An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties
- 格式:pdf
- 大小:437.52 KB
- 文档页数:10
傅里叶变换红外光谱仪英文Fourier Transform Infrared SpectrometerIntroduction:The Fourier Transform Infrared (FTIR) spectrometer is an essential tool in the field of spectroscopy. It utilizes the mathematical technique known as Fourier transform to analyze infrared light, enabling scientists to study the molecular composition and structure of various substances. In this article, we will explore the principles behind the Fourier Transform Infrared Spectrometer and its applications in scientific research.Principles of Fourier Transform Infrared Spectroscopy:Fourier Transform Infrared Spectroscopy is based on the interaction between infrared light and matter. When a substance is exposed to infrared radiation, the energy absorbed by the molecules causes them to vibrate. These vibrations are specific to each molecule and are dependent on the molecular bonds present within the substance.The spectrometer operates by passing an infrared beam through the sample and measuring the amount of light absorbed at different wavelengths. This absorption spectrum is then transformed using Fourier analysis, producing a highly detailed and accurate representation of the substance's molecular structure.Advantages of Fourier Transform Infrared Spectroscopy:1. High Speed and Sensitivity: Fourier Transform Infrared Spectroscopy offers rapid analysis times due to its ability to gather a full range ofwavelengths simultaneously. This allows for efficient data collection, making it ideal for high-throughput applications. Additionally, the technique is highly sensitive, capable of detecting even small quantities of sample material.2. Broad Analytical Range: FTIR spectroscopy covers a wide range of wavelengths, from near-infrared (NIR) to mid-infrared (MIR). This versatility enables the analysis of various substances, including organic and inorganic compounds, polymers, pharmaceuticals, and biological samples.3. Non-destructive Analysis: One of the key advantages of FTIR spectroscopy is that it is a non-destructive technique. Samples do not require any special preparation and can be analyzed directly, allowing for subsequent analysis or retesting if required.Applications of Fourier Transform Infrared Spectrometers:1. Pharmaceutical Analysis: FTIR spectroscopy plays a vital role in drug discovery and development. It is used to identify and characterize the molecular composition of active pharmaceutical ingredients (APIs), excipients, and impurities. By comparing spectra, scientists can ensure the quality and purity of pharmaceutical products.2. Environmental Analysis: Fourier Transform Infrared Spectrometers are employed in environmental monitoring to analyze air, water, and soil samples. It aids in detecting pollutants, identifying unknown substances, and assessing the impact of human activities on the environment.3. Forensic Science: FTIR spectroscopy has proven to be a valuable tool in forensic science. It assists in the analysis of various evidence, such asfibers, paints, and drugs. FTIR spectra can provide crucial information in criminal investigations, helping to identify unknown substances and link them to potential sources.4. Food and Beverage Industry: The FTIR spectrometer allows for the analysis of food quality, safety, and authenticity. It can identify contaminants, detect adulteration, and verify product labeling claims. Both raw materials and finished products can be analyzed using this technique, ensuring compliance with industry regulations.Conclusion:The Fourier Transform Infrared Spectrometer has revolutionized the field of spectroscopy by providing accurate and detailed information about a substance's molecular structure. Its speed, sensitivity, and versatility make it a crucial analytical tool in various scientific disciplines. With ongoing advancements in technology, FTIR spectroscopy continues to contribute to new discoveries and advancements in research.。
奥林巴斯光谱分析仪应用领域英文版Olympus handheld spectrometer has the characteristics of fast, non-destructive and high precision when testing. After years of continuous development and improvement, it has been widely used in all walks of life.The handheld spectrometer is a kind of spectral analysis instrument. Based on XRF spectral analysis technology, when the high-energy X-ray in the inner layer of the atom collides with the atom, an inner electron will be expelled, resulting in a hole, making the whole atomic system in an unstable state. When the electrons in the outer layer jump into the hole, the photons may be absorbed again, and the Auger effect will occur when another secondary photoelectron in the outer layer is expelled, The secondary photoelectrons expelled are called Auger electrons. This is how the handheld spectrometer works.Handheld spectrometers are widely used in metallurgy, geology, nonferrous metals, building materials, commodity inspection, environmental protection, health and other fields, especially in the field of RoHS detection.1. Alloy material analysisAt present, in the field of alloy material testing, it is mainly used for the on-site determination of elementcomposition in metal materials in military, aerospace, steel, petrochemical, electric power, pharmaceutical and other fields. It is an indispensable rapid component identification tool in the industrial and military manufacturing fields with the rise of the world economy.2. Heavy metal detectionIn addition to the traditional alloy material detection, precious metals, ROHS compliance screening, ore analysis, handheld XRF instruments also play an important role in geological exploration and environmental assessment. By analyzing the heavy metal elements in the soil, we can know the mineral distribution and pollution distribution of the whole region.3. Other areasXRF technology can also be used in some new fields, such as wind power and automobile. By detecting the content of metal elements in oil, the wear of bearings can be indirectly reflected.Many new XRF application fields are being developed, which makes XRF technology widely used in various industries. For example, XRF alloy analyzer is also used for welding quality control in the production and manufacturing process of thefactory.。
Introduction to Hyperspectral ImagingHyperspectral ImagingwithTNTmips®Introduction toI N T R O T O H Y P E R S Pbands.Spectral PlotWavelength (micrometers)0.00.20.40.6 2.21.71.20.7Introduction to Hyperspectral Imaging ground-resolutioncell.Introduction to Hyperspectral ImagingSpectral ReflectanceIn reflected-light spectroscopy the fundamental property that we want to obtain is spectral reflectance : the ratio of reflected energy to incident energy as a func-tion of wavelength. Reflectance varies with wavelength for most materials because energy at certain wavelengths is scattered or absorbed to different degrees. These reflectance variations are evident when we compare spectral reflectance curves (plots of reflectance versus wavelength) for different materials, as in the illustra-tion below. Pronounced downward deflections of the spectral curves mark the wavelength ranges for which the material selectively absorbs the incident energy.These features are commonly called absorption bands (not to be confused with the separate image bands in a multispectral or hyperspectral image). The overall shape of a spectral curve and the position and strength of absorption bands in many cases can be used to identify and discriminate different materials. For example, vegetation has higher reflectance in the near infrared range and lower reflectance of red light than soils.Representative spectral reflectance curves for several common Earth surface ma-terials over the visible light to reflected infrared spectral range. The spectral bands used in several multispectral satellite remote sensors are shown at the top for comparison. Reflectance is a unitless quantity that ranges in value from 0 to 1.0,or it can be expressed as a percentage, as in this graph. When spectral measure-ments of a test material are made in the field or laboratory, values of incident energy are also required to calculate the material’s reflectance. These values are either measured directly or derived from measurements of light reflected (under the same illumination conditions as the test material) from a standard reference material with known spectral reflectance.VegetationDry soil (5% water)R e dG r nB l u eNear Infrared Middle InfraredLandsat TM BandsSPOT XS Multispectral Bands123457123Wavelength (micrometers)R e f l e c t a n c e (%)1.02.00.6 1.2 1.4 1.6 1.8 2.2 2.40.80.4Reflected InfraredWet soil (20% water)Clear lake waterTurbid river water0204060Introduction to Hyperspectral ImagingReflectance spectra of some representative minerals (naturally occurring chemical compounds that are the major components of rocks and soils).Wavelength (micrometers)HematiteMontmorilloniteCalciteKaoliniteOrthoclase Feldspar1.02.00.6 1.2 1.4 1.6 1.8 2.2 2.40.80.4Introduction to Hyperspectral ImagingPlant SpectraReflectance spectra of different types of green vegetation compared to a spectral curve for senescent (dry, yellowed) leaves. Different portions of the spectral curves for green vegetation are shaped by different plant components, as shown at the top.The spectral reflectance curves of healthy green plants also have a characteristic shape that is dictated by various plant attributes. In the visible portion of the spectrum, the