 收缩stress loss 应力损失grippers 夹具,anchorage 锚具permissible stress 容许应力,stretching stress 拉伸应力,effective prestress 有效预应力loss of prestress 预应力损失,loss due to friction 摩擦损失,anchorage-sections 锚具滑移,elastic shortening of concrete 混凝土塑性回缩,steel stress relaxation 钢筋应力松弛,creep loss 徐变损失,shrinkageloss 收缩损失tendon profile 钢束形状,deviation force 偏向力,curvature effect 曲率效应,wobbleeffect 抖动效应fixed end 固定端,tension end 张拉端overstretching 超张拉curvature friction coefficient 曲率摩擦系数transfer length 传递长度,bond stress 粘结应力concrete depositing 混凝土浇注service stage 使用阶段,construction stage 施工阶段Transformed area 换算面积,moment of inertia 惯性矩hoisting 吊装,transporting 运输dynamic factor 动力系数ordinary reinforced steel 普通钢筋normal section 正截面,oblique section 斜截面CHAPTER 11serviceability 使用性能reliability 可靠性:safety 安全,applicability 实用,durability 耐久deflection 挠度,crack width 裂缝宽度transverse crack 横向裂缝,plastic crack 塑性裂缝,temperature crack 温度裂缝,shrinkage crack 收缩裂缝,cracks due to rust 锈蚀引起的裂缝,cracks due to differential settlement 不均匀沉降引起的裂缝,load-induced crack 荷载引起的裂缝freezing-thawing 冻容,alkali-aggregate reaction 碱骨料反应standard value 标准值,frequent value 频遇值,quasi-permanent value 准永久值maximum crack width 最大裂缝宽度crack control 开裂控制bond-slip theory 粘结滑移理论,non-slipping theory 无滑移理论flexural stiffness 弯曲刚度__。
悬挑梁 a beam with overhomg土木工程师civil engineer项目清单 a list of items抗震设防烈度classification for earthquake-resistantbuilding添加剂admixture粘土clay振幅amplitude of vibration粘土砖clay brick锚具anchorage粘质粉土clayed slit内摩擦角angle of internal friction粗骨料coarse aggregate架立筋anxiliary steel bar卵石cobble仲裁arbitration规范code建筑师architect内聚力cohesion锚固arichorage柱column艺术家artist联合基础combined footing轴向力axial force条文说明commentary轴向荷载axial load竞争competition破产bankruptcy构件component钢筋间距bar spacing组合结构composite consturction钢筋接头bar splice压型钢板组合楼板composite floor with profiled steelsheet基础课basic cources压compression梁beam cad 计算机辅助设计computer aided design弯曲bend计算机法computing methods弯曲应力bending stress轴心受压柱concentrically loaded column投标者bidder概念抗震设计conceptual earthquake-resistant design 招标文件bidding document集中荷载concertrated load工程量表bill of quantities砼concrete粘结bond砼保护层厚concreteauer distance奖金bonus钢管砼结构concrete-filled steel tubular member钻孔柱状图boring logs固结试验conslidation test支撑系统bracing system夯实consolidate脆性brittle施工construction屈曲buckle建筑业construction industry建筑规范buildingcode施工现场consturction site斜拉梁cable-stayed girder合同contract箱基caisson承包商contractor构建承载力计算calculation of load-carryingcapacity of member腐蚀corrosion悬臂梁cantilever beam成本加酬金cost-plus contract 承载力capacity倒塌couapse课程carriculum联肢墙couple wall现金cash裂缝crack铸铁cast iron裂缝间距crack spacing现浇砼cast-in-place concrete裂缝宽度crack width天花板ceiling吊车梁crane girder水泥cement徐变creep水泥砂浆cement morter临界荷载critical load质心centroid井字梁cross beam烟囱chimney横截面cross section土木工程cicil engineer养护cure恒荷载dead load安全系数factor of safety深基础deep foundation破坏failure挠度曲线deflection curve疲劳验算fatigue andysis变形deformation疲劳fatique变形分析deformation不合格构件faulty member带肋钢筋deformed bar现制搅拌砼field-mix concrete设计design填充墙filler wall建筑结构设计design of building structure细骨料fine aggre gate设计强度design strength防火的fine-resistant详图detail有限元法finite element method 画配筋详图detail reinforcement防火材料fireproofing配筋详图detailing of reinforcement固定价格合同fixed-price contract构造钢筋detailing reinforcement受弯构件flexual member锚固长度development弯flexural差异沉降differential setfment抗弯刚度flexural stiffness离散单元discrete element弯曲拉应力flexural tensile stress 位移displacement楼板flooring扭转distortion流体力学fluid mechanics目标dojective流体压力fluid pressure圆屋顶dome没收forfeit插筋dowel模板form排水drainage基础foundation延性ductility基础工程师foundation engineer土坝earth dam基础工程foundation engineering 土荷载earth pressure框架结构frame structure地震荷载earthquake load框架筒体结构frame-tube structure抗震设计earthquake-resistantdesign/stismic design 免费free of charge提前竣工earty complection摩擦桩friction pile偏心受压柱eccentrically loaded column地质资料gedogical information 弹性的elastic地质力学geomechanics弹性力学elasticity主梁ginder电气工程师electrical engineer大梁girder预埋件embedded pants毕业实习graduation fired work 预埋件embedded parts毕业设计graduation project雇员employee毕业论文graduation thesis雇主employer砾石gravel端承柱end-bearing pile夹具grip工程索引engineering index地基ground截止日期exparation date地下水位ground water勘探钻孔exploratory boring非均质的heterogeneity高速公路express way高层建筑high-rise building快速路expressway公路highway外墙exterior wall公路桥highway bridge外力external force均质的horngenous制作fabrication均质的hornogeneity 热轧钢筋hot-rolled reinforcing bar 固有频率natural frequency 加腋梁humcheed beam 谈判negotiation 冲击荷载impact load 净截面net section 赔偿indemnity 微膨胀砂浆nonshrinking mrtar 小写infigures 标准强度normal strength 主动的initiative 法向应力normal stress 保险insurance 义务obligation 内力interal force 报价offer 职业道德intergrity of position 单向板one-way slab 内力internal force 超载overload发票invoice 抗倾覆侧移验算overturning slip resistance analysis 大写inwords 浇筑pace独立基础isolated footing 部分预应力梁partially prestressed beam 人工搅拌砼job-mixed concrete隔墙partition 合资企业joint venture 被动的passive 人工费labor cost 泥浆paste搭接长度lap splice 人行立交桥pedestrain crossing 滑坡lard slide 渗透性permeabilty 横向荷载lateral load 桩pile 活荷载live load 桩承载力pile capacity 荷载load 桩尖pile point 荷载效应load effort 铰接点pin joint 承重墙load-bearing wall 浇筑砼placing concrete 承重梁load-carrying beam 素混凝土plain concrete 大跨度桥long span bridge 平面结构plane structure 手算法longhand methods 抹灰plaster 纵筋longitudinal rebar 塑性的plastic低碳钢low-carbon steeel 平板网架plate-like space frame 低层砼结构low-rise concrete building反弯点point of contraflexure 包干项目lump owm items 空隙压力pore pressure 维护maintenance 研究生post graduate student 主修课程major cources 后张法预应力砼结构post-tensioned prestressed concretestructure 手册manual 电线杆power pole 筏板基础mat foundation 实习工程师practising engineer材料力学mechanic of meterials 预制标准构件precast standard component 力学特性mechanical behaviour 预制结构构件precast structural elements 机械工程师mechanical negineer初步设计preliminary design 膜结构membranes sturucture 预应力筋press rendon轴压比midspan预制预应力砼梁prestressed concrete beam 预制梁mill-fabricated beam 预应力砼结构prestressed concrete structure 辅修课程minor coureces 预应力砼构件prestressed reinforced concrete structure 模量modulus/modular 先张法预应力砼结构pretensioned prestressed concretestructure 弯矩moment 条款provision 多道设防抗震建筑multi-defence system ofearthquake筏基raft foundatin多层建筑multistory building素土夯实rammed earth原材料raw materials螺旋箍筋spiral stirrup回执receipt form扩展基础spreed foundation 矩形梁rectangular beam稳定性stability配筋率reinforcement ratio稳定性计算stability calculation体积配箍率reinforcement ratio perunitvdumn超静定staical indetermination钢筋reinforcement/rebar/reinforceingsteel国企state-owned enterprise钢筋混凝土reinforcer concrete stucture钢材steel必修课requiered/compulsory cources钢筋等级型号steel grade designation 抵抗矩resisting moment吊筋steel hanger责任responsibility钢绞线steel strand挡土墙retaining wall钢丝steel wire挡土墙retaining wall钢丝steel wire利润revenue刚度stiffness刚架rigid frame助学金stipend钢结点rigid joint箍筋stirrap/hoop/tie圈梁ring beam应变strain圆钢(光面钢筋)round bar商品梁stramsit-mixed concrete建筑结构安全等级safety classes of buildingstructure强度strength沙sand应力stress科技文献scientific literature条基strip footing选修课selecture/optional cources结构分析structural analysis保持自尊self-respect结构工程师structural engineer邮寄send sth by post结构工程structural engineering沉降settlement轻骨料砼structural light weight concrete剪shear建筑结构structure of building剪切实验shear test结构钢structure steel剪力墙结构shear wall structure结构strudure剪应力shearing tiress结构设计sturcture design简便算法shrtcut method分包商subcontractor侧阻力side resistant监理工程师suoervising engineer粉土silt上司superior粉质粘土silty clay支持support简支梁simply supported beam测量工程surveying engineering场地土质剖面site profile战术tactics板slab专业术语technical engineer滑膜技术slip-forming techique投标者tenderer雪荷载snow load招标文件tendering document土质勘探soil mechanics survey预应力筋tendon土力学soil mechanis拉tension土样soil sample含水率the centage of water空间结构space structure防火等级the degree of fire resistance间距spacing通风系统the duting system for air跨度span给排水系统the piping system for water and waste特种砼结构special types ofconcretesturcture普通箍筋柱tied column专业课specialized木材timber比重specific gravity扭矩torque规程条文specification总建筑成本total construction cost 螺旋箍筋柱spiral column横向钢筋transuerse rebar基坑trench dug for a foundation竖向荷载vertical load试算法trial-and-error procedure过街天桥viaduct三轴实验triaxial test震动vibration桁架truss踏勘visit on foot筒体结构tube struvture孔隙比void ratio隧道tunnel墙wall双向板two-way slab墙梁wall beam极限应力ulmimate stress壁式框架wall frame无粘结预应力砼结构unbonded prestressed concretestructure含水率water content本科生undergraduate student水灰比water-cement ratio均布荷载uniformly distributed load抗震建筑薄弱部位weak region of earthquake-resistant 容重unit weight焊接钢丝网welded wire fabic单价合同unit-price contract风荷载wind load连续梁untinuous beam抗风柱wind-resistant colum向上反拱upward camber工作量working capacity有效日期validity period力偶wuple变更variation屈服强度yield strength承载力极限状态验证verification forultimate limit strate屈服应力yield stress。
附件2:外文原文(复印件)Performance of RC frames with hybrid reinforcement under reversed cyclic loadingM. Nehdi and A. SaidDept, of Civil & Env. Eng., The University of Western Ontario, London, Ontario, Canada, N6A 5B9Received." 5 May 2004; accepted." 13 October 2004ABSTRACTThe use of FRP as reinforcement in concrete structures has been growing rapidly.A potential application of FRP reinforcement is in reinforced concrete (RC) frames. However, due to FRP's predominantly elastic behaviour, FRP-RC members exhibit low ductility and energy dissipation. Hybrid steel-FRP reinforcement can be a viable solution to the lack of ductility of FRP-RC members. Using two layers of reinforcement in a section, FRP rebars can be placed in the outer layer and steel rebars in the inner layer away from the effects of carbonation and chloride intrusion. Combined with the use of FRP stirrups, this approach can enhance the corrosion resistance of RC members.However, current design standards and detailing criteria for FRP-RC structures do not provide detailed seismic provisions. In particular, the design and detailing of beam-column joints is a key issue in seismic design. During recent earthquakes, many structural collapses were initiated or caused by beam-column joint failures. Thus, research is needed to gain a better understanding of the behaviour of FRP and hybrid FRP-steel-RC under seismic loading. In this study, three full-scale beam-column joint specimens reinforced with steel, GFRP and a hybrid GFRP-steel configuration, respectively were tested in order to investigate their performance in the event of an earthquake.1.INTRODUCTIONCorrosion of reinforcing steel has been the primary cause of deterioration of reinforced (RC) structures, requiring substantial annual repair costs around the world. Furthermore, modem equipments that employ magnetic interferometers, such as in hospitals, require a nonmagnetic environment with no metallic reinforcement. This has led to an increasing interest in fibrereinforced polymers (FRP) reinforcement, which is inherently nonmagnetic and resistant to corrosion [1].Measurement devices for structural health monitoring purposes. However, FRP materials often exhibit weaker bond to concrete and lower ductility compared to that of conventional steel reinforcement. The bond of FRP to concrete can be improved by means of mechanical anchorages such as surface deformations and sand coating, but its lower ductility remains a major concern, especially in structures subjected to seismic and/or impact loading.Brown and Bartholomew [2] observed that FRP-RC beams behaved in a similar manner to that of steel-RC beams.However, in the design process, two criteria that are not usually problematic in thecase of steel reinforcement can govern the design in the case of FRP reinforcement: deflection and ductility. Most FRP materials usually have a significantly lower modulus of elasticity compared to that of steel (except for some new CFRP products) and thus, often generate higher deflections, Furthermore, the predominantly elastic behaviour of FRP results in little warning before a usually sudden and brittle failure. Satisfying deflection and ductility requirements is a challenge in designing FRP-RC structures. Thus, it is recommended that flexural design of FRP-reinforced slabs and beams should aim at over-reinforced sections in order to achieve a concrete compression failure, which usually allows FRP-RC flexural members to exhibit some plastic behaviour before failure [3, 4].In recent years, there has been a growing interest to investigate the performance of mixed steel-FRP as well as steel-free FRP-RC structures. However, research in this area has been generally limited to some beam and column testing.Most of the newly adopted specifications for the design of FRP-reinforced concrete [4-8] are not comprehensive, often do not include detailed seismic provisions, and do not cover hybrid FRP-steel RC systems. Therefore, research is needed to investigate the performance of FlIP and hybrid FRP-steelreinforced concrete frames under reversed cyclic loading in order to form the basis for future design code provisions for FRP-reinforced concrete in seismic zones. In this study, fullscale steel-reinforced, steel-free GFRP-reinforced, and hybrid GFRP-steel-reinforced beam-column joints were tested under reversed cyclic loading; Their behaviour including load-storey