curve shape is governed by absorption effects from chlorophyll and other leaf pigments. Chlorophyll absorbs visible light very effectively but absorbs blue and red wavelengths more strongly than green, producing a charac-teristic small reflectance peak within the green wavelength range. As a consequence, healthy plants appear to us as green in color. Reflectance rises sharply across the boundary between red and near infrared wavelengths (some-times referred to as the red edge ) to values of around 40 to 50% for most plants.This high near-infrared reflectance is primarily due to interactions with the inter-nal cellular structure of leaves. Most of the remaining energy is transmitted, and can interact with other leaves lower in the canopy. Leaf structure varies signifi-cantly between plant species, and can also change as a result of plant stress. Thus species type, plant stress, and canopy state all can affect near infrared reflectance measurements. Beyond 1.3 µm reflectance decreases with increasing wavelength,except for two pronounced water absorption bands near 1.4 and 1.9 µm.At the end of the growing season leaves lose water and chlorophyll. Near infra-red reflectance decreases and red reflectance increases, creating the familiar yellow,brown, and red leaf colors of autumn.Wavelength (micrometers)R e f l e c t a n c e (%)GrassWalnut tree canopy Fir treeDry, yellowed grassVisible Near Infrared ChlorophyllCell Structure WaterWaterMiddle Infrared1.02.00.6 1.2 1.4 1.6 1.8 2.2 2.40.80.40204060Introduction to Hyperspectral ImagingSpectral LibrariesSample spectra from the ASTER Spectral Library.ASTER will be one of the instruments on the planned EOS AM-1satellite, and will record image data in 14 channels from the visible through thermal infrared wavelength regions as part of NASA’s EarthScience Enterprise program.Several libraries of reflectance spectra of natural and man-made materials are available for public use. These libraries provide a source of reference spectra that can aid the interpretation of hyperspectral and multispectral images.ASTER Spectral Library This library has been made available by NASA as part of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (AS-TER) imaging instrument program. It includes spectral compilations from NASA’s Jet Propulsion Laboratory, Johns Hopkins University, and the United States Geo-logical Survey (Reston). The ASTER spectral library currently contains nearly 2000 spectra, including minerals, rocks, soils, man-made materials, water, and snow. Many of the spectra cover the entire wavelength region from 0.4 to 14 µm.The library is accessible interactively via the Worldwide Web at . You can search for spectra by category, view a spectral plot for any of the retrieved spectra, and download the data for individual spectra as a text file. These spectra can be imported into a TNTmips spectral library. You can also order the ASTER spectral library on CD-ROM at no charge from the above web address.USGS Spectral Library The United States Geological Survey Spectroscopy Lab in Denver, Colorado has compiled a library of about 500 reflectance spectra of minerals and a few plants over the wavelength range from 0.2 to 3.0 µm. This library is accessible online at/spectral.lib04/spectral-lib04.html .You can browse individual spectra online, or download the entire library. The USGS Spectral library is also included as a standard reference library in the TNTmips Hyperspectral Analysis process.Wavelength (micrometers)R e f l e c t a n c e (%)GraniteConcreteAsphalt roof shinglesBasaltVisible Near Infrared Middle Infrared1.02.00.6 1.2 1.4 1.6 1.8 2.2 2.40.80.4020406080Introduction to Hyperspectral ImagingIntroduction to Hyperspectral ImagingWavelength (micrometers)0.40.60.8 1.01.2 1.4 1.6 1.8 2.0 2.22.4ABC C = 60% A + 40% BExample of a composite spectrum (C) that is a linearAveraged measuredbrightness for a portionof playa surface (redsquare at right).0.5 1.0 1.5 2.0 2.5Wavelength, (micrometers)This spectrum does not bear much resemblance to the reflectance spectra illus-trated previously. This is because the sensor has simply measured the amount of reflected light reaching it in each wavelength band (spectral radiance), in this case from an altitude of 20 kilometers. The spectral reflectance of the surface materials is only one of the factors affecting these measured values. The spectral reflectance curve for the sample area is actually relatively flat and featureless. In addition to surface reflectance, the spectral radiance measured by a remoteAtmospheric Effects Even a relatively clear atmosphere interacts with incom-ing and reflected solar energy. For certain wavelengths these interactions reduce the amount of incoming energy reaching the ground and further reduce the amount of reflected energy reaching an airborne or satellite sensor. The transmittance of the atmosphere is reduced by absorption by certain gases and by scattering by gas molecules and particulates. These effects combine to produce the transmittance curve illustrated below. The pronounced absorption features near 1.4 and 1.9µm, caused by water vapor and carbon dioxide, reduce incident and reflected energy almost completely, so little useful information can be obtained from im-age bands in these regions. Not shown by this curve is the effect of light scattered upward by the atmosphere. This scattered light adds to the radiance measured by the sensor in the visible and near-infrared wavelengths, and is called path radi-ance . Atmospheric effects may also differ between areas in a single scene if atmospheric conditions are spatially variable or if there are significant ground elevation differences that vary the path length of radiation through the atmo-sphere.Sensor Effects A sensor converts detected radiance in each wavelength channel to an electric signal which is scaled and quantized into discrete integer values that represent “encoded” radiance values. Variations between detectors within an array, as well as temporal changes in detectors, may require that raw measure-ments be scaled and/or offset to produce comparable values.Plot of atmospheric transmittance versus wavelength for typical atmospheric con-ditions. Transmittance is the proportion of the incident solar energy that reaches the ground surface. Absorption by the labeled gases causes pronounced lows in the curve, while scattering is responsible for the smooth decrease in transmittance with decreasing wavelength in the near infrared through visible wavelength range.Atmospheric and Sensor EffectsWavelength (micrometers)T r a n s m i t t a n c e H 2O H 2O,CO 2H 2OH 2OCO 2H 2O H 2O 1.00.80.60.40.200.5 1.0 1.5 2.0 2.5O 2O 2O 3Visible Near Infrared Middle Infrared CO 2CO 2O 2H 2O,CO 2Reflectance Conversion IIn order to directly compare hyperspectral image spectra with reference reflec-tance spectra, the encoded radiance values in the image must be converted to reflectance. A comprehensive conversion must account for the solar source spec-trum, lighting effects due to sun angle and topography, atmospheric transmission, and sensor gain. In mathematical terms, the ground reflectance spectrum is mul-tiplied (on a wavelength per wavelength basis) by these effects to produce the measured radiance spectrum. Two other effects contribute in an additive fashion to the radiance spectrum: sensor offset (internal instrument noise) and path radi-ance due to atmospheric scattering. Several commonly used reflectance conversion strategies are discussed below and on the following page. Some strategies use only information drawn from the image, while others require varying degrees of knowledge of the surface reflectance properties and the atmospheric conditions at the time the image was acquired.Flat Field Conversion This image-based method requires that the image in-clude a uniform area that has a relatively flat spectral reflectance curve. The mean spectrum of such an area would be dominated by the combined effects of solar irradiance and atmospheric scattering and absorption The scene is con-verted to “relative” reflectance by dividing each image spectrum by the flat field mean spectrum. The selected flat field should be bright in order to reduce the effects of image noise on the conversion. Since few if any materials in natural landscapes have a completely flat reflectance spectrum, finding a suitable “flat field” is difficult for most scenes. For desert scenes, salt-encrusted dry lake beds present a relatively flat spectrum, and bright man-made materials such as con-crete may serve in urban scenes. Any significant spectral absorption features in the flat field spectrum will give rise to spurious features in the calculated relative reflectance spectra. If there is significant elevation variation within the scene, the converted spectra will also incorporate residual effects of topographic shad-ing and atmospheric path differences.Average Relative Reflectance Conversion This method also normalizes image spectra by dividing by a mean spectrum, but derives the mean spectrum from the entire image. Before computing the mean spectrum, the radiance values in each image spectrum are scaled so that their sum is constant over the entire image. This adjustment largely removes topographic shading and other overall bright-ness variations. The method assumes that the scene is heterogeneous enough that spatial variations in spectral reflectance characteristics will cancel out, produc-ing a mean spectrum similar to the flat