drift envelope relationship and energy dissipation were compared and discussed.2. SCOPE OF PREVIOUS WORKThe use of FRP as reinforcement in RC beams was investigated by various researchers. Different permutations of FlIP and steel as longitudinal and transverse reinforcement,respectively were studied [9-11]. Although transverse reinforcement is usually closer to the concrete surface and is therefore more vulnerable to corrosion, limited investigations have been performed on the use of FRP stirrups. The use of FlIP stirrups has been hindered by their limited availability and the fact that a 60% strength reduction factor at bends for various types of FRP is recommended [6]. Also, bending FRP bars to make stirrups typically needs to be performed in production plants with special care and equipment. The use of FRP NEFMAC (New Fiber Composite Material for Reinforcing Concrete) grids can provide a solution to such a problem; a four-ceU unit taken from a NEFMAC grid provides a three-branched stirrup as shown in Fig.Grira and Saatcioglu [12] investigated the use of both steel grids and CFRP grids as stirrups for confinement of concrete columns having longitudinal steel reinforcement. Several grid configurations were used and column specimens were tested under cyclic loading. They concluded that the performance of columns reinforced with CFRP stirrups was comparable to that of columns reinforced with steel stirrups. They also argued that the use of grids whether made of steel or CFRP provides ease of construction and a near-uniform distribution of the confinement pressure along the column, without congesting the reinforcement cage. They reported that the NEFMAC gridbased stirrups failed at their nodes, which is usually thecommon weakness of FRP stirrups. Fukuyama et al. [13] tested a half-scale three-storey AFRP-reinforced concrete frame under quasi-static loading. RA11S aramid-bars were used for the longitudinal reinforcement of columns, RA7S bars were used as flexural reinforcement for beams and slabs, while RA5 bars were used as shear reinforcement. RA11S, RA7S and RA5 are braided bars with cross-sectional areas of 90, 45 and 23 mm 2, respectively. It was argued that frame deformations governed the design. The frame remained elastic up to a drift angle of 1/50 rad, and no substantial decrease in strength took place after rupture of some main beam rebars owing to the high degree of structural indeterminacy of the frame. It was also noted that the rehabilitation of such a frame was easier than that of conventional RC flames since residual deformations were smaller. However, the flame was not tested to collapse and its behaviour under excessive deformations was not reported. Limited research has been performed on hybrid FRP-steel reinforced concrete. Aiello and Ombres [14] tested 6 beams with different configurations of longitudinal reinforcement including steel only, AFRP only, and hybrid AFRP-steel beams, all with steel stirrups. For some of the hybrid specimens, steel was placed with a larger concrete cover to provide extra protection against corrosion. Experimental results showed that such a hybrid system can have lower service deflection and higher ductility at failure than that of the AFRP steel-flee system. Leung and Balendran [15] tested seven RC beams under four point bending. Concrete strength and reinforcement ratios for both steel and GFRP were varied to produce under-reinforced and over-reinforced sections. Steel rebars were placed at 30 mm higher concrete cover compared to that for GFRP rebars. The study showed that for hybrid beams, steel contributed more effectively to the overall behaviour up to yield. Afterwards, the stiffness of yielded steel dropped drastically and the GFRP rebars started to contribute more efficiently to the section resistance. For high strength concrete beams, the increased flexural capacity resulted in shifting the flexural failure into a shear failure.Some research focused on providing ductility to FRP rebars that are manufactured by filament winding or pultrusion. For instance, Tamuzs and Tepfers [16] investigated the properties of a hybrid FRP rod. They used multiple fibre types along with braiding fibre strands around a soft porous core to achieve a more ductile behaviour. The hybrid rods they produced could provide a ductile behaviour, but the difference between the moduli of different fibre strands seemed to cause uneven load transfer, while the compression of the core material caused a reduction of cross-section. A similar study was performed by Bakis et al. [17] who developed pseudo- ductile FRP rods using different types of fibres. The rods behaved in a pseudo-ductile manner when tested under tension, but premature failure took place due to local stress concentrations. Another study performed by Harris et al. [18] developed a ductile hybrid FRP rebar through braiding of various fibres followed by a pultrusion process. Belarbi et al. [19] were also successful in developing composite reinforcing rebars with a relatively more stable stress-strain behaviour in tension and better load-deflection behaviour under four-point bending. However, such rebars are still in early experimental stages and there is not enough data on their field performance, especially under seismic loading.3. EXPERIMENTAL PROGRAMBeam-column joints can be isolated from plane frames at the points of contraflexure. The beam of the current test unit is taken to the mid-span of the bay, while the column is taken from the mid-height of one storey to the mid-height of the next storey.3.1 Steel-reinforced specimen (J1)3.2 GFRP-reinforced specimen (J4)3.3 Hybrid-reinforced specimen (J5)3.4 Test setup and procedure5. DISCUSSIONThe use of FRP as reinforcement in concrete structures has been increasing in popularity, yet various design guidelines and provisions still need to be developed for its safe implementation in large-scale field applications. For instance, the ACI 440.1R-01 identified a wide variety of research issues pertaining to FRP that need to be addressed, some of which are as simple as establishing the statistical variation of the tensile capacity of FRP rebars. Moreover, the contribution of FRP transverse reinforcement to the shear capacity of RC elements needs to be properly evaluated. The lower bond strength of FRP to concrete compared to that of steel imposes difficulties in design, for instance in satisfying rebar development length such as in the case of beam reinforcement anchorage in exterior joints, for which using FRP would require additional embedded length compared to when steel rebars are used. Also the difficulty of manufacturing bends in FRP makes it difficult to adopt this material in reinforcing structurally complicated configurations and needs to be addressed.A major drawback of steel-free FRP-RC systems is their low energy dissipation under earthquake loading, as demonstrated by the performance of the tested FRP-reinforced joint specimen (J4). The energy input from ground motion is equal to the sum of potential, kinematic, damping and hysteretic energy components [22]. The potential and kinematic energy components vanish after the static equilibrium of the structure is reached, while the damping and hysteretic energy components are responsible for energy dissipation. The hysteretic component becomes the major contributor to energy dissipation when significant inelastic deformations take place. Hence, an FRP-reinforced frame may have to be designed with a high damping component so that when added to its relatively limited hysteretic Component, it can dissipate the energy input during an earthquake. Design guidelines for framed RC buildings by the Architecture Institute of Japan, as outlined by Kobayashi et al. [23], entail ensuring seismic performance by overcoming the ductility deficiency of FRP-RC frames. The study recommended the use of the capacity spectrum method. Performance demand and capacity spectra were evaluated and a performance point, where the demand and capacity spectra meet and members are still below their flexural capacity, was defined as the safety limit. This performance-based design approach was successfully applied to the analysis of a 9-floor FRP-RC frame. The study also pointed out the cruciality of damping in FRP-RC structures and recommended the use of vibration control devices.The use of hybrid steel-FRP RC systems could address many of the drawbacks ofsteel-free RC systems. Steel reinforcement can be used in lateral load resisting structural members, which are not usually exposed to aggressive media, while FRP reinforcement can be used in the envelope of the structure to enhance durability. Alternatively, a hybrid reinforcement configuration can make use of the corrodible steel at a thick concrete cover, while the more durable FRP stays at a minimum cover. Thus, the structure can benefit from using such a hybrid reinforcement system to provide both durability (using FRP) and post-peak reserve strength (using steel).The present study focussed only on comparing the behaviour of FRP, hybrid steel-FRP, and steel-reinforced beam-column joints. Full-scale tests on entire FRP and hybrid-reinforced frames need to be performed to assess the progress of failure globally. The results can be used to calibrate numerical models that can be used to simulate the behaviour of multi-storey FRP and hybrid-reinforced frames with high degrees of redundancy, and accordingly predict the progress of failure. Moreover, passive energy dissipation devices can provide a source of energy dissipation for FRP-reinforced frames, which needs further focussed research. Overall, research efforts are still needed to address many questions and uncertainties, and to develop adequate design provisions dedicated to steel-free and hybrid RC systems, before their widespread use in demanding large-scale structural applications becomes feasible and safe in seismic areas.6. CONCLUSIONSAn effort was made to investigate the performance of GFRP and hybrid steel-GFRP-reinforced beam-column joints and to compare their behaviour to that of standard steel-reinforced beam-column joints under reversed quasi- static (cyclic) loading.,the following conclusions can be drawn:The GFRP-reinforced beam-column joint showed very low plasticity features when tested under reversed cyclic loading. This resulted in lower energy dissipation compared to that of the steel and hybrid reinforced specimens.The hybrid GFRP-steel-reinforced beam-colunm joint showed lower stiffness than that of the conventional steel- reinforced beam-column joint, but exhibited higher stiffness than that of the GFRP-reinforced specimen.The GFRP and hybrid-reinforced specimens showed satisfactory drift capacity, assuming a minimum drift requirement of 3% (0.03 rad) as recommended in the literature for ductile RC flame buildings [24].A hybrid RC system could be tailored to provide a range of performance requirements such as durability, stiffness, strength, ductility, etc. A designer may adapt the reinforcement configuration of the hybrid system to accommodate a balance between such design criteria.This study was only focussed on the level of the subassemblage. A more global concept should be adopted in the design of moment-resisting frames. Thorough dynamic analysis of GFRP and hybrid-RC structures should be performed to better assess their capacity in meeting seismic resistance requirements.Design code provisions for the seismic design of RC structures, which have been developed for ductile steel reinforcement, need to be re-evaluated for FRP-RC structures.。
第39卷第1期2521年2月Vot.39NdFeb.2001轻工机械Lighi hndustry Machinery[研究•设计]DOI::2.7699/j.issn.1020-0890.2221.21.024新型大行程高承载力的柔性铰链设计赵传森,许勇*,张强强,王艳,董飞(上海工程技术大学机械与汽车工程学院,上海221622)摘要:针对传统柔性较链在行程、承载力性能方面的不足,难以实现柔性较链较大的移动范围,课题组提出了一种新型TLET柔性较链。
它是由一系列LET型柔性较链串并联组成,采用独特的布置方式以增强柔性较链的移动范围,在安全可靠的工作条件下实现大位移和大承载能力。
采用等效成弯曲弹簧的方法推导出等效刚度模型,运用有限元分析的方法对3种材料的柔性较链进行失效形式分析,从中选出高性能的合适材料。
对比了所设计的新型较链和传统较链的性能,通过有限元仿真验证了新型柔性较链设计的可行性。
仿真结果表明:对于44N的最大载荷,较链沿/轴的最大位移为21.68mm,轴方向上的最大位移为25.16mm,新型较链的移动行程比传统较链大1.8倍。
文中所设计的较链可用于工作行程大,负载能力高的机械装备中。