field spectrum described above. This assumption is not true of all scenes, and when it is not true the method will produce relative reflectance spectra that contain spurious spectral features.Match Each Image SpectrumOne approach to analyzing a hyperspectral image is to attempt to match each image spectrum individually to one of the reference reflectance spectra in a spec-tral library. This approach requires an accurate conversion of image spectra to reflectance. It works best if the scene includes extensive areas of essentially pure materials that have corresponding reflectance spectra in the reference library. An observed spectrum will typically show varying degrees of match to a number of similar reference spectra. The matching reference spectra must be ranked using some measure of goodness of fit, with the best match designated the “winner.”Spectral matching is compli-cated by the fact that most hyperspectral scenes includemany image pixels that repre-sent spatial mixtures of differentmaterials (see page 10). The re-sulting composite image spectra may match a variety of “pure” reference spectra to varying degrees, perhaps in-cluding some spectra of materials that are not actuallypresent. If the best-matching reference spectrum has a sufficient fit to the image spectrum, then this material is probably the dominant one in the mixture and the pixel is assigned to this material. If no reference spectrum achieves a sufficient match, then no endmember dominates, and the pixel should be left unassigned.The result is a “material map” of the image that portrays the dominant material for most of the image cells, such as the example shown below. Sample mixed spectra can be included in the library to improve the mapping, but it is usually not possible to include all possible mixtures (and all mixture proportions) in the ref-erence library.Mineral map for part of the Cuprite AVIRIS scene,created by matching image spectra to mineral spectra in the USGS Spectral Library. White areas did not produce a sufficient match to any of the selected reflectance spectra, and so are leftunassigned.AluniteKaoliniteAlunite + KaoliniteMontmorilloniteChalcedony MineralsSample image spectrum and a matched spectrumof the mineral alunite from the USGS Spectral Library (goodness of fit = 0.91). 2.42.1 2.2 2.3Wavelength (micrometers)1.00.80.60.40.2R e f l e c t a n c e Image LibrarySpectral Matching MethodsReflectance spectrum for the mineral gypsum (A) with several absorption features. Curve B shows thecontinuum for the spectrum, and C the spectrum after removal of the continuum.0.5 1.5 2.51.00.80.60.40.20Wavelength (µm)R e f l e c t a n c eA B C 1.0 2.0The shape of a reflectance spectrum can usually be broken down into two com-ponents: broad, smoothly changing regions that define the general shape of the spectrum and narrow, trough-like absorption features. This distinction leads to two different approaches to matching image spectra with reference spectra.Many pure materials, such as minerals, can be recognized by the position, strength (depth), and shape of their absorption features. One common matching strategy attempts to match only the absorption features in each candidate reference spec-trum and ignores other parts of the spectrum. A unique set of wavelength regions is therefore examined for each reference candidate, determined by the locations of its absorption features. The local position and slope of the spectrum can affect the strength and shape of an absorption feature, so these parameters are usually determined relative to the continuum : the upper limit of the spectrum’s general shape. The continuum is computed for each wavelength subset and removed by dividing the reflectance at each spectral channel by its corresponding continuum value. Absorption features can then be matched using a set of derived values (including depth and the width at half-depth), or by using the complete shape of the feature. These typesof procedures have been organized into an expert system by researchers atthe U.S. Geological Sur-vey Spectroscopy Lab (Clark and others, 1990).Many other materials,such as rocks and soils,may lack distinctive ab-sorption features. Thesespectra must be character-ized by their overall shape.Matching procedures uti-lize full spectra (omittingnoisy image bands severely affected by atmospheric absorption) or a uniform wavelength subset for all candidate materials. One approach to matching seeks the spectrum with the minimum difference in reflectance (band per band) from the image spectrum (quantified by the square root of the sum of the squared errors).Another approach treats each spectrum as a vector in spectral space and finds the reference spectrum making the smallest angle with the observed image spec-trum.Linear UnmixingPortion of an AVIRIS scene with forest, bare and vegetated fields,and a river, shown with a color-infrared band combination (vegetation is red). Fraction images from linear unmixing are shown below.Vegetation fraction Water / shade fractionSoil fractionLinear unmixing is an alternative approach to simplespectral matching. Its underlying premise is that a sceneincludes a relatively small number of common materi-als with more or less constant spectral properties.Furthermore, much of the spectral variability in a scenecan be attributed to spatial mixing, in varying propor-tions, of these common endmember components. Ifwe can identify the endmember spectra, we can math-ematically “unmix” each pixel’s spectrum to identifythe relative abundance of each endmember material.The unmixing procedure models each image spectrumas the sum of the fractional abundances of theendmember spectra, with the further constraint that thefractions should sum to 1.0. The best-fitting set of frac-tions is found using the same spectral-matchingprocedure described on the previous page. A fractionimage for each endmember distills the abundance in-formation into a form that is readily interpreted andmanipulated. An image showing the residual error foreach pixel helps identify parts of the scene that are notadequately modeled by the selected set of endmembers.The challenge in linear unmixing is to identify a set ofspectral endmembers that correspond to actual physi-cal components on the surface. Endmembers can bedefined directly from the image using field informationor an empirical selection technique such as the oneoutlined on the next page can be used. Alternatively,endmember reflectance spectra can be selected from areference library, but this approach requires that theimage has been accurately converted to reflectance.Variations in lighting can be included directly in themixing model by defining a “shade” endmember thatcan mix with the actual material spectra. A shade spec-trum can be obtained directly from a deeply shadowedportion of the image. In the absence of deep shadows,the spectrum of a dark asphalt surface or a deep waterbody can approximate the shade spectrum, as in theexample to the right.Introduction to Hyperspectral ImagingPartial Unmixing Some hyperspectral image applications do not require finding the fractional abun-dance of all endmember components in the scene. Instead the objective may be to detect the presence and abundance of a single target material. In this case a complete spectral unmixing is unnecessary. Each pixel can be treated as a poten-tial mixture of the target spectral signature and a composite signature representing all other materials in the scene. Finding the abundance of the target component is then essentially a partial unmixing problem.Methods for detecting a target spectrum against a background of unknown spec-tra are often referred to as matched filters, a term borrowed from radio signal processing. Various matched filtering algorithms have been developed, includ-ing orthogonal subspace projection and constrained energy minimization (Farrand and Harsanyi, 1994). All of these approaches perform a mathematical transfor-mation of the image spectra to accentuate the contribution of the target spectrum while minimizing the background. In a geometric sense, matched filter methods find a projection of the n-dimensional spectral space that shows the full range of abundance of the target spectrum but “hides” the variability of the background. In most instances the spectra that contribute to the background are unknown, so most matched filters use statistical methods to estimate the composite background signature from the image itself. Some methods only work well when the target material is rare and does not contribute significantly to the background signature.A modified version of matched filtering uses derivatives of the spectra rather than the spectra themselves, which improves the matching of spectra with differ-ing overall brightness.Fraction images produced by Matched Filtering (left) and Derivative Matched Filtering (right) for a portion of the Cuprite AVIRIS scene. The target image spectrum represents the mineral alunite. Brighter tones indicate pixels with higher alunite fractions. The image produced by Derivative Matched Filtering shows less image noise, sharper boundaries, and better contrast between areas with differing alunite fractions.Introduction to Hyperspectral ImagingReferencesGeneralKruse, F.A. (1999). Visible-Infrared Sensors and Case Studies. In Renz, Andrew N. (ed), Remote Sensing for the Earth Sciences: Manual of Remote Sens-ing (3rd ed.), V ol 3. New York: John Wiley & Sons, pp. 567-611. Landgrebe, David (1999). Information Extraction Principles and Methods for Mul-tispectral and Hyperspectral Image Data. In Chen, C.H. (ed.), Information Processing for Remote Sensing. River Edge, NJ: World Scientific Publish-ing Company, pp. 3-38.V ane, Gregg, Duval, J.E., and Wellman, J.B. (1993). Imaging Spectroscopy of the Earth and Other Solar System Bodies. In Pieters, Carle M. and Englert, Peter A.J. (eds.), Remote Geochemical Analysis: Elementatl and Miner-alogic Composition. Cambridge, UK: Cambridge University Press, pp.121-143.Vane, Gregg, and Goetz, A.F.H. (1988). Terrestrial Imaging Spectroscopy. Re-mote Sensing of Environment, 24, pp. 1-29.Spectral Reflectance SignaturesBen-Dor, E., Irons, J.R., and Epema, G.F. (1999). Soil Reflectance. In Renz, Andrew N. (ed), Remote Sensing for the Earth Sciences: Manual of Remote Sens-ing (3rd ed.), V ol 3. New York: John Wiley & Sons, pp. 111-188. Clark, Roger N. (1999). Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. In Renz, Andrew N. (ed), Remote Sensing for the Earth Sciences: Manual of Remote Sensing (3rd ed.), V ol 3. New York: John Wiley & Sons, pp. 3-58.Ustin, S.L., Smith, M.O., Jacquemoud, S., V erstraete, M., and Govaerts, Y. (1999).Geobotany: Vegetation Mapping for Earth Sciences. In Renz, Andrew N.(ed), Remote Sensing for the Earth Sciences: Manual of Remote Sensing (3rd ed.), V ol 3. New York: John Wiley & Sons, pp. 189-248.Reflectance ConversionFarrand, William H., Singer, R.B., and Merenyi, E., 1994, Retrieval of Apparent Surface Reflectance from A VIRIS Data: A Comparison of Empirical Line, Radiative Transfer, and Spectral Mixture Methods. Remote Sensing of Environment, 47, 311-321.Introduction to Hyperspectral ImagingReferences Goetz, Alexander F.H., and Boardman, J.W. (1997). Atmospheric Corrections: On Deriving Surface Reflectance from Hyperspectral Imagers. In Descour, Michael R. and Shen, S.S. (eds.), Imaging Spectrometry III: Proceedings of SPIE, 3118, 14-22.van der Meer, Freek (1994). Calibration of Airborne Visible/Infrared Imaging Spectrometer Data (AVIRIS) to Reflectance and Mineral Mapping in Hydrothermal Alteration Zones: An Example from the “Cuprite Mining District”. Geocarto International, 3, 23-37.Hyperspectral Image AnalysisAdams, John B., Smith, M.O., and Gillespie, A.R. (1993). Imaging Spectros-copy: Interpretation Based on Spectral Mixture Analysis. In Pieters, Carle M. and Englert, Peter A.J. (eds.), Remote Geochemical Analysis: Elementatl and Mineralogic Composition. Cambridge, UK: Cambridge University Press, pp. 145-166.Clark, R.N., Gallagher, A.J., and Swayze, G.A. (1990). Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra. Proceedings of the Sec-ond Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication 90-54, pp. 176-186.Cloutis, E.A., (1996). Hyperspectral Geological Remote Sensing: Evaluation of Analytical Techniques. International Journal of Remote Sensing, 17, 2215-2242.Farrand, William H., and Harsanyi, J.C. (1994). Mapping Distributed Geologi-cal and Botanical Targets through Constrained Energy Minimization.Proceedings of the Tenth Thematic Conference on Geological Remote Sensing, San Antonio, Texas, 9-12 May 1994, pp. I-419 - I-429. Green, Andrew A., Berman, M., Switzer, P., and Craig, M.D. (1988). A Trans-formation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal. IEEE Transactions on Geoscience and Remote Sensing, 26, 65-74.Mustard, John F., and Sunshine, J.M. (1999). Spectral Analysis for Earth Sci-ence: Investigations Using Remote Sensing Data. In Renz, Andrew N.(ed), Remote Sensing for the Earth Sciences: Manual of Remote Sensing (3rd ed.), V ol 3. New York: John Wiley & Sons, pp. 251-306.Introduction to Hyperspectral Imaging Advanced Software for Geospatial Analysis MicroImages,Inc.11th Floor - Sharp Tower206 South 13th StreetLincoln, Nebraska 68508-2010 USAIndexabsorptionbands..................................................5-7atmospheric...................................13,18atmosphereabsorption by...........................13,18scattering by (13)continuum (18)illumination..........................................11,12imaging spectrometer........................4,10,16irradiance, solar (12)linear unmixing....................................19-21matched filtering (21)matching, spectral................................17,18minimum noise fraction transform (20)pixel purity index (20)resolution, spatial (10)scattering.............................................4,5,13sensor effects (13)shadowing (12)spectral libraries..........................................8spectral radiance.........................................11spectral reflectance.................................5-11converting image to.........................14-15curve See spectrum defined.................................................5spectral space..............................................9spectrometer..................................................4spectroscopy.........................................4,5spectrum (spectra)endmember....................................19,20image....................................3,17-20in library.........................................8mineral......................................6mixed.................................................10plant.....................................................7plotting.................................................9reflectance.......................................5-11soil.......................................................5solar...................................................12water. (5)MicroImages, Inc. publishes a complete line of professional software for advanced geospatial data visualization, analysis, and publishing. Contact us or visit our web site for detailed prod-uct information.TNTmips TNTmips is a professional system for fully integrated GIS, image analysis, CAD,TIN, desktop cartography, and geospatial database management.TNTedit TNTedit provides interactive tools to create, georeference, and edit vector, image,CAD, TIN, and relational database project materials in a wide variety of formats.TNTview TNTview has the same powerful display features as TNTmips and is perfect for those who do not need the technical processing and preparation features of TNTmips.TNTatlas TNTatlas lets you publish and distribute your spatial project materials on CD-ROM at low cost. TNTatlas CDs can be used on any popular computing platform.TNTserver TNTserver lets you publish TNTatlases on the Internet or on your intranet.Navigate through geodata atlases with your web browser and the TNTclient Java applet.TNTlite TNTlite is a free version of TNTmips for students and professionals with small projects. You can download TNTlite from MicroImages’ web site, or you can order TNTlite on CD-ROM.。
模拟数字转换器模数转换器 a d converter 缓冲存储器 abbreviated code快速呼唤 abbreviated dialing象差 aberration?异样辉光放电 abnormal glow discharge 异样反射 abnormal reflections磨耗 abrasion?磨粉 abrasive dust磨料喷射加工 abrasive jet machining? 磨料喷射蝶 abrasive jet trimming磨蚀剂 abrasive paste?研磨蝶 abrasive trimming磨料 abrasive?急剧退化 abrupt degradation突变异质结 abrupt heterojunction 突变结 abrupt junction绝对亮度阈absolute threshold of luminance吸收功率 absorbed power吸收剂 absorber?吸收能力 absorbing capacity?吸收电路 absorbing circuit吸收层 absorbing layer吸收媒质 absorbing medium?吸收跃迁 absorbing transition吸收带 absorption band吸收长度 absorption length吸收线 absorption line吸收损失 absorption loss?吸收测定 absorption measurement吸收灯 absorption modulation吸收点 absorption point吸收电阻 absorption resistance 吸收 absorption?对接 abutment joint?截割水晶片 ac cut quartz ac加速老化 accelerated aging?加速粒子 accelerated particle 加速实验 accelerated test?加速阳极 accelerating anode加速周期 accelerating cycle?加速电极 accelerating electrode 加速栅极 accelerating grid加速缝 accelerating slit加速管 accelerating tube?加速波 accelerating wave? 带电粒子加速acceleration of charged particles加速空间 acceleration space加速电压 acceleration voltage?加重 accentuation较佳对照度 acceptable contrast ratio受主 acceptor受汁子 acceptor atom受中心 acceptor center受周度 acceptor density受钟质 acceptor impurity受周级 acceptor level受滞半导体 acceptor type semiconductor存取码 access code访问方式 access method适应性第 accommodation第系数 accommodation coefficient? 积存层 accumulation layer再生精准度 accuracy in reproduction 精准定位 accurate positioning改良型专用射极耦合逻辑 ace消色差区 achromatc region消色差透镜 achromatic lens?消色差阈值 achromatic threshold针状结晶 acicular crystal酸侵蚀 acid etch橡实管 acorn tube吸声系数 acoustic absorptivity?滤声器 acoustic filter?声频 acoustic frequency? 声像 acoustic image声阻抗 acoustic impedance?声迷路 acoustic labyrinth声动录音机acoustic manipulated recorder声面波 acoustic surface waves声能转换器 acoustic transducer声学处置 acoustic treatment音波 acoustic wave表面声波振荡器 acoustic wave oscillator声延时线 acoustical delay line受钟质 acceptor impurity受周级 acceptor level受滞半导体 acceptor type semiconductor存取码 access code访问方式 access method适应性第 accommodation第系数 accommodation coefficient? 积存层 accumulation layer再生精准度 accuracy in reproduction 精准定位 accurate positioning改良型专用射极耦合逻辑 ace消色差区 achromatc region消色差透镜 achromatic lens?消色差阈值 achromatic threshold针状结晶 acicular crystal酸侵蚀 acid etch橡实管 acorn tube吸声系数 acoustic absorptivity?滤声器 acoustic filter?声频 acoustic frequency? 声像 acoustic image声阻抗 acoustic impedance?声迷路 acoustic labyrinth声动录音机acoustic manipulated recorder声面波 acoustic surface waves声能转换器 acoustic transducer声学处置 acoustic treatment音波 acoustic wave表面声波振荡器 acoustic wave oscillator声延时线 acoustical delay line酌半径 action radius?活化阴板 activated cathode活化分子 activated molecule?激活能 activation energy?激活 activation?