关键词:柔性较链;大行程;等效刚度模型;有限元分析法中图分类号:TH112;TP242.2文献标志码:A文章编号:1025-2895(2221)21-021726Desinn oO New FlexibO Hinge with Large Stroke andHigh Berring CapadtyZHAO Chuadsed,XU Youg*,ZHANG Qiangqianq,WANG Yan,DONG Fed (Schod of Mechanical and Automotive Engineeyng‘Shanghai University of Engineering Science,shanghai221622,China) Abstrycd:Considering that the snoyaae of the tranitionat U cxv hinge in the aspects of strode ana beoyng opacity, which resnlts in the didichlty in realizing the laraec moving range of U cxiv hinge,a new TLET U cxiv hinge was proposeb-It was composeb of a sbes of let-tyze U cxuiv hinges V sbes ana parallet-The unique afangemeat was useb to eanaace the movement range of the U cxiv hinges-The proposeb U cxiv hinges can achieve larae displacement and larae bevyng cdpacity unavr safe and reliante worhing conaidoas.The enuivvled-sadness model was0^陀0b,using heemeheodoteqrneneeghbegdngespangengdheetnneraemodeotteeiraeengeesotdn t eaeghmnheanneswnsngne,aedb, rsngetngnheeeemeghmeheod,heegheesrnhnbeemnheanneswnheeneepeatoamngheweaeseeehhed2Teepeatoamngheothee gewengeewnshompnaedwnhehenhotheehandnhnogneengee,ngdheetensnbnenh,otheegew teeinbeeengeedesnegwns eyfan bd finite element simulation-The sivulation resnlts show that U p the maximum U p S of44N,the maximum displacement of the hinge along the X-2xis is21.26mm,ana the maximum displacement along the Z-2xis is25.12mm. The moving strode of the new hinge is1.3times laraec than that of the traditionat hVge.The desiqaeb hinges can be useb in mechanicat equipment with larae wording strode ana high load cdpacity.Keywods:U oxiv hinge;larae sUode;qiimdUnt stiffness model;FEA(finite element analysis)随着柔性机构的飞速发展,具有尺寸紧凑、轻量化、无摩擦、无润滑和无磨损等优点的柔性铰链和柔性机构已经在汽车工业、电子工业、微操作机器人及精密光学仪器等领域得到广泛应用。
S形折叠式柔性铰链结构设计闫凯;张静;寇子明【摘要】According to principles of flexure hinge series and parallel relationship,a S-type fold-able flexible hinge was designed in order to reduce flexibility and get a larger corner of the flexible ing pseudo rigid-body method and energy method,the stiffness model of S-type flexure hinges was deduced.By ANSYS,a finite element model of the flexible hinges was built,and the stiffness and stress analyses of the S-type hinges were carried out.It is found that the stiffness of errors are about 3% by comparing the simulation values and theoretical values.As a result,the stiffness model of S-type flexure hinges is proved right.When the rotational degrees about the flexure hinge are up to ±35°,the safety of factor is as 4.So the S-type foldable flexible hinges fully meet the design requirements.%为了减小柔性铰链的转动刚度,依据串并联关系,设计了S形折叠式柔性铰链.使用伪刚体法和能量法,建立了S形柔性铰链的刚度模型.利用ANSYS 建立了该柔性铰链的有限元模型,对铰链进行了刚度和应力分析,并将其与理论值进行了比较,得到刚度误差约为3%,验证了刚度模型的准确性.当转角达到最大值±35°时,安全系数为4,符合设计要求.【期刊名称】《中国机械工程》【年(卷),期】2017(028)014【总页数】5页(P1696-1700)【关键词】柔性铰链;伪刚体法;能量法;等效刚度;有限元分析【作者】闫凯;张静;寇子明【作者单位】太原理工大学机械工程学院,太原,030024;太原理工大学山西省矿山流体控制工程实验室,太原,030024;太原理工大学矿山流体控制国家地方联合工程实验室,太原,030024;太原理工大学机械工程学院,太原,030024;太原理工大学山西省矿山流体控制工程实验室,太原,030024;太原理工大学矿山流体控制国家地方联合工程实验室,太原,030024;太原理工大学机械工程学院,太原,030024;太原理工大学山西省矿山流体控制工程实验室,太原,030024;太原理工大学矿山流体控制国家地方联合工程实验室,太原,030024【正文语种】中文【中图分类】TH122柔性铰链是一种特殊的柔性单元[1-3],具有整体化加工、无摩擦、免润滑等特点,主要用于要求较高的精密仪器、仿生机器人、航空航天等领域[4]。
土木工程专业英语生词整理声明:本文档是笔者结合清华大学俞家欢老师《土木工程专业英语》与同济大学苏小卒老师《土木工程专业英语》上下册整理的一些土木工程领域常用的生词,仅供有需要的朋友学习交流使用。
可能有少量打错的字,请谅解。
barrages 水库canals 运河distributary 引流工程highway 公路expressway 高速公路(美式)levee 码头mitigate floods 减轻洪水construction 建造→施工survey 调查→工程勘察helipad 停机坪truck terminal 铁路站台sewage treatment 污水处理demolish 拆毁central government or local administration中央或地方政府reinvestment 再投资petroleum revenue 石油财政(指迪拜)resort island 度假岛desert country 沙漠地区国家waterfront 滨海区residential apartment 公寓住宅gulf 海湾buttressed design 扶壁设计tripod foundation 三脚架式基础tide and current 潮起潮落traffic congestion 交通拥挤regulate 限制financial crisis 金融危机escalate rent cost 租金持续上涨mega-project 大项目revale 媲美microcosm 缩影tropical cyclone 热带气旋(台风)downstream 产业链下游desalination 海水淡化distillation 蒸馏ubiquitous 无处不在的marine species 海洋生物density 重度(类似密度)gravity 重力→比重toughness 韧性ductility 延性brittleness 脆性creep 徐变,蠕变stiffness 刚度impact strength 冲击强度thermal 热力学特性corrosion resistance 耐腐蚀性acidity 酸性,酸度alkalinity 碱性,碱度sound 声absorption 吸收transmission 传导reflection 反射acoustical 声学特性optical 光学特性physiochemical 生化特性abrasion 磨损indentation 缺口,凹痕machining 蚀刻scratch 切削oxidize 氧化cement-mortar 水泥砂浆quarry 采掘lintel 过梁ballast 压载材料(铁轨下的垫材)brick 砖refractory brick 耐火砖ventilator 通风设备railway coaches 铁路车厢wagon 马车sleeper 枕木masonry construction 砌体结构gravel 砂石,砾石property 性能plastic stage 塑性workability 和易性mix 混合→拌和place 放置→浇筑compacte 压实finish 竣工homogeneity 同质性segregation 离析性coarse aggregate 粗骨料water tightness 水密性bleeding 裂隙pore 孔隙porous 多孔的harshness 粗糙的poorly graded aggregate 骨料级配不良withstand 抵抗moisture variation 潮湿变化freeze and thaw 冻融impermeability 密闭性resistance to wear and tear 耐磨性reinforced cement concrete 钢筋混凝土prestressed cement concrete 预应力混凝土silo 筒仓bunker 煤仓,地堡,掩体ornamental structure 装饰性结构tensile load 抗拉强度slab 板tall chimney 高烟囱aqueduct 高架渠ferro-cement 钢纤维混凝土skeletal steel 钢骨架pre-cast unit 预制单元(构件)vault 拱顶shell 壳结构grid surface 网格表面folded plate 褶皱板partition 隔断ductile 延展性好的susceptible to damage 易损坏harmony express 和谐号动车asbestos cement sheet 石棉水泥板shape memory alloy 形状记忆合金magnetostrictioe material 磁致伸缩材料piezoelectric material 压电材料electrorheological fluid 电流变材料viscosity 黏性deflection 挠度vibration 振动noise mitigation 噪声抑制bridge deck 桥面bridge pier 桥墩slab 板beam 梁grider 大梁、桁架restrained structure 超静定结构differential settlement 不均匀沉降hydrostatic load 静水荷载earth load 土压力earthquake load 地震荷载tile 瓦felt and gravel 毡及卵石层gypsum block 石膏wood stud 木栓texture of the building surface建筑表面形状纹理stiffness of the structure 建筑结构刚度stagnation pressure 风压wind suction 风吸力leeward 背风面的coefficient 系数gust factor 阵风系数essential factor 重要性系数hazardous facility 危险设备seismic load 地震荷载vibration 振型whiplash effect 鞭梢效应a portion of the base shear force底部剪力法storey 楼层hydraulic 水运elevator shaft 电梯井筒folded plate 折板屋顶bearing wall 承重墙shear wall 剪力墙unobstructed surface 无障碍表面erect 建造,建立residential 民用建筑institutional 公共结构serviceability 实用性failure 极限状态rehabilitation 加固verification 验证load transfer mechanism 荷载传递机理flexure 弯曲,屈曲torsion 扭转shear 剪切membrane 拱grid 柱reinforcement bars(rebars)钢筋patent 专利precast concrete 预制混凝土cast concrete 现浇混凝土brick chip 碎砖块cement hydrates 水泥水化物microscopic opaque crystal 微小透明晶体microscopic rigid lattice 微观晶格corrugated 有螺纹的cohesion 黏结力passivate 钝化(钢筋)chloride 氯离子provision 规定,要求moisture 潮湿,水分humidity 湿度,湿热curvature 弯曲,曲度,曲率singly-reinforced beam 单筋梁under-reinforced beam 少筋梁over-reinforced beam 超筋梁balanced-reinforced beam 适筋梁instantaneous 立即,突然material-safety factor 安全系数allowable stress design 许用应力设计flake 剥落mix design 配合比设计penetrate 侵入serviceability failure in limit state design正常使用极限状态破坏bond failure 黏结失效carbonation 碳化作用neutralisation 中和作用(即碳化作用)optimal 最佳选择phenolphthalein indicator 酚酞指示剂admixtures 外加剂rapid set-up 快速初凝mitigate 减轻,缓和capillary 毛细管sound attenuating layer 隔音层slump 坍落度concrete vibrating 振捣steel sire 箍筋iron chain suspension bridge 铁链吊桥rivets connection 铆钉连接wrought iron technology 锻铁技术cast iron 铸铁high-strength bolt 高强度螺栓fabrication 制作technical code 技术规程cold-formed thin-wall steel 冷弯薄壁型钢masonry 砌体材料plasticity 塑性tenacity 韧性isotropic 各项异性ideal elastic-plastic 理想弹塑体proportional limit 比例极限(σp)yield strength 