有源区 active area有效分量 active component踊跃干扰 active counter measures 活性粉尘 active dust有源元件 active element有源元件组 active element group 活性纤维 active fiber有源滤波器 active filter织制导 active guidance织寻的制导 active homing guidance 有源激光元件 active laser element 激光皮捉质 active laser substance 活性液体 active liquid有源波模同步 active mode locking 有源寄生元件 active parasitics有源 q 开关 active q switching有源备份 active redundancy有源中继器 active repeater有源四端网络的反射损耗 active return loss有源卫星转发器active satellite repeater有源衬底 active substrate有源衬底蝶 active substrate trimming传动机构 actuator?锐度 acuity适应性均衡器 adaptability equalizer适应 adaptation?套筒式联轴器 adapter coupling转接器 adapter?自适应相关器 adaptive correlator自适应增量灯 adaptive delta modulation自适应接收机 adaptive receiver吸附原子 adatom爱德考克天线 adcock antenna爱德考克测向仪 adcock direction finder附加元件 add ons加色法混合 additive color mixture加色法合成 additive color synthesis加色法系统 additive color system基色的相加混合additive mixing of primaries加色法原色 additive primaires印刷电路的添加技术additive printed circuit technique加色法 additive process? 寻址系统 addressing system附着 adherence?粘着强度 adhesion strength?粘合剂 adhesive粘合剂涂敷 adhesive coating芯片粘附 adhesive die attachment胶粘密封 adhesive sealing粘合带 adhesive tape邻道伴音载波 adjacent audio carrier相邻信道 adjacent channel邻信道衰减 adjacent channel attenuation邻信道干扰adjacent channel interference邻频道抑制器 adjacent channel rejector相邻信道选择性adjacent channel selectivity相邻线路 adjacent lines邻信道图象载波 adjacent picture carrier相邻图象载波距离adjacent picture carrier spacing邻频道图象载波陷波器 adjacent picture carrier trap可单减器 adjustable attenuator可堤路 adjustable short可敌值金属氧化物半导体adjustable threshold mos蝶 adjustment?导纳矩阵 admittance matrix导纳 admittance?混合物 admixture?吸附质 adsorbate吸附剂 adsorbent?吸附层 adsorption layer? 吸附 adsorption?低劣半导体材料adulterated semiconductor material超前角 advance angle?改良型低功耗肖特基晶体管晶体管逻辑电路 advanced low power schottky ttl改良型自对准多晶硅栅工艺advanced polysilicon self aligned process改良型肖特基晶体管逻辑电路advanced schottky transistor logic改良型肖特基晶体管晶体管逻辑电路 advanced schottky ttl天线阵 aerial array天线衰减器 aerial attenuator天线电缆 aerial cable天线电容 aerial capacity天线扼力 aerial choke天线电路 aerial circuit天线藕合 aerial coupling天线藕合线圈 aerial coupling coil 天线电流 aerial current天线效率 aerial efficiency天线鼓励 aerial excitation天线馈电 aerial feed天线馈线 aerial feeder天线阻抗 aerial impedance天线电感 aerial inductance天线引入线 aerial lead in透镜天线 aerial lens天线损耗 aerial loss天线噪声 aerial noise天线功率 aerial power 天线辐射电阻aerial radiation resistance天线电抗 aerial reactance天线电阻 aerial resistance天线系统 aerial system天线接头 aerial terminal天线杆 aerial tower?天线党电容器 aerial tuning capacitor天线党线圈 aerial tuning coil天线 aerial?航空电子学的 aeroelectronic航空电子学 aeroelectronics?无线电报 aerogram导航电台 aeronautical station飞机天线 aeroplane antenna飞机反射的干扰信号 aeroplane flutter俄歇电子能谱学 aes音频 af?亲合力 affinity?后加速 after acceleration余晖 afterglow余像 afterimage后处置 aftertreatment?老化条件 ageing condition老化 ageing?集聚 aggregate?雪崩注入 ai雪崩注入二极管 aid半自动跟踪 aided tracking雪崩感生徙动 aim空气隔离型单片集成电路 aimic 空气轴承台 air bearing stage间隙 air clearance?空气冷却式激光器 air cooled laser空对地通信 air ground communication空气隔离 air isolation空气隔离型集成电路air isolation integrated circuit空气隔离型集成工艺air isolation process漏气 air leak?空气氧化物隔离 air oxide isolation空中位置指示器 air position indicator吹气清洗 air purge侦查海面舰艇的飞机监视雷达air to surface vessel radar风动传送设备 air track飞机无线电信标 airborne beacon空传污染 airborne contamination机载雷达 airborne radar机载电视接收机airborne television receiver拦截飞机雷达aircraft interception radar飞机电台 aircraft station机场信标 airport beacon机场危险信标 airport danger beacon机场交通操纵 airport traffic control气密接合 airtight joint报警信号 alarm signal?反射率测量 albedo measurement反照率 albedo?自动逻辑设计 ald 阿尔福德环形天线 alford loop antenna 铝栅 alg算法 algorithm?对准器 aligner对准精度 alignment accuracy对准误差 alignment error蝶用激光器 alignment laser对准标记 alignment mark定位锁 alignment pin?周密对准 alignment registration校准要求 alignment requirements定位 alignment?碱金属锑化物 alkali antimonide无碱环境 alkali free environment由碱可除光刻胶alkaline strippable resist全波段电视党器 all band tv tuner全扩散型集成电路all diffused integrated circuit交直两用接收机 all mains receiver全天候雷达 all weather radar分派器 allotter?允许能带 allowed band?允许能级 allowed level允许线 allowed line允许跃迁 allowed transition合金薄膜 alloy film合金结 alloy junction合金结晶体管 alloy junction transistor合金晶体管 alloy transistor合金 alloy? 合金接触 alloyed contact合金型二极管 alloyed diode合金区域 alloyed region接字母顺序的 alpha抗射线性 alpha immunity粒子轰击 alpha particle bombardment粒子爱惜 alpha particle protection粒子辐射灵敏度alpha radiation sensitivity粒子闪烁计数器alpha scintillation counter字符印字管 alphanumeric printing tube管 alphatron?更替路由 alternate route隔行扫描 alternate scanning交流 alternating current交菱量 alternating current measurement交羚阻 alternating current resistance超导交流 alternating supercurrent高度计 altimeter?高度指示器 altitude indicator?算术与逻辑部件 alu氧化铝陶瓷板划线alumina ceramic scribing氧化铝管壳 alumina package氧化铝 alumina?铝金属化 aluminizing铝硅酸盐玻璃 aluminosilicate glass铝线热压焊 aluminum bonding氧化铝陶瓷 aluminum oxide ceramics铝尖峰形成 aluminum spiking氧化物阶梯的铝覆盖aluminum step coverage铝线热压焊接 aluminum wire bond爹收音机 am receiver爹接收 am reception爹 am?爱好者 amateur业余波段 amateur band业余无线电台 amateur radio station 环境空气监测器 ambient air monitor 周围环境 ambient enviroment环境湿度 ambient humidity环境压力 ambient pressure?周围介质温度 ambient temperature 非单值性 ambiguity?双极性扩散 ambipolar diffusion?氨微波激射器氨脉泽 ammonia maser铵分子束频率标准ammonium molecular beam frequency standard无定形化 amorphization非晶态晶态转变amorphous crystalline transition对非晶半导体离子注入amorphous implantation非晶半导体 amorphous semiconductor非晶半导体掐amorphous semiconductor device非晶形状态 amorphous state?无定形结构 amorphous structure?信息量 amount of information?放大系数 amplification constant?放大谱线宽 amplification linewidth放大 amplification? 放大屁频带 amplifier band放大齐声 amplifier noise放大级 amplifier stage放大器 amplifier?放大速弟 amplifying klystron放大跃迁 amplifying transition放大管 amplifying tube特高频功率放大管 amplitron幅度校正 amplitude correction?鉴幅器 amplitude discriminator?振幅失真 amplitude distortion?振幅误差校正 amplitude error correction振幅偏移 amplitude excursion振幅频率失真amplitude frequency distortion振幅频率响应amplitude frequencyresponse?限幅歧路 amplitude limiter circuit限幅器 amplitude limiter?爹发射机amplitude modulated transmitter爹甚高频发射机 amplitude modulated vhf transmitter爹监视器 amplitude modulation monitor爹噪声 amplitude modulation noise爹抑制 amplitude modulation suppression爹器 amplitude modulator视频信号振幅 amplitude of videosignal视频信号振幅范围amplitude range of videosignal振幅特性曲线 amplitude response?振幅稳固激光器amplitude stabilized laser 酌距离 amplitude?模拟阵列 analog array模拟集成电路 analog chip模拟运算机 analog computer?模拟数字网络 analog digital network 模拟电子学 analog electronics模拟信息 analog information模拟微电子学 analog microelectronics 模拟灯 analog modulation模拟网络 analog network模拟移相器 analog phase shifter模拟记录 analog recording模拟信号 analog signal?模拟开关 analog switch模拟的 analogue模拟放大器 analogue amplifier模拟计算 analogue computation模拟式乘法运算器 analogue multiplier 分析器 analyzer?与电路 and circuit?与元件 and element或非门 and nor gate 与与操作 and operation与或电路 and or circuit无回声室 anechoic room磨角 angle lap角灯 angle modulation?射束偏转角 angle of beam deflection 发散角 angle of divergence仰角 angle of elevation? 槽倾斜角 angle of groove inclination入射角 angle of incidence?倾斜角 angle of inclination?光入射角 angle of light incidence辐射角 angle of radiation角度数字变换器 angle to digit converter角跟踪 angle tracking倾斜离子注入 angled ion implantation角散布 angular distribution?角分辨率 angular resolution?阴离子互换尸 anion resin阴离子 anion?蛤异性侵蚀 anisotropic etch蛤异性侵蚀断面图anisotropic etch profile蛤异性侵蚀性质anisotropic etchproperty蛤异性侵蚀剂 anisotropic etchant 蛤异性材料 anisotropic material? 蛤异性 anisotropy?退火炉 annealer?退火杂质活化 annealing activation 退火覆盖层 annealing cap热处置 annealing?广播员 announcer环形锯片 annular blade环形接触 annular contact环形锯片切割 annular cutting环状电阻器 annular resistor 环状旋转接头 annular rotary joint 环形锯 annular saw环状裂缝 annular slot阳极特性 anode characteristic阳极暗区 anode dark space阳极检波 anode detection屏极耗散 anode dissipation阳极效率 anode efficiency阳极电解侵蚀 anode etching屏极输出器 anode follower阳辉光 anode glow阳极栅极电容 anode grid capacity 屏极负载 anode load阳极中和 anode neutralization阳极氧化 anode oxidation阳极射线 anode rays屏极检波 anode rectification阳极电阻 anode resistance阳极溅射 anode sputtering?阳极寄生振荡抑制器 anode stopper 阳极电源 anode supply阳极端子 anode terminal阳极电压 anode voltage阳极 anode?阳极的 anodic阳极处置 anodization 异样晶体生长 anomalous crystal growth应答塞绳 answering cord应答装置 answering device应答塞 answering plug天线放大器 antenna amplifier天线电容器 antenna capacitor天线转换开关 antenna change over switch天线接线 antenna connection天线耦合电容器 antenna coupling condenser天线效应 antenna effect天线元件 antenna element天线电动势 antenna emf天线输入阻抗 antenna feed impedance天线场强增益 antenna field gain天线接地开关 antenna grounding switch平均地表面上天线高度 antenna height above average terrain天线引线 antenna lead天线插座 antenna socket天线仰角 antenna tilt防撞雷达 anti collision device消感网络 anti induction network抗氧化层 anti oxidation layer天线收发转换开关 anti transmit receive switch 对阴极 anticathode?预报信号 anticipating signal反符合电路 anticoincidence circuit 抗衰落犬线 antifading antenna抗衰落装置 antifading device反铁电体 antiferroelectric阻厄电路 antihunt circuit抗干扰接收机 antijam receiver抗干扰装置 antijamming unit锑 antimony?抗噪声 antinoise反雷达 antiradar反雷达导弹 antiradar missile反雷达学 antiradiolocation反卫星导弹 antisatellite missile防静电剂 antistatic agent防静电设备 antistatic aids防静电组装 antistatic assembly防静电袋 antistatic bag防静电手套 antistatic gloves防静电掩模底版 antistatic mask blank防静电台 antistatic station防静电表面处置 antistatic surface treatment防静电工具 antistatic tool反斯托克斯线 antistockes line收发开关盒 antitrans mit receive box常压化学汽相淀积 apcvd非党天线 aperiodic antenna非周期电路 aperiodic circuit 张角 aperture angle孔径失真补偿 aperture compensation 孔径耦合 aperture coupling孔径失真 aperture distortion孔径均衡 aperture equalization针孔透镜 aperture lens孔径损失 aperture loss多孔障板 aperture mask孔镜 aperture mirror孔径光阑 aperture stop口径 aperture?外观检查 appearance inspection?苹果彩色显象管 apple tube敷料器 applicator应用全息照相术 applied holography 进场信标 approach beacon进场治理 approach control进场指挥雷达 approach control radar 水清洗器 aqueous cleaner水处置 aqueous processing电弧阴极 arc cathode弧光灯鼓励 arc lamp pumping电弧等离子体 arc plasma弧 arc? 逆弧 arcback构造 architecture?电弧放电 arcing显光管 arcotron区域码 area code面积型成像机 area imager氩激光器 argon laser?氩 argon?运算装置 arithmetical unit?盗丹振荡器 armstrong oscillator 排列 arrangement?阵列 array阵列式芯片 array chip阵列集成电路 array device阵列布图 array layout阵列逻辑 array logic存贮企列 array memory阵列图象形成 array patterning阵列间距 array pitch阵列处置 array processing阵列结构 array structure输入电流 arrival current掺砷发射极 arsenic doped emitter掺砷外延层 arsenic doped epi砷搀杂 arsenic doping涂布的砷溶液 arsenic spin on solution 砷 arsenic? 砷化物 arsenide可听清楚度 articulation?假天线 artificial aerial人工老化 artificial ageing?仿真天线 artificial antenna黑电平测试信号 artificial black signal 仿真延迟线 artificial delay line假回波 artificial echo人造电子眼 artificial electronic eye 仿真全息图 artificial hologram仿置线 artificial line版图检查工具 artwork checking tool原图设计 artwork design图形发生 artwork generation 图形发生器 artwork generator 原图制备刀 artwork knife照相底图 artwork master原图 artwork?超声波水下探测器 asdic长宽比 aspect ratio?微观粗糙度 asperity汇编程序;装配器 assembler组装错误 assembly defect装配图 assembly drawing?装配设备 assembly equipment 装配夹具 assembly fixture? 装配室 assembly room 组装台 assembly station?组装成品率 assembly yield组装 assembly?分派频率 assigned frequency交莲磁 assistating current magnetic biasing相联存储器 associative memory非稳固电路 astable circuit非稳态多谐振荡器 astable multivibrator 像散现象 astigmatism天文电子学 astrionics天体电子学 astronics天体脉泽 astronomical maser天文航海 astronomical navigation非对称振幅灯 asymmetric amplitude modulation不对称边带传送 asymmetric sideband transmission不对称偏转 asymmetrical deflection异先操作 asynchronous operation异步应答方式 asynchronous response mode异步传输 asynchronous transmission切割晶体 at cut crystal at自动测试设备 ate大气模型 atmosphere model 大气 atmosphere?大气吸收带 atmospheric absorption band 大气吸收 atmospheric absorption?大气衰减 atmospheric attenuation大气波导 atmospheric duct大气电场 atmospheric electric field大气波导管 atmospheric guide大气压激光器 atmospheric pressure laser大气透射带 atmospheric transmission band大气透射系数 atmospheric transmittance 大气窗 atmospheric window?大气干扰 atmospherics原子吸收分光光度法 atomic absorption spectrophotometry原子束频率标准 atomic beam frequency standard原子束激光器 atomic beam laser原子钟 atomic clock?原子发射光谱仪 Atomic Emission Spectrometer AES原子频率标准 atomic frequency standard原子氢 atomic hydrogen原子型杂质 atomic impurity原子电离 atomic ionization原子激光器 atomic laser原子谱线宽度 atomic linewidth原子核 atomic nucleus?原子时标准 atomic time standard自动测试系统 ats可达清楚度 attainable resolution衰减常数 attenuation constant? 衰减器 attenuation pad?衰减 attenuation?听觉的 audio声频放大器 audio amplifier伴音载波 audio carrier伴音中心频率 audio center frequency伴音通道 audio channel声频放大 audio frequency amplification 音几回带 audio frequency band音频扼力 audio frequency choke音频发生器 audio frequency generator音几回率计 audio frequency meter音频峰值限幅器 audio frequency peak limiter音频变压器 audio frequency transformer音频电平指示器 audio level indicator音频混频器 audio mixer音频回音装置 audio output unit音频范围 audio range音频信号 audio signal音几回谱 audio spectrum音几回谱分析器 audio spectrum analyzer声道 audio track音频发射机 audio transmitter听力图 audiogram 听力计 audiometer测听技术 audiometry三极检波管 audion检查 audit?听能听能 audition俄歇电子发射 auger electron emission 俄歇电子 auger electron?俄歇微探针 auger microprobe俄歇复合 auger recombination俄歇能谱仪 auger spectrometer俄歇跃迁 auger transition无线电导航有声信标 aural radio range 收听 aural reception伴音发射机 aural transmitter南极光 aurora australis北极光 aurora borealis极光 aurora?故障 autage确认 authentication自动加速 autoacceleration自动补偿器 autocompensator自动操纵 autocontrol?自相关数 autocorrelation?自差接收法 autocyne reception 自搀杂 autodoping自差 autodyne 自拍接收机 autodyne receiver自动标引 autoindexing自动掩模对准器 automask aligner自动设计 automated design?自动应答装置 automatic answering device对照度与亮度自动平稳 automatic balance of contrast and brightness自动黑电平电路 automatic black level circuit自动黑电平操纵 automatic black level control自动查验 automatic check?自动色度蝶 automatic chrominancecontrol自动元件装卸装置 automatic componenthandler自动运算机 automatic computer对照度自动蝶 automatic contrast control自动操纵系统 automatic control system?自动消磁 automatic degaussing自动电话互换机 automatic exchange自动聚焦 automatic focusing自动频率操纵特性 automatic frequency control characteristic自动频率操纵 automatic frequency control?自动增益操纵 automatic gain control自偏压 automatic grid bias自动色地制 automatic hue control自动插入 automatic insertion自动布图技术 automatic layout technique 自动行同步 automatic line phasing直接远程拨号 automatic long distance service自动监视器 automatic monitor自动图象稳固操纵 automatic picture stabilization自动定线器 automatic router自动停机 automatic stop?自动副载波平稳操纵 automatic subcarrier balance control自动电报 automatic telegraphy自动电话互换局 automatic telephone exchange自动电话互换系统 automatic telephone switching system自动发射机 automatic transmitter自动党 automatic tuning自动真空淀积系统 automatic vacuum deposition system自动视频杂波限制器 automatic video noise limiter自动白电平操纵 automatic white control汽车收音机 automobile radio汽车电话 automobile telephone自对准 autoregistration辅助阳极 auxiliary anode辅助栅极 auxiliary grid辅助塞孔 auxiliary jack 辅助存储器 auxiliary memory辅助信号 auxiliary signal备份发射机 auxiliary transmitter可用功率 available power雪崩酌 avalanche action雪崩哗 avalanche breakdown雪崩哗电压 avalanche breakdown voltage雪崩二极管 avalanche diode雪崩注入多层栅金属氧化物半导体 avalanche injection stacked gate mos雪崩电离 avalanche ionization雪崩倍增 avalanche multiplication雪崩倍增系数 avalanche multiplication factor雪崩噪声 avalanche noise雪崩光电探测器 avalanche photodetector雪崩光电二极管 avalanche photodiode雪崩晶体管 avalanche transistor雪崩渡越时刻二极管 avalanche transit time diode雪崩渡越时刻二极管振荡器 avalanche transit time oscillator电子雪崩 avalanche?平均亮度 average brightness平均图象电平 average picture level求平均数 averaging?轴向电子感应加速岂荡 axial betatron oscilations轴向侵蚀不均匀性 axial etch nonuniformity轴向通量分米波超高功率四极管 axial flow resnatron轴向注入 axial injection 轴向引线成形设备 axial lead former 轴心线 axial lead?轴向稳固性 axial stability轴向鼓励激光器 axially excited laser 波导管轴 axis of a waveguide方位角精度 azimuth accuracy方位蝶 azimuth adjustment方位角驱动 azimuth drive方位角仰角指示器 azimuth elevation indicator方位角损失 azimuth loss方位角分辨率 azimuth resolution方位角;方位角 azimuth?方位角群聚 azimuthal bunchingDN A及蛋白质的测序和合成仪-- Sequencers and Synthesizers for DNA and Protein。
等离子体发射光谱仪英文The plasma emission spectrometer is a pretty cool tool, you know? It's like a magic eye that can see what's happening inside a plasma. You just zap the plasma with some light, and it spits out a spectrum of colors that tell you what elements are there and how they're behaving.Imagine it like a party where everyone's wearing a different-colored shirt. The spectrometer is like the DJ who shines a spotlight on everyone and says, "Hey, you're wearing blue!" or "You're in green!" It's a way to identify who's who in the crowd.But it's not just about colors. This machine can also tell you how intense the colors are, like how loud someone's shouting at the party. That gives you a clue about how active or excited the elements are in the plasma.Sometimes, you might want to know if there's a specific person at the party, like your friend in a red shirt. Thespectrometer can help you look for that red color in the spectrum and see if it's there. If it's not, then you know your friend's not at the party – or in this case, that element isn't in the plasma.This tool is seriously handy for scientists studyingall sorts of things, like how stars make light or what happens in a lightning bolt. It's like having a superpower to see what's really going on behind the scenes of nature's coolest parties.。
光谱成像技术的分类光谱成像技术,有时又称成像光谱技术,融合了光谱技术和成像技术,交叉涵盖了光谱学、光学、计算机技术、电子技术和精密机械等多种学科,能够同时获得目标的两维空间信息和一维光谱信息。
光谱成像技术开展到今天,出现的光谱成像仪的种类和数量己经具有较大规模,因而可以从光谱分辨率、信息获取方式〔扫描方式〕、分光原理和重构理论等不同的视角对光谱成像技术进行分类。
1基于光谱分辨率分类光谱成像技术针对光谱分辨能力的不同,可分为多光谱(Multi-spectral),高光谱(Hyper- spectral)以及超光谱(Ultra-spectral)。
多光谱的谱段数一般只有几十个,高光谱的谱段数可到达几百个,而超光谱一般指谱段数上千个。
它们的区别如表1所示。
表1多、高、超光谱的比拟分类分辨率通道数光谱典型例子多光谱〔Multi-spectral〕10-1λ量级5—30 ETM+ASTER高光谱〔Hyper-spectral〕10-2λ量级100—200AVIRIS超光谱〔Ultra-spectral〕10-3λ量级1000—10000GIFTS2 基于信息获取方式分类光谱成像仪需要对三维“数据立方〞进行探测,而现今的探测器最多能进行二维探测。
要想获得完整的三维数据,理论上至少需增加一维的空间扫描或光谱扫描。
光谱成像技术获取图谱信息的主要方式有:挥扫式(Whiskbroom )、推扫式(Pushbroom)、凝视式(Staring)以及快照式(Snapshot)。
挥扫式成像光谱仪的光谱成像系统只对空间中某点进行光谱探测,通过沿轨和穿轨两个方向扫描获取完整的二维空间信息,其信息获取方式如图1a所示。
A VIRIS就是通过挥扫成像[1]。
推扫式光谱成像系统探测空间中一维线视场(图1b中的X方向)的光谱,通过沿轨方向(Y方向)扫描实现二维空间信息的获取,芬兰国立技术研究中心实验室研制的AISA就是典型的推扫式成像光谱仪[2]。
环境工程词汇安全阀safetyva1ve安全浮箱emergencyf1oatingcaisson安全闸emergencybu1khead板条式输送机s1atconveyor半反应ha1freaction半封闭水体semi-enc1osedwaterbody半水化物semi-hydrate半污水生物mesosaprobia饱和浓度saturationconcentration饱和溶解氧saturateddisso1vedoxygen保存性污染物conservativepo11utants保护格栅protectingrack 曝气器aerator曝气池aerationbasin曝气滴滤池aeratedtrick1ingfi1ter本底噪声backgroundnoise泵式挖泥机pumpdredger泵送量pumpde1ivery灌水器decanter比容积specificvo1ume比色测氧仪co1orimetricoxygendetector比声计acousticmeter表面力口速曝气acce1eratedsurfaceaeration表面曝气机surfaceaerator表面活性齐(Jinterfacia1activeagentBOD(生化需氧量)Biochemica1OxygenDemand不降解non-degradab1e不溶解物inso1ub1esubstance采滤器s1udgesamp1er初沉池primarysett1ingtank 初澄池pre1iminaryc1arifier初滤池primaryfi1ter除砂设备sande1iminator除油池greaseremova1tank除气器deaerator除氧器deaerator除污机c1eanerCOD(化学需氧量)Chemica1OxygenDemand 串联泵pumpsinseries串联质谱仪tandemmassspectrometer残渣量1eve1ofresidue槽桨式搅拌器trough-padd1emixer超声波液位计u1trasonic1eve1meter超声波流量计u1trasonicf1owmeter超声波液位开关u1trasonic1eve1switch沉淀池sedimentationtank沉淀滴定法vo1umetricprecipitationmethod沉淀(降)物foots,sett1ingmatters沉泥池mudsump沉砂池(箱)gritchamber 沉污池(沉淀池)wetpit沉砂池搅拌器gritchamberagitator沉箱sinkingcaisson废物处理wastedisposa1垃圾焚化装置refuseincinerator垃圾收集refuseco11ection热岛效应heatis1andeffect澄清池c1arificationtank澄清过滤c1arifyingfi1tration澄清器defecator持水当量moistureequiva1ent充水堰wasteweir冲砂闸sands1uice(unders1uice)冲砂闸门f1ushgate(wash-outgate)冲洗池rinsetank 抽水池primingreservoir出水阀out1etva1ve出渣槽s1agnotch吹泄阀(箱)b1ow-offva1ve(tank)垂直闸门堰draw-doorweir纯氧曝气法unoxprocess次漂浮生物hyponeuston次生环境secondaryenvironment粗格栅coarsescreen粗格栅井coarsescreenwe11粗滤池coarsefi1ter催化剂cata1yst萃取溶剂extractiveso1vent存水池dew-pondoi1ywatersewer含油污水separator分离器equa1izationbasin/ho1dingequa1ization平衡水池disso1ved-airf1otation溶气浮选aerated1agoon曝气池sandfi1ters砂粒过滤器eff1uent流出液neutra1izationpond中和池%so1ids固体百分率Part1 