屈服强度tensile strength 抗拉强度fabrication 制作weldability 焊接性能air tightness 气密性press vessel 压力容器heat resistance 耐热性non-refractory 防火性能差fire proof protection 防火保护brittle fracture 脆性断裂large span structure 大跨度结构crane 吊车profiled steel sheet 异型钢板mega-frame structure 组合结构demountable structure 可拆卸结构steel scaffolding 钢脚桁架rupture 破裂buckling 搭扣,屈曲formation of mechanism 形成机构(塑性铰)wind induced oscillation 风致振动provision 规定load-carrying structure 承重结构percentage of elongation 伸长率cold-bending test 冷弯实验single story frame 单层结构bridge crane 桥式起重机residual stress 残余应力sun-dried mud 晒干的泥土shale 页岩lateral load 水平荷载seismic 地震raw material 原材料mortar 砂浆mica 云母filthy 有机杂质odor 气体iron compound 铁化合物mold 模具stirrup 箍筋gravel 砾石compact sand 紧密的砂土trench 沟槽over footing 地梁adherence 黏结性confining column 构造柱minimum covering for concrete最小保护层厚度water cement ratio 水灰比mid-rise segment 中高层建筑glulam beam 胶合木梁dwelling 住宅sport arene 运动场better seismic performance更好的抗震性能interior 内部gypsum 石膏板external cladding 外覆盖层fire-rated assembly 防火组件hybrid construction 混合结构practical 实用的exterior infill wall 外部填充墙energy performance 节能性能renovation 装修flat roof 平屋面extra accommodation 阁楼solid wood panel 实木板freight 运送到up-front invesrment 前期投资mortise 榫眼,榫接tenon 榫erected 直立的flammable 易燃物purlin 檩条spatial construction 空间结构high load-bearing capacity很高的荷载承担能力compaction 密实erection 建造hollow steel tube 中空钢管unfilled tube 中空钢管confinement 约束作用schematic view 示意图favorable stress distribution有利的荷载分布terrain 地形cantilever bridge 悬臂桥arch bridge 拱桥suspension bridge 悬索桥cable-stayed bridge 斜拉桥truss bridge 桁架桥pier 桥墩dissipation 消散(荷载)box girder 箱梁meticulous analysis 精细分析foot bridge 人行桥false work 脚手架counter balance 平衡抵消anchor arm 锚固臂outermost 最外侧pinned joint 铰接节点segment construction 分布施工canyon 峡谷abutment 桥墩(基台)viaduct 高架桥thrust 推力spandrel 拱尖catenary 锁链aforementioned 如前所述的bluff 悬崖pillar 塔架slender 细的parabola 抛物线lattice girder 格构梁drought 干旱flood 洪水cyclone 飓风environmental degradation 环境恶化meteological disaster 气象灾害casualty 伤亡invariably 始终如一的secondary disaster 次生灾害earthquake portent 地震预警landslide 滑坡collapse 崩塌debris flow 泥石流river erosion 河流侵蚀turbid 浑浊fissure 裂缝resilient 弹回,有弹力的sewerage 污水,排水设备snowmelt 融雪水escalation of cast 超过预算time overrun 工期延长pharmaceutical 制药mitigate potential risk 化解潜在风险tenet 宗旨aqueduct 高架渠,渡槽ballistic 弹道学causeway 长堤,堤道channel 沟渠,海峡,槽钢equilibrium 平衡(状态)excavation 挖掘hydraulic 水力的mason 砖瓦石匠obelisk 方尖石塔quarry 采石场sewage 污水reimbursable 可报销的,可补偿的aerated concrete 加气混凝土aggregate 骨料binding agent 粘合剂bitumen 沥青blunt 钝的bolt 螺栓cast 浇筑clamp 夹子corrode 腐蚀course (砖)层,行form 模板grout 薄砂浆,灰浆multistory building 多层建筑rate of contraction 收缩率rate of expansion 膨胀率rivet 铆钉,铆接screw 螺丝钉slab 平板spray 喷射tarlike 沥青thread 螺纹tile 瓦片versatile 多用途的weld 焊接blastfurnace 高炉矿渣asbestos 石棉瓦modulus of rupture 断裂模量hydration 水化作用cohesive 粘性的rapid-hardening 速凝grading 级配dampness 湿度,含水量accelerator 速凝剂inhibitor 抑制剂plasticizer 塑化剂grouting agent 灌浆剂consistency 稠度mobility 流动性compactability 可密实性biaxial 二轴的distortion 扭曲,变形elongate 拉长,延长moment 力矩prismatic 棱柱形的superposition 迭加作用transverse 横向的triaxial 三轴的,空间的vessel 容器bracing 拉条,撑杆conservation of energy 能量守恒conveyor 输送机deviation 偏差flexibility coefficient 柔度系数method of section 截面法pin connection 铰接principle of virtual work 虚功原理redundant force 冗余力sever 断开,分开support reaction 支反力truss 桁架unit-load method 单位荷载法corridor 走廊counteration 退化ductile failure 延性破坏erection 直立建筑物impact factor 冲击系数iterative 重复的,反复的layout 规划,设计图案maintainability 可维护性monorail 单轨铁路quasi-permanent 准永久的sustained 持续不变的tenant 承租人torque 扭矩torsional 扭力,扭转的buggy 手推运料车commentary 注释,条文规范contractor 承包商couple 力偶entrain 加气(给混凝土)fire rating 耐火等级oscillate 摆动,震动rigidity 刚度shoring 支撑anchorage 锚固centroid 形心concrete cover 混凝土保护层eccentricity 偏心距helix 螺旋线的incipient 刚出现的lap splice 搭接longitudinal 纵向的pitch 坡度spall 剥落symmetrical 对称的tie 绑扎(钢筋)curvature 曲率detrimental 有害的flange 翼缘web 腹板render 粉刷,抹灰foundry 铸造厂incombustible 防火的residual 残余的stocky 短粗的vitreous 玻璃的withstand 抵抗,承受gusset 节点板,角板imperfection 缺陷purlin 檩条rafter 椽子slenderness 长细比spandrel 拱肩,托梁stringer 桁条,纵梁sway 晃动,侧接移forge 锻造inspection 检查,弹伤shank 末梢wrench 扳手nut 螺母slag 钢渣coordinate 坐标cruise 勘察datum 基准面elevation 高程,海拔remote sensing 遥感conductivity 传导性gradient 梯度ballast 石渣boulder 漂石cobble 卵石cohesive 有粘聚力的consolidation 固结depression 降低fine 细粒grit 粗砂silt 淤泥immediate settlement 瞬时沉降consolidation settlement 固结沉降pore water 孔隙水back-acting shovel 反铲(挖掘机的)bearing capacity 承载力bore hole 钻孔boring 钻探coefficient of permeability 渗透系数proposed structure 拟建结构shear vane test 十字板剪切试验consistency 稠度attorney 代理人currency 流通货币dispatch 派遣elicit 引出procure 获得remuneration 报酬stipulate 规定surety 担保tendering 招标,投标withhold 保留bidder 投标人contemplate 注视letting 公开开标recourse 追索stock holder 股东performance bond 履约profit margin 利润率stem from 基于a letter of intent 意向书rule of thumb 经验方法radius of gyration 回转半径transverse load 横向荷载shop-fabricated 工厂预制的capping beam 压顶梁channel element 槽型构件cladding brickwork 维护砌体cornice 檐口,飞檐finish 饰面,粉刷flat slab 无梁板footing 基础,垫层head room 净空高度joist 托梁,肋maritime 靠海的,港口的two-way slab 双向板waffle slab 密肋板yield line 塑性铰线inflate 充气,使膨胀perturbation 摄动,扰动cavity wall 空心墙chicken-wire 铁丝织网cut-and-try 试验性的emulsion 乳胶head(end) joint 端灰缝high-lift 高扬程的mortar bed 砂浆平缝partition 分隔墙mortar joint 灰缝retarder 缓凝剂rubble 毛石,块石veneer 饰面,镶板retaining wall 挡土墙custom-designed 定制cut-and-fill 挖方和填方placement 浇捣concrete batching plant 混凝土搅拌站bentonite slurry 泥浆asphalt 沥青,柏油gutter 排水沟auger boring 螺纹钻探group pile-efficiency 群桩效应in-situ 现场的,原位的fracture 断裂hysteresis 滞回inter-storey drift 层间位移longitudinal reinforcement 纵筋monotonic loading 单调加载partial safety factor 分项系数secondary-order effects 二阶效应shear span 剪跨sidesway 侧倾,侧移。
第18卷第6期2020年12月水利与建筑工程学报JournalofWaterResourcesandArchitecturalEngineeringVol.18No.6Dec.,2020DOI:10.3969/j.issn.1672-1144.2020.06.025收稿日期:2020 08 09 修稿日期:2020 09 01基金项目:国家自然科学基金青年项目(51408223);国家自然科学基金面上项目(51679091;51979109)作者简介:程学斌(1995—),男,江西上饶人,硕士研究生,研究方向为工程结构抗震。
E mail:lbjcheng@163.com通讯作者:马 颖(1982—),女,河南郑州人,博士,硕士生导师,主要从事水工、桥梁等工程结构抗震研究工作。
E mail:maying198208@163.com基于ABAQUS的钢筋混凝土柱抗震数值模拟分析程学斌,马 颖,袁子淇(华北水利水电大学水利学院,河南郑州450045)摘 要:为了研究ABAQUS软件中实体单元和纤维梁单元在不同破坏模式下(RC)柱滞回性能数值模拟的适用性,从美国PEER数据库中收集了9根钢筋混凝土矩形截面柱的拟静力试验数据,柱试件分别发生了弯曲、弯剪或剪切不同模式的破坏。
在ABAQUS中分别建立柱试件的实体单元模型和纤维梁单元模型并进行往复荷载作用下RC柱滞回性能的数值模拟,将模拟结果与试验数据进行了对比分析。
结果表明:对于弯曲破坏RC柱,适合采用纤维梁单元模拟,而对于弯剪破坏和剪切破坏RC柱,基于实体单元的模拟结果与试验结果更为接近;纤维梁单元能够更准确地模拟RC柱滞回曲线的捏拢效应。
关键词:钢筋混凝土柱;ABAQUS;实体单元;纤维梁单元;滞回性能中图分类号:TU375.3 文献标识码:A 文章编号:1672—1144(2020)06—0146—07SeismicNumericalSimulationAnalysisofReinforcedConcreteColumnsBasedonABAQUSCHENGXuebin,MAYing,YUANZiqi(SchoolofWaterConservancy,NorthChinaUniversityofWaterResourcesandElectricPower,Zhengzhou,He’nan450045,China)Abstract:InordertoassesstheapplicabilityofnumericalsimulationofhystereticbehaviorofRCcolumnswithsolidelementandfiberbeamelementinABAQUSsoftwareunderdifferentfailuremodes.Thepseudo statictestdataof9re inforcedconcreterectangularcross sectioncolumnswerecollectedfromthePEERdatabaseintheUnitedStates.Thecolumnspecimenswerefailedindifferentmodesofflexure,flexure shearorshear.Basedontheforcetestdata,thesolidelementmodelandthefiberbeamelementmodelofthespecimenwereestablishedinABAQUStosimulatethehystereticperformanceoftheRCcolumnunderthereciprocatingload.Thesimulationresultswerecomparedwiththetestdata.TheresultsshowthatforflexurefailureRCcolumns,fiberbeamelementsimulationissuitable,whileforflexure shearfailureandshearfailureRCcolumns,thesimulationresultsbasedonsolidelementsareclosertothetestresults,andfiberbeamelementcanmoreaccuratelysimulatethepincheffectofRCcolumnhystereticcurve.Keywords:reinforcedconcretecolumns;ABAQUS;solidelement;fiberbeamelement;hystereticperformance 在地震作用下,钢筋混凝土柱作为水工、桥梁、房屋等结构的主要竖向承重与水平抗力构件,承载着整个结构的竖向荷载和由地震引起的水平荷载。
收稿日期:2003-03-18作者简介:马浩全(1971-),男,甘肃镇原人,博士生,研究方向为精密机械制造与装备自动化。
文章编号:1004-2474(2004)06-0514-03柔性铰链位移放大机构在活塞加工中的应用马浩全,胡德金,张 凯(上海交通大学机械与动力工程学院,上海200030) 摘 要:针对活塞加工中快速刀具伺服机构高频响、大位移和高精度的特点,提出了一种基于压电陶瓷的新型单自由度柔性铰链微位移放大机构,对单轴柔性铰链和机构进行了刚度计算;为了提高控制精度,利用M ax well 模型对压电陶瓷非线性建立数学模型,利用反馈-前馈控制法消除了以切削力为主的干扰信号的影响,仿真实验证明该系统达到了活塞加工中高速进给的要求。
关键词:柔性铰链;压电陶瓷;M ax well 模型;反馈-前馈控制中图分类号:T H134 文献标识码:AApplication of Flexure -hinge Micro -motion Amplifier in Piston TurningMA Hao -quan ,HU De -jin ,ZHANG Kai(S chool of M ech anical and Dyn amic E ngineering ,Sh angh ai Jiaoton g U nivers ity ,Shanghai 200030,C hina ) Abstract :In turning pist on,F ast T o ol Serv o should hav e t he char acterist ics o f hig h fr equency,lo ng stro ke of mot ion and hig h pr ecisio n.A co mpletely new flex ure-hinge micr o-motion PZT ba sed amplifier ,which pro vides one-deg ree freedom of mo tio n,is put fo rw ar d in this paper.T he detailed design method o f r ot ating stiffness of one-a xis flex ur e hing e a nd the str uctur e are illustrat ed.In or der to get higher contr ol accur acy,the model of piezoelect ric actuato r is dr aw n fr om M ax w ell slip m odel and a feedback -feedfo rw ar d contr ol m ethodolog y is ut ilized to eliminate the effect o f the main distur bance caused by cutting fo rce .It's pr ov ed t hat the sy stem can meet the requir ement s o f fast feed in turning pisto n . Key words :flex ure hing e;piezoelectr ic actuator ;M axw ell mo del;feedback-feedfo r war d co nt ro l 1 引言为了保证发动机在工作中活塞裙部与气缸壁很好地贴合,降低活塞裙部比压、减小活塞对气缸壁的冲击、降低噪声,现代汽车活塞裙部都采用中凸变椭圆形状。
概 述联轴器是用来将原动机所产生的运动和转矩传递给从动机的装置,同时具有补偿原动机与从动机之间由于制造误差、安装误差、承载后的变形以及温度变化的影响等所引起的轴向、径向和角向偏移的功能。
丹东克隆集团有限责任公司于1990年开始生产联轴器,十余年来,产品遍及石油化工、冶金、电力、造纸等行业,产量与质量同增,效益和信誉共长。
公司1996年通过ISO9002质量体系认证,1998年获国家质量合格证书,膜片联轴器获三项国家专利,2001年获国家机械工业科学技术三等奖,2002年被授予辽宁省高新技术企业,同年通过ISO9001质量体系认证,2007年通过美国石油协会APISpecQ1质量管理认证,同年通过法国船级社ATEX 防爆认证,产品备受用户赞誉。
产品系列型号产品系列型号说明说明膜片膜片联轴器型号联轴器型号联轴器型号说明说明说明::A—中间节式双膜片结构;B—中间盘式双膜片结构;C—单膜片式结构;D—半轴节倒置结构。
注:1.DG 系列无结构代号;2.F 表示防护式联轴器.其它形式联轴器型号说明形式联轴器型号说明::CML—梅花型弹性联轴器INTRODUCTION The coupling is a device used to transmit movement and torque from the driving machine to the driven machine to accommodate axial, radial and angular misalignments which occur between driving and driven machinery due to errors in manufacture and mounting load-deformation and temperature variation. DANDONG COLOSSUS GROUP CO.,DANDONG COLOSSUS GROUP CO., LTD LTD has been made the flexible coupling from 1990, it has been widely applied to petrochemical, metallurgy, electric power and paper making fields in the past eighteen years. Output and quality is growing together, simultaneous increase of benefit and reputation .We repeatedly won science and technology achievement awards by state, ministry province and local government, APISpecQ1 and ATEX avoid blast attestation. We also gained high remarks from users. COUPLING SERIES EXPLANATION The explanation of flexible laminated membrane coupling : A—two flexi-element units with spacer ; B—two flexi-element units with mid-plate ; C—only one flexi-element unit ; D—reverse hub with big spacer. Note :1.DG series has no construction form code. 2. F indicating the coupling with safe guard. The explanation of other types of coupling : CML—plum shape elastic coupling CML 1规格型号系列号:CML.CBL.CTLCML 1spec code series code:CML.CBL.CTL 规格型号孔 数结构代号:A.B.C.D系列号:DC.DGspec code number of holes construction form:A.B.C.D series code:DC.DG DC 4 A - 60 (F)挠性膜片联轴器工作原理挠性膜片联轴器的弹性元件是由一定数量的薄金属片叠合成组,膜片有环形、多边、束腰等形式。
第41卷第1期2017年1月激光技术LASER TECHNOLOGYVol.41,No.1January,2017文章编号:1001-3806(2017)01-0141-05空间反射镜背部双脚架柔性支撑结构设计周宇翔,沈霞(中国科学院上海技术物理研究所,上海200083)摘要:为了满足空间反射镜温度适应性好、结构紧凑的要求,采用有限元分析方法,以超低膨胀系数玻璃空间反射 镜(0355mm)为支撑对象,设计了一种背部双脚架柔性支撑结构。
首先研究了双脚架支撑的基本设计原则,从自由度角 度分析了双脚架支撑结构相对背部3点支撑结构的优势。
然后针对支撑结构尺寸参量、柔性铰链结构尺寸参量对面型精度的影响进行了仿真分析和优化设计,提出支撑脚延长线交点位置应作为背部双脚架支撑的关键设计参量,与粘接位 置分别设计。
结果表明,优化设计后的背部双脚架柔性支撑结构温度适应性好,能够有效卸载温度变化引人的附加载 荷,同时具有较好的支撑效果和动态刚度;反射镜支撑后面形精度均方根值为3.68mn,组件的1阶频率达到123.41Hz,满足设计要求。
该研究对未来背部双脚架支撑结构设计具有借鉴意义。
关键词:光学设计;双脚架柔性支撑;有限元分析;空间反射镜中图分类号:TN202 文献标志码:A doi:10. 7510/jgjs. issn. 1001-3806. 2017. 01. 029Structure design of backside bipod flexure mount for space reflectorZHOU Yuxiang,SHEN Xia(Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai200083, China)Abstract:To satisfy the requirement of thermal adaptability and limited space, a kind of bipod flexure mounts for space reflector ( 0355m m) made of super low expansion coefficient glass was designed by finite element analysis (FEA)method. Firstly, the basic design principles of bipod flexure were studied. The advantage of bipod structure, compared with three points backside structure, was discussed from the view of freedom. Secondly, simulation analysis and optimization design were carried out for the influence of dimension parameters of support structure and flexure hinge on the surface figure accuracy. The intersection position of supporting foot extension line should be the key design parameters and the bonding position should be designed respectively. The results indicate that backside bipod flexure mounts after improved design has fine thermal adaptability and can effectively discharge the load caused by thermal variation, and has fine supporting ability and dynamic stiffness at the same time, root mean square of surface figure accuracy reaches 3. 68nm, after reflection mirror mounting, and the first order frequency of assembly is 123.41Hz. The data can meet the design requirements. This study can supply the meaningful reference for future structure design of backside bipod mounts.Key words:optical design;bipod flexible mount;finite element analysis;space reflector引言随着用户对遥感仪器需求的提高,能够适应恶劣 空间温度环境的反射镜支撑技术越来越成为关注的重 点。