storm-waterretention雨水积池primaryc1arifier一次沉降池DO-disso1vedoxygen溶解氧量aeration曝气f1ow流量thickener增稠池secondaryc1arifier二次沉降池pressurefi1ter加压过滤器gravityfi1ter重力过滤器Part2Corrugated-p1ateinterceptor波纹板油水分离器s1udgepit污泥地out1et排出口adjustab1eout1etweir可调出口堰oi1Skimmer撇油器oi1g1obu1es油珠oi11ayer油层adjustab1ein1etweir可调入□堰sediment沉淀物sedimenttrap沉淀物捕集器Batch-sti11systemforrecoveryofwasteso1vents 回收废溶剂的间歇蒸储系统traptodrain疏水排水阀condensate冷凝水e1ectricsteamgenerator电热蒸汽发生器rupturedisk防暴膜packing填料coo1ingtower冷却塔co1d-watermakeup冷去t∣水补充co1d-waterrecyc1epump冷却水循环泵Strippingprocess汽提过程pressfi1ter压滤机vacuumfi1ter真空过滤机centrifuge离心机dewatering脱水residua1ch1orine余氯f1uegas烟气incinerator焚烧炉outfa11流出口s1udgepumpsuctionpipe污泥泵吸入管s1udge-co11ectinghopper集泥斗f1ightscraperchainsprocket舌IJ泥板链轮woodf1ights木制刮板rotatab1eoii1-skimmingpipe可旋转撇油管oi1-retentionbaff1e截油挡板eff1uentweirandwa11废水溢流堰板eff1uentf1ume废水槽fromwastewaterfeedtank来自废水料槽feed-bottomexchanger料液-塔底液换热器condenser 冷凝器decanter倾析器recoveredorganicch1oride回收的有机氯化物1.P.steam低压蒸汽strippedwater汽提工艺水stripper汽提塔Anactivated-s1udgesystem活性污泥系统tob1endingtank混合槽so1idswaste固体废弃物togritremova1移走砂粒wetwe11湿井aerationrecyc1e曝气循环fromaeration来自曝气池secondaryc1arifier二次澄清器secondaryeff1uent二次废水separator分离器hydrocyc1one旋液分离器centrifuge离心机todecantationtank去浅析槽gateva1ve闸阀g1obeva1ve截止阀;球心阀ang1eva1ve角接阀p1ugcock旋塞freeba11va1ve自由式球阀fixedba11va1ve固定式球阀ang1e1iftcheckva1ve角接式升降止逆阀diaphragmva1ve隔膜阀butterf1yva1ve蝶阀ti1ting-diskcheckva1ve斜盘式止逆阀专业辱用桐汇表A/O-anoxicandaerobicoxidation厌氧/好氧氧化AAS一atomicabsorptionspectrophotometry原子吸收光谱abiotic 非生物的ABS一a1ky1benzenesu1fonate 烷基苯磺酸abscissa 横坐标absorbance吸光度absorbate 被吸收的物质absorbent 吸收剂absorption吸收作用accessory 附件acc1imation 驯化accumu1ator 蓄电池acet- 乙酰,次乙基acetamide 乙酰胺acetate乙酸盐aceteny1 乙快基acetone丙酮acety1ene乙快acidimetry 酸量滴定法acry1ic 丙烯酸的activatedadsorption 活性吸附activateda1umina 活性氧化铝activatedcarbon活性碳activateds1udgeaeration活性污泥曝气activity活度acy1 酰基additive添加剂adiabatic绝热的adsorbent 吸附剂adsorption吸附作用adsorptionbar 吸附等压线adsorptionisotherm 吸附等温线adverse 不利的有害的,逆的adversecurrent逆流aer(o)- 空气,气体aerate曝气aeration曝气aerobic好氧的aeroge1 气凝胶aerogenicbacteria 产气菌aeroso1气溶胶affinity 亲和力agar琼脂agent试剂airbornedust 飘尘airborne 飞行在空中的,空降的--3.1 醛a1dehyde醛a1ga藻类a1gicide 除藻剂a1iphatic脂肪的a1ka1i碱阀门资料swingcheckva1ve旋启式止逆阀vartica11iftcheckva1ve直立升降式止逆阀wedgegate楔形闸板g1obetypedisc球心形阀盘ba11球体diaphragm隔a1ka1imeta1 碱金属anoxic缺氧的a1kane烷烽antifoamer 防沫剂a1kene烯煌apparatus 仪器a1ky1 烷基appurtenance[9,p91inθns]附属设备,附件a1ky1mercury 烷基汞aquatic 水生的a11y1 烯丙基aquifer蓄水层a1um 硫酸铝aquo- 水合-a1uminumsu1fate 硫酸铝argon 氤ambient周围的,环境的aromatic芳香的amide酰胺ary1 芳香基amine胺asbestos 石棉amino氨基aspha1t 沥青,柏油ammonianitrogen氨氮assay 化验,分析,检定ammonia-sodaprocess 氨碱法assimi1ate 同化ammonium钱(NH4+) atmospheric boundary[aetmθs,ferik]大气边界层amphoteric 两性的atmosphericdispersionmode1 大气扩散模式amy1- 戊基atomizer 雾化器amy1o1ysis 淀粉水解autoc1ave 高压釜amy1opectin 支链淀粉auto-exhaust机动车排气amy1ose 直链淀粉autopurification 自净作用anaerobic厌氧的autotrophic自养anaerobicdigestion 厌氧消化axia1-f1owpump 轴流泵ana1ysisvariance 方差分析azeotrope 共沸混合物ana1yticba1ance分析天平azeotropic 共沸混合物的-ane 烷(饱和)azide 叠氮化合物anhydride 酸酊azo- 偶氮基ani1ine苯胺azo-dye偶氮染料anionic阴离子的azotize 固氮anisotropic 各项异性的annu1ar 环形的Bbackextraction反萃取benzoic安息香酸的,苯甲酸的backup 支持,备用设备benzoxy- 苯甲酸基backwashing 反冲洗benzy1苯甲基baff1e挡板benzene 苯barrack粗格栅bicarbonate 酸式碳酸盐base 碱binary 二元的,二进制的basiccarbonate 碱式碳酸盐bio生物的-batch一次的分量,一批bioactivity生物活性beaker 烧杯bioassay 生物监定bench-sca1e小试的,小型的biochemica1生化的bentonite 膨润土bioconcentration生物富集benzo-苯并的biodegradab1e生物可降解的bio-disksystem 生物转盘break-pointch1orination[dnιri'nei⅛]折点加氯biofi1m生物膜brine盐水,海水bio1ogica1生物学的BTEX-benzene,to1uene,ethy1benzene,xy1enebiomass生物量['t□1jυi:!] [,zai1iιr] biooxidation 生物氧化苯,甲苯,乙苯,二甲苯bioremediation生物法恢复补救buffer缓冲,挡板biosphere生物圈bu1king膨胀biota 生物群bu1kings1udge污泥膨胀biotope 群落生境bumper 缓冲器biouptake生物吸收buret滴定管b1anktest 空白实验but- Tb1ower 鼓风机butane丁烷BOD-biochemica1oxygendemanc I生化需氧量buty1- 丁基boi1er锅炉by-product 副产物breakdown 细目分类Cca1ibrate标定,校准che1ant 螯合剂ca1ome1甘汞电极ch1orination 氯化作用capi11ary毛细管ch1orine['k1n:ri:] 氯capsu1e 容器,密封舱ch1oro 氯一caption 标题,说明ch1orobenzene 氯苯carbohydrate 碳水化合物Ch1orof1uorohydrocarbon氯氟烧carbo1ic(苯)酚的ch1oroform氯仿carbonmono(o)xide 一氧化碳Ca1orop1ast 叶绿体carbonaceous含碳的chromatography[,krθumθ,tυgrθfi]层析,色谱法carbony1默基cinder 煤渣,炉渣carboxy1竣基cis-顺-carboxy1ic竣基的c1arifier澄清池,澄清剂carcinogenic 致癌的c1ausprocess 克劳斯二级脱硫法cata1yst催化剂CMR-combinativemixedreaction完全混合式反应器cationic阳离子的coagu1ation凝结caustic苛性的coa1-tar 煤焦油cavernous 多孔的coating 涂敷,涂布ce1ite 硅藻土cocata1yst 助催化剂ce11u1ar 细胞的cock 考克,旋塞ce11u1ose 纤维素COD-chemica1oxygendemand化学需氧量centertakeoff 中心出水coefficient系数centrifuga1离心的coke 焦炭centrifuge 离心机co1dtrap 冷阱centripeta1向心的co1iform[,kn1ifn:m]大肠杆菌chainreaction链式反应co11aboration 合作,协作char 煤炭co11oida1胶状的charcoa1 木炭co1orimeter比色计comminution 粉碎contamination污染物common-ioneffect同离子效应contour轮廓线comonomer 共聚单体contractor 立约人compartment 部分,隔板,间隔coprecipitate 共沉淀compatibi1ity 兼容性corre1ate 相关competitiveadsorption竞争吸附corrode 腐蚀comp1ex 络合物corrosion腐蚀comp1exation络合作用counter 逆Comp1eximetric 络合滴定的countercurrent 逆流composite 合成物courier 信使compost 堆肥cova1ent共价的concentration浓度cracking 裂解concentrationso1ubi1ityproduct 浓度溶度积creso1甲酚condensation 冷凝criteria 标准conduit导管crucib1e土甘蜗conjugatedacid 共甄酸cryogenic[,kraiθdgenik]低温的conjugation共辗crysta1 晶体consecutivereaction连串反应crysta11ine 晶体的conservation 保存,守恒cu1ture培养液consistency 连贯性cure 硫化conso1e控制台,仪表板cyanide 氧化物constantratepump 恒流泵cyc1one旋风分离器constanttemperaturebath恒温浴cy1inder 汽缸constituent成分Ddataprocessing 数据处理di 二database 数据库dia1ysis渗析dec 癸diaphragm横隔膜deca 十diastase 淀粉酶decantation 倾析法diazo重氮基decibe1分贝diazosa1t 重氮盐deepshaftreactor 深井曝气dichromate[dai,krθumeit]重铭酸盐degenerate 退化,变质diese1柴油机,内燃机degrit除砂differentia1potentiometrictitration 差示电位滴定dep1ete耗尽[p9,te∏1fi,nmitik][ti,trei1⅛n]derivative衍生物diffraction衍射desiccation 干燥diffractionana1ysis 衍射分析destructivedisti11ation 干储diffuser扩散器detention 停留digestion 消化detergent去垢剂,清洁剂dio1efin二烯燃deteriorate 使恶化,损坏dioxins二恶英dew 露水dipo1emoment 偶极距dextrorotatory右旋光的directanodicstrippingvo1tammetry直接阳极溶出伏安法discrepancy 误差,偏差disti11ation蒸储discrete 离散的diurna1白天的disinfect消毒DO-disso1vedoxygen溶解氧disinfectant 消毒剂dosage 剂量disintegrator 粉碎机drainage排水设备disposa1处理、处置drop1et 微滴disso1ved-airf1otation 溶气浮选法dyes 染料EE.co1i.(escherichaco1i) 埃希氏大肠杆菌EPA-environmenta1protectionagency 环境保护局ebu11atingbed 沸腾床epoxy环氧的ECD一e1ectroncapturedetector电子捕获检测器epoxy 环氧基eco1ogy生态学equiva1ent等当量的ecosystem 生态系统erode 腐蚀eff1uent 出水erratic 不稳定的EIA-environmenta1impactassessment环境影响评价ester酯类e1ectrocapi11arity电毛细管现象-ester 酯e1ectro1yte 电解质esterification 酯化反应e1ectronegativity 电负性estuary['estjua] 河口e1ectromicroscope 电子显微镜eth- 乙e1ectro-osmosis电渗透ether酸e1ectrop1ate 电镀-ether 雁e1uant洗提液ethy1ene 乙烯empirica1 经验主义eutection 低共熔体的emu1sion乳化液eutrophic 富营养化的encapsu1ate 密封eutrophication 富营养化endo- 内_evaporation 蒸发作用endogenous内源的exchangeadsorption交换吸附endrin异狄氏剂excreta 排泄物-ene 烯exothermicity放热性ennea 九个一组exponent 指数entha1py[en'θae1]] 焰extendedaeration延时曝气entropy[,entrθpi] 燃extrace11u1arenzyme胞外酶environmenta1hormone环境激素extraction萃取enzyme[,enzam]酶extrapo1ation 外推法Ffaci1ities 设施ferrous亚铁的factoring 因式分解fi1amentous丝状菌facu1tative兼性的fi1trate过滤,滤液ferri- 铁-fi1tration 过滤ferric三价铁f1ake薄片ferrite 铁素体f1amespectrophotometry 火焰光度法ferro-亚铁-f1ap 活盖,活板f1ask烧瓶forma1in福尔马林f1ex 软管formic甲酸的f1occu1ation絮凝fossi1 化石f1otation 气浮fractionation 分储f1owrate流量,流速freeswimmingci1iates 游泳型纤毛虫f1ue-gasdesu1furization 烟气脱硫Freon 氟利昂f1uffy 松散的front-pane1 面板f1uidizedbed 流化床frothing 起泡f1uoride 氟化物FRP-fiberg1assreinforcedp1astics 玻璃钢Auorimetry 荧光剂fugacity 逸度f1uorine 氟fu11-sca1e 实际尺寸,大规模的f1ush 冲洗fume 难闻的气味,烟熏fo1iage 植物,树叶fungi 真菌forma1dehyde甲醛fungicide 杀菌剂GGAC一granu1aractivatedcarbon颗粒活性炭g1ycero1甘油,丙三醇ga1actose 半乳糖granu1ar 颗粒状的ga1vanometer1gaeIVSiwmita]检流计granu1ometry 粒度分析gasifier气化器grating 光栅,格栅GC/MS一gaschromatography/massspectrometry grave1 砾石[krθmθ,t□grθf j色质联用gravimetric 测定重量的ge1 冻胶,凝胶greenhouseeffect温室效应generic 属的,类的grit 粗砂geotherma1stream 地热流gunite 水泥砂浆层g1ucose['g1u±θus]葡萄糖Hha1ide卤化物hex 巳ha1o卤-hexa 六ha1ogen卤素hinder 阻碍handbook 手册hood 通风橱hazardous危险的hopper漏斗head1oss水头损失hose 胶管heatcapacityatconstantpressure等压热容HP1C—highperformance1iquidchromatography高压液相色谱heatcapacityatconstantvo1ume等容热容HRT-hydrau1icretentiontime水力停留时间he1ica1 螺旋的humus腐殖质he1ica1agitator 螺旋式搅拌器hybridism杂化的hept 庚hydration水合作用hepta 七hydrau1ic水力的herbicide 除草剂hydro氢化的hetero 杂_hydrocarbon½heterogeneity不均匀性,异相性hydroch1oricacid 盐酸heterotrophic异养的hydro1ysis水解hydrophi1ichydrophobic hy droso1hydrostatichydroxide hydroxy1-亲水的疏水的水溶胶流体静力学氢氧化物羟基-hygroscopichyperbo1a hypo-hypoch1orite hypothesis吸湿性双曲线次一次氯酸盐假设I-icanhydride 酸酊instrumenta1ana1ysis仪器分析IC一ionchromatography[krθmθ,t□gre]离子色谱intake 摄入量imhoff双层的intermittent间歇式的-imide 酰亚胺intrace11u1arenzyme胞内酶-imine亚胺intrinsic内在的immobi1ize 使不动inventory清单,目录immobi1izedenzyme固定化酶iodine 碘impe11er叶轮ion离子insitu现场ionexchanger离子交换剂incidence 发生率ionpair 离子对incinerate焚烧IP-inha1ab1epartic1e可吸入颗粒物incubation培养iso- 异-indicator指示剂isobuty1- 异丁基inert 惰性isomer 同分异构体inertia[i'na:月惯性isopiestic等压的inf1uent进水isopropy1异丙基inha1ab1e可吸入的isotope同位素inhibit约束,抑制isotropy各向同性的insecticide 杀虫剂iterativemethod 迭代法Jjack 千斤顶ketoneK酮kinetic[kai,netik]动力学的11actic乳酸的1eanphase贫相1actose 乳糖1evorotatory 左旋光的1agoon氧化塘1iftpipe 提升管1aminar层流的1ignin木质素1andfi11填埋1ime石灰1AS一1ineara1ky1benzenesu1fonate线形烷基苯磺酸1imestone 石灰石1athe 车床1iner衬里1attice 晶格1itmus 石蕊1eachate渗出液1oading负荷1ogarithmic 对数的Iyophi1ic 亲液的1PG一1iquifiedpetro1eumgas液化石油气Iysimetric 溶度的Mmanifo1d歧管methy1-甲基的marshgas 沼气microorganism 微生物massba1ance 物料守恒microscreening 超滤membrane膜M1SS-mixed1iquorsuspendedso1id混合液中的悬浮固体mercaptan 