自重作用下钢拉杆内力和轴向刚度分析唐海军1,傅学怡1,陈贤川2(1 中建国际(深圳)设计顾问有限公司,深圳518000;2深圳大学土木工程系,深圳518060)[摘要]钢拉杆自重作用下受弯,产生平面外变形,钢拉杆拉力将形成附加弯矩。
附加弯矩取决于原始弯矩又会减少原始弯矩。
拉力与弯矩存在着一定的非线性关系。
由挠曲线的微分方程、简支杆的平衡条件和边界条件,解得拉弯构件的挠度、弯矩、轴向变形的解析解,并对拉弯构件解析解进行有限元分析验证,进一步提出了解析解的近似解,根据近似解求得拉弯构件轴向刚度。
最后,根据拉弯构件的受力分析结果,提出钢拉杆的强度验算条件和预拉力的确定方法。
[关键词] 钢拉杆;拉弯构件;轴向刚度;承载力;预应力中图分类号:TU391 文献标识码:A 文章编号:1002-848X(2011)S1-0000-00Study of the axial force and stiffness of the steel rods under self-weightHaijun Tang1,Xueyi Fu1, Xianchuan Chen2(1 China state construction international(shenzhen) design consultant co.ltd, shenzhen 51806;2 College of Civil Engineering, Shenzhen University, Shenzhen 518060)Abstract: Steel rods usually have original moment under self-weight, which would induce vertical deformation and further additional moment while accompanied with the axial force. The additional moment is caused by the original moment, and would reduce the later. Therefore the nonlinear relationship exists between the tension and the moment. Base on the approximate differential equation, related to the balance and the boundary condition of simply supported rod, the analytical solution of the deflection, moment and axial deformation of the member are presented, which get proved via comparison with the results of finite element calculation. The simplified approach of the analytical solution is also raised, by which the axial stiffness of the steel rod under flexure and tension is calculated. Finally, the strength capacity and the pre-stress of the tendon is carried out.Keywords: steel rods;axial stiffness;strength capacity;pre-stress0 引言钢拉杆(棒钢)可作为受拉承重构件,也可作为支撑为结构提供平面外刚度。
基于柔性五杆微型机械臂刚度估计摘要:本文介绍了五杆的弯曲为主的微机械手的正向运动学和刚度估计方法。
微机械手的机械设计首先被注意的。
建议的弯曲为主的微操纵器的配置的基础上,对整个系统已被分成一个五杆并联机构和放大机制。
两个数学表达式描述的路径跟踪的前端彼此连接的两个被动的链接而异。
根据几何关系获得的笛卡尔坐标的端部执行器连接到一个被动链接。
的杠杆机构的放大系数也派生的基础上的四连杆机构的解析解。
通过简化的柔性铰链与线性扭转弹簧作为一个理想的革命联合来自在两个致动和笛卡尔空间的合规五杆机构的刚度。
值得注意的是,兼容的刚度五杆机构位置的依赖性,最多时达无限奇异的配置值。
关键词刚度估计,微机械手,柔性铰链一、引言超精密操作是不可缺少的技术,微/纳米工程应用,如微型制造,纳米压印,x射线光刻,纳米计量。
在这些工程领域中,所要求的运动精度一般是在纳米数量级的顺序之内。
这是众所周知的操纵器的定位精度和分辨率主要取决于的拓扑结构和机械结构,致动器和电动机的类型,感测和控制技术。
为了提高定位精度,基于激光干涉传感技术,具有精度高的优点,大高采样率和动态目标跟踪,工作区,已被用来测量位移的操纵器的刚度建模,运动校准和误差补偿。
基于激光干涉测量技术的不确定性,也进行了系统研究,以保证精确的测量。
最近,基于激光干涉导向技术已被提出以进一步提高激光干涉测量技术为基础的传感装置,其中被用作定位测量传感器获得的端部执行器的位置,以形成闭环控制操纵器的定位精度。
虽然这些方法可以改善操纵器的定位精度在一定程度上,这是不可能的,以使传统的机械手来满足需求的微米/纳米操纵。
防止传统的机械手,从提高定位精度的主要原因是革命关节的几何和的梦诗有理错误的组件的齿隙和静摩擦。
这些问题是可以通过利用传统的运动对由柔性铰链所取代的弯曲为主的机制克服。
在这些类型的接头有无背隙,零摩擦,可以忽略不计的滞后。
此外,这样的单片微操纵器可以与整个系统的其他部分的制造,从而减少装配误差,保证加工精度。
此外,挠性基微操纵器也可以一起工作与传统的宏观定位操纵器,以形成双定位系统。
因此,可以实现大范围的精密定位。
也有一些学术和研究兴趣集中于微操纵方面的发展。
它众所周知,并行致动压电由柔性铰链的闭环机制证明了相当大的潜力的微操作的应用程序。
本文提出的设计方法和刚度估计的五杆弯曲为主的显微操纵杠杆机制。
弯曲为主的五杆微机械手的原型的基础上提出的设计开发方法。
正向运动学兼容机制。
杆机构的放大因子,也实现了通过考虑作为一个特殊的四连杆机构的放大机制。
雅可比矩阵五杆机构是通过差异化的前沿阵地运动学方程。
通过简化的柔性铰链与线性扭转弹簧作为一个理想的旋转关节的弯曲为主的显微操纵器,刚度模型是来自的致动和笛卡尔空间中。
数值模拟已经进行了调查五杆的弯曲为主的微操纵器的刚度分布。
二、机械设计照片符合五杆的显微操纵杠杆机制如图1所示,,整个机制单片使用线切割机床(丝电火花加工)技术制造,几何尺寸及公差的链接柔性铰链的严格控制,以保证运动精度。
柔顺机构的材料被选择作为铝合金T7075,其具有高性能和高稳定性,适合挠性基微机械手设计。
兼容机制的主要组成部分包括的的矩形链接和柔性铰链。
柔性铰链与其他类型相比,具有矩形横截面的旋转精度高的圆形柔性铰链准确性及作为转接头是最佳的选择连接的移动的连结和固定框架。
该静止帧用于支持兼容机制并与其他设备连接。
五连杆的主要机制是实现2 - DOF (自由度)平面定位。
端部执行器的位置的柔性机构的运动学和动力学特性影响的关键因素之一。
应设在中央的柔性铰链的中间点的端部执行器的理论,从而整个机构具有对称的运动学和动力学性能内笛卡尔空间。
然而,这是不可行的实现显微或安装其他工具和测量传感器反馈控制的柔性铰链的中点位于末端效应。
主要的原因是,柔性铰链五杆机构的运动过程中,产生弹性变形,柔性铰链的中间点的方向和位置是困难的模型和预测,因此,端部执行器的定位精度的严重恶化。
为了克服上述问题,端部执行器被设定为的扩展部分,如图1所示的被动链接之一。
由于没有局部弹性变形的位置和方向的最终效果可以准确地预测并控制反馈控制的传感器也可安装在端部执行器,以形成闭环控制和改善的静态五杆显微操作和动态性能。
此外,运动性能的最终效果笛卡尔空间内,可以提高优化的结构参数,如链路长度和初始五杆机构的角度。
因此,年底效应五杆机构也可以达到约对称笛卡尔空间内的运动性能。
这是众所周知的,该致动器的性能显着影响的柔性机构的静态和动态特性。
一般是利用压电致动器驱动弯曲为主的机制,由于无限的分辨率,零背隙,无润滑,无热发电的优势。
然而,有限的输出位移是这种执行器的缺点。
为了获得所要求的工作范围内,是利用杠杆机构放大的压电致动器的位移,如图所示。
从运动学的观点来看,一个矩形圆形柔性铰链可产生绕一个轴旋转,并且简化为一个理想的旋转关节。
这表明在运动过程中的相对的旋转中心漂移该书还没有考虑。
于运动分析,柔性铰链的刚度也忽略不计。
因此,五杆机构的运动学模型实现,并示于图2中,其中OA 和DB是活跃链接,AP和BP是被动的链接和PM是扩展被动连接的AP的一部分。
活动链路OA和DB 和从正的初始角度位置x轴方向。
链路长度里(= 0,1,···,5),并且角度的角度是分离的链路的链路PM的AP。
的几何关系和运动关系,根据可以给出下面的公式:根据指定的链路长度,驱动角和装配关系,点P(X,Y)的坐标,给出如下:因此,点M(X,Y)的可能位置可以给出如下:假设了该书OA和DB,AP和BP是相同的长度分别-i.e.为r1 = r5中和r2= R4的。
为审议简洁起见,两个向量的和是出台。
相对于时间进行微分(5),产率:JIS雅可比矩阵。
可以被认为是一个四杆机构,杠杆机构,在图3中示出了该书的长度是李(=0,1,2,3),对(=6,7,8)是了该书的角度分离于x'轴的正方向。
因此,四个连结形成一个封闭的回路方程,并分别给出了在x'和y'轴的投影:将(7)式代入(8),和消除S7,产率:因此,S6和S8之间的关系可以推导如下:当链路L1平行链接L3,(10)可以简化和改写为:值得注意的是,控制杆的放大因子的机制到了该书L1和L3的比例成正比,时,该机制在小范围内移动。
另外,链接L2应垂直于连杆L1和L3中,为了获得大传动角。
为了提高计算效率,前列位置的问题的解决方案已实现通过近似的速度方程(6)中,小位移的致动和笛卡尔空间中。
的致动和笛卡尔空间小排量之间的映射关系可以给出如下:和末端效应在笛卡尔空间是小排量,和是小排量驱动空间中的活动链接。
三、刚度建模为简单起见,不失去一般性的情况下,柔性铰链,可以考虑作为一个传统的旋转关节在整个运动范围内具有恒定的刚度和扭转弹簧。
由柔性铰链相连的链路通常是可以忽略不计的变形,从而了该书被认为是刚性的刚度建模。
根据图4,点P的位置,可以解析地表示一个有两个开放的运动链,OAP和DBP,及由下式给出:链接BP的方向被给定为:(13)- (15)相对于时间,和改写成矩阵向量形式之间的角运动的主动和被动的链路,下面的关系,可以得到如下:JA和JP分别是运动的影响力矩阵的主动和被动的链接,并给出:让和分别是在主动和被动的链接的角速度矢量。
式(16)可以改写为:是3×2的影响矩阵主动和被动的链接运动和力之间的传播。
由于柔性铰链,符合五杆的刚度影响机制将端部执行器的运动过程中在接头处产生扭矩。
扭矩会改变到外部执行器上的荷载。
考虑到这一点,虚功原理可用于获得力之间的关系,主动和被动的链接:其中和分别是作用在主动和被动的柔性铰链的扭矩,当考虑到系统的虚拟位移向量,和是分别为主动和被动关节处产生的虚位移矢量。
对于小的位移,虚位移之间的关系可以被派生形式(17),由下式给出:对于小的位移,虚位移的关系可以派生形式(17),和由下式给出:将(19)式代入(18)式,和产量:通过区分(20)对于,被动关节的刚度可以被转移到上面的主动关节等效刚度,由下式给出:其中,是被动铰链的等效刚度矩阵,为被动铰链的刚度矢量。
值得注意的是,(21)的右手侧的第一项是活动由于致动的被动铰链的刚度,第二项是由于柔性铰链连接的被动链接的等效刚度。
五杆机构的总的等效刚度考虑活性柔性铰链的刚度,可以给出如下:其中是五杆机构的总等效刚度矩阵,是主动柔性铰链的刚度矩阵。
考虑杠杆机构的刚度,致动器的预载荷的刚度给出如下:其中是为致动器的等效刚度矩阵,是刚度的柔性铰链连接杆和所述帧的向量,为载体的柔性铰链连接杆与主动链的五杆机构的刚度。
是从中心的柔性铰链连接的帧的驱动点的距离。
可以提供致动器,柔性铰链,并进行反馈控制的弯曲为主的五杆机构的刚度。
为了获得挠性基微操纵器的刚度,致动器的刚度和杠杆机构转移到五杆机构的主动关节等效刚度,可以给出如下:其中是致动器的等效刚度和上面的主动关节的合规五杆机构的杠杆机构,为致动器的刚度。
因此,总的等效刚度和在操作过程中时,主动关节的转矩分别给出如下:根据(12),主动关节和相应的运动在笛卡尔空间中的小的运动之间的关系可以给出如下:同样,活动关节力向量和笛卡尔力向量的力之间的关系由下式给出:将(26)式代入(28),由式(27)更换,在笛卡尔空间中的端部执行器的刚度给出如下:值得注意的是,端部执行器的弯曲为主的五杆机构的刚度耦合,即末端效应在x方向的作用力将产生在x和y方向同时位移。
四、计算结果及讨论由于五杆机构的位置相关的运动,柔性机构的刚度分配的链路长度的功能和驱动位移。
假设五杆机构的链路长度r0= 145毫米,r1 = R5= 60毫米,r2 = r4=55毫米,r3= 15或25毫米,和杠杆机构的长度L1 =150毫米,L3= 20毫米。
根据(24),相对等效刚度活动铰链五杆机构分布显示在图5,图7,被归一化到一个单一的柔性铰链的等效刚度,初始角度活动链接选择为弧度和弧度。
从最初的位置,主动链接吩咐内移动的位移弧度与步长= 0.005弧度。
从仿真结果中,应当注意的弯曲为主的五杆机构的等效刚度随驱动角度的变化。
由于对称的结构变化的等效。
在活动的柔性铰链的刚度是反对称的,活性的柔性铰链之间的耦合刚度是对称的。
当等效活动刚度达到相对高值,挠性基五杆机构在奇异的配置。
这表明不能被致动活动的铰链和端部执行器将失去自由度。
在笛卡尔空间中的弯曲为主的五杆机构的端部执行器的刚度可以计算(31)并示于图。
8-10。
可以看出,五杆机构具有一个对称的点P时,端部执行器被选作在笛卡尔空间中的刚度。
然而,它并不可行选择P点的位置和方向的末端效应,由于局部变形引起的不确定性。
因此,另一种连到被动连杆2上的点M的端部执行器选择。