硫醇M1VSS一mixed1iquorvo1ati1esuspendedso1id混合液中的挥发性悬浮颗粒物mercury[,m3kjur j汞moiety 部分,半个meteoro1ogica1[mi:t Bre1Od3k(e)1] 气象学mo1a1ity(重量)摩尔浓度mesosca1e 中间尺度mo1arity (体积)摩尔浓度meta 偏-,间位mo1ecu1aradsorption 分子吸附metabo1ism新陈代谢moment 矩meta11urgica1 冶金学的mono 单metasi1icate 硅酸盐monomer 单体metastab1e 亚稳态的monophase 单相的metathesis 复分解作用moving-bedreactor 移动床反应器meth-甲municipa1市政的methane甲烷mutagenicity 诱变性methodo1ogy 方法学MW一mo1ecu1arweight分子量Nn-正nitrogendioxide二氧化氮naphtha1ene['naefθe1i:n]蔡,卫生球nitroso- 亚硝基-naphthene环烷烧NMHC一non-methanehydrocarboncompounds非甲烷总燃NDIR-nondispersiveinfraredmethod非分散红夕卜法NMR-nuc1earmagneticresonancespectroscopy核磁共振nebu1ous[,nebjo1θs]模糊的nocturna1[nnk,tθinθ1]夜晚的neuston 漂浮生物nomenc1ature 术语nitrosation 亚消化作用non 壬-nitri1e月青norma1ity当量浓度的,正态性nitrite亚硝酸盐nuc1eophi1ic亲核的nitro硝基-oct辛o1eophobic疏油的octa 八o1factory 嗅觉octanenumber 辛烷值-one 酮odor 气味on-1ineana1ysis 在线分析off-gas 废气on-site在场的,就地的off-1ine离线的ORP-oxidationreductionpotentia1氧化还原电位oi1refining 炼油,石油精制ortho-原,邻位-o1醇orthogona1[n:'θngθn1]直角的o1eophi1ic亲油的OTE一oxygentransferefficiency 氧传输效率OUR一oxygenuti1izationrates氧禾U用率oxidase 氧化酶outfa11 排水口oxidation 氧化作用overdraft透支-oxide 氧overf1ow溢流oxygensagcurve氧垂曲线oxa 氧杂-oxygentransfercoefficient 供氧系数oxa1ate 草酸盐-oy1 酰oxa1icacid 草酸ozonedep1etion[,ΘUZΘUΠ]臭氧耗竭oxidant 氧化剂ozonization臭氧化Ppacking填料phosgene 光气PAC一poweractivatedcarbon,po1ya1uminumch1oride phosphate 磷酸盐粉末活性炭,聚合氯化铝phosphite 亚磷酸盐padd1e 浆phosphoricacid 磷酸PAH—po1ycyc1icaromatichydrocarbons多环芳燃phosphorus 磷PAM—po1yacry1amide 聚丙烯酰胺photo光_PAN-peroxyacety1nitrate过氧硝酸乙酰脂photochemica1smog光化学烟雾paperpu1p 纸浆photoe1ectric 光电的para对-,仲-photo1ysis光解paraffin烷烧,石蜡photosensitive 光敏化particu1ate 颗粒物photosynthesis光合作用pathogenic[,paeθθ,dgenik]致病的phreaticpump[fri,aetik]潜水泵PCB—po1ych1orinatedbipheny1多氯联苯phtha1ate 邻苯二甲酸盐pent 戊physicochemica1物理化学的penta 五phytop1ankton浮游植物peptide肽化合物pigment 颜料,色素per 过-pigmentedf1age11ate 有色纤毛虫perco1ate渗透液pi1ot-sca1e 中试perco1ation 渗透pinene松菇,源烯perforatedp1ate 多孔板pipe1ine 管道perista1ticpump 蠕动泵pistoncompressor活塞压缩机permeate[,pθimieit]渗透Pit 坑,斗peroxide过氧化物p1ankton浮游生物peroxy过氧-p1asma等离子体pesticide农药p1astifier 增塑剂petro1eumether 石油酸p1ateheatexchanger 板式换热器PFC-po1yferricch1oride 聚合氯化铁p1ate-and-framefi1terpress板框压滤机PFR―p1ugf1owreactor活塞流反应器p1ug-f1ow推流pharmaceutica1[fα:mθ'su:t k(θ)1]制药的,药学的PM-particu1atematter 颗粒物phasechange 相变pneumatic气动的pheno1酚类po1arography 极谱法pheno1ic[ι,nn1ik]酚的po1y 聚_pheno1icresin 酚醛树脂po1yacry1amide 聚丙烯酰胺pheny1苯基po1ycondensation 缩聚作用po1ycyc1ic多环的Probati1istic 概率的po1yester 聚酯proceeding 会刊,科研报告集po1yether 聚酸processingwastewater 工艺废水po1ymer 聚合体prop 丙po1ymeric聚合的prope11er 桨po1yo1 聚合体propiny1 丙快基po1ysaccharide[p□11saekθra] 多糖prototype 原型,样品po1yurethane[,pn1i,juriθein]聚氨酯protozoan原生动物porce1ain[,pnιs1in]瓷,瓷器pseudo- 伪的porosity空隙性,多孔性pseudo-firstorder伪一级反应porous 多孔的PU1P 纸浆potab1e可饮用的pumphead泵压头potassium[pθ,taesDm]钾pump1ift泵扬程ppb-partperbi11ion十亿分之一PVC—po1yviny1ch1oride 聚氯乙烯ppm-partpermi11ion百万分之一pyrene 花ppt~~partpertri11ion万亿分之一pyrex 硼硅酸玻璃pressurization 加压pyridine 喀咤primary伯的pyro1ysis[pai,rn1isis]热解prism 棱镜Qqua1itative定性的quasi准quantitative定量的quaternary季的,四元的Rradia1 径向refractory难降解的radia1f1owtank 辐流式沉淀池refuse 垃圾,废物radon氨regeneration 再生raffinate萃余液regu1atory 调节的rainout雨洗re1uctance 磁阻rake耙rep1ica 复制品,拷贝raschingring 拉西环residua1ana1ysis[,rezidju:1]残差分析ratedhorsepower 额定功率resin树脂RBC—rotatingbio1ogica1contactor生物转盘retention 保留,停留reagent试剂reversionextraction 反萃取reca1citrant难降解的RFC-reinforcedconcrete钢筋混凝土recess 凹槽rheo1ogy friι,n1θd3i]流变学reciprocating往复的rheo1ogica1 流变的crysta11ization 重结晶rimtakeoff四边出水rectify 精储risings1udge污泥上浮reductase还原酶rootsb1ower罗茨鼓风机reductiongearbox 减速齿轮箱rotifers 轮虫ref1ux 回流runoff地表径流saccharide[,saekθraid]糖类so1ub1e可溶的sa1icy1ic 水杨酸的so1ute 溶质sa1icy1icacid 水杨酸so1vent溶剂sa1inity[sθ,1initi]含盐量SOOt 烟黑sa1tingout 盐析sorption吸着saponification 皂化sparepart备件sarcodina 肉足纲spatia1 空间的saturated[saet⅛reitid]饱和的speciation 形态分析SBR—sequentia1batchreactor序批式反应器spectrophotometer分光光度计scour[,skauθ]冲刷spectrum 光谱scraper刮泥机spent 剩余的,废液screening滤余物,格栅spherica1va1ve[,sferik1]球阀scrub洗涤spira1-f1ow 螺旋流scum[sk∆∏ι]泡沫sta1kedci1iates 柄纤毛虫sea1 密封剂standarddeviation 标准偏差seam 缝,接缝starch 淀粉secondary仲的stearic硬脂的sedimentation沉淀stereoisomer 立体异构体separation分离steri1e[s,terθ1]无菌的septictank化粪池stoichiometric 化学当量的sett1e沉降strappingpump 计量泵sewage[,sjuddζ∣污水,下水道stratification[,straetifi,kei⅛]成层作用sewer下水道stratosphere平流层sewerage污水工程,排水工程stripping气提shear剪切力strongso1ution 浓溶液sheath[J:θ] 外皮,外罩styrene苯乙烯shock1oad 冲击负荷sub1imate 升华sieve筛substrate基质si1icage1 硅胶Su1fani1ic 苯磺酸的si1t淤泥su1fate硫酸盐sink污水坑,洗涤槽,贮水池su1fite亚硫酸盐siphon 虹吸su1furic硫酸的skimmer撇沫器su1furous亚硫酸的s1ime粘泥sump 贮槽,污物贮存器s1it 窄缝surfaceaerator 表面曝气器s1udge污泥surgetank 缓冲罐s1ug 冲击,强击suspended 悬浮的s1urry 泥浆,粘泥,淤泥SVI一s1udgevo1umeindex 污泥体积指数sodium[sθudiθm]钠symposium[sim,pθuziθm]专题讨论会so1ubi1ityproduct 溶度积syndet合成洗涤剂synthesize 合成tandem串联titaniumdioxide二氧化钛taper渐减的/锥形,锥度titration滴定taperaeration渐减曝气TKN 总凯氏氮Te1fon 聚四氟乙烯TOC一tota1organiccarbon总有机碳tempora1 暂时的,时间的to1uene[?1joi:n]甲苯teratogenicity 致畸性toxicity[tnk,sisiti]毒性tertiary叔的transmittance 透光度tetra- 四transpiration 蒸腾tetrach1oride 四氟化物treatment处理therma1热的tri- 三therma1decomposition热分解tricking滴流的therma1resistance 热阻trio1 三元醇thermistor 热敏电阻,温度计trophicity营养度thermocoup1e热电偶troposphere对流层thermodynamic[θθimθudai,naemik]热力学的trough槽thermo1ysis 热分解turbidimeter 浊度计thio 硫代turbidity浊度thiosu1fate 硫代硫酸盐UUASB-upf1owanaerobics1udgebed u1trasonic超声的上流式厌氧污泥床u1travio1et紫外线u1trafi1tration 超滤urea尿素Vva1ve[vae1v]球形阀VOC-vo1ati1eorganiccompounds挥发性有机物va1vetray 浮阀塔板voidfraction空隙率varnish 清漆vo1ati1e挥发性的Venture文丘里vo1umetricf1ask 容量瓶viny1 乙烯基vortex漩涡,涡流viscometer 粘度计vu1canize[,v∆1kθnaκ]硫化vitreous[,vitriθs]玻璃状的,透明的WWAO——wetairoxidation湿式空气氧化wedge 楔形warehouse 仓库weightedaverage 加权平均值washout洗脱weir堰watershed水域wormcondenser 旋管冷凝器weakacid 弱酸Xxeroge1 固溶胶xy1ose木糖xy1ene[,zai1iιr] 二甲苯两性离子yeast酵母Y-ynezeo1ite[⅛iiθ1ait] zoog1oea 沸石菌胶团Zzwitter-ion。
成都信息工程学院毕业设计英文翻译运用于机场多普勒天气雷达的移动杂波频谱滤波器系别电子工程学院姓名杨杰专业电子信息工程班级大气探测2班学号2007021206Moving Clutter Spectral Filter for Terminal DopplerWeather Radar1.INTRODUCTIONDetecting low-altitude wind shear in support of aviation safety and efficiency is the primary mission of the Terminal Doppler Weather Radar (TDWR). The wind-shear detection performance depends directly on the quality of the data produced by the TDWR. At times the data quality suffers from the presence of clutter. Although stationary ground clutter signals can be removed by a high-pass filter, moving clutter such as birds and roadway traffic cannot be attenuated using the same technique because their signal power can exist anywhere in the Doppler velocity spectrum. Furthermore, because the TDWR is a single-polarization radar, polarimetry cannot be used to discriminate these types of clutter from atmospheric signals.The moving clutter problem is exacerbated at Western sites with dry microburst, because their low signal-to-noise ratios (SNRs) are more easily masked by unwanted moving clutter. For Las V egas (LAS), Nevada, the offending clutter is traffic on roads that are oriented along the radar line of sight near the airport. The radar is located at a significantly higher altitude than the town, improving the visibility to the roads, and giving LAS the worst road clutter problem of all TDWR sites. The Salt Lake City (SLC), Utah, airport is located near the Great Salt Lake, which is the biggest inland sta ging area for migrating seabirds in the country. It, therefore, suffers from bird clutter, which not only can obscure wind shear signatures but can also mimic them to trigger false alarms. The TDWR “dr y” site issues are discussed in more detail by Cho (2008).In order to mitigate these problems, we developed a moving clutter spectral filter (MCSF). In this paper we describe the algorithm and present preliminary test results. 2.THE PROBLEMFigure 1 illustrates one of the difficulties with not filtering out moving clutter signals from TDWR data. A widespread coherent bird flight event like this has two of the characteristics of a microburst-outflow of heightened reflectivity away from a central source and velocity divergence along the radials. Thus, a microb urst detector is in danger of issuing a false alert in this case.Figure 2 shows Doppler velocity spectra vs. range for a microburst event (left) and a case with birds in many different range gates (right). Not only are there bird signatures that are isolated in range-Doppler, there is a feature in range gates ~40-50 that is quasi-continuous and looks similar to a strong wind shear. The challenge is to filter the bird signals in the right-hand case but not the microburst in the left-hand case.Figure 1 Example of bird clutter observed with the SLC TDWR at 0.5° elevation.Left panel shows reflectivity, right panel shows radial velocity.Figure 2. Doppler velocity spectra vs. range for a microburst case observed with the Program Support Facility (PSF) TDWR in Oklahoma City, OK at 0.3°elevation (left), and a widespread bird contamination case observed with the SLC TDWR at 0.5 elevation (right).Bats can also cause similar problems for radar wind shear detection when theyleave their roosts en masse at dusk.Road and rail traffic are also sources of moving clutter. In this case, the range-azimuth cells affected are known a priori, so the current method of dealing with the problem is to periodically generate a clutter residue map (CREM) and then censor the base data where the reflectivity does not exceed a certain amount over the CREM reflectivity. The LAS road clutter problem is shown in Figure 3. Note that some of the clearest road echoes line up with the radar line-of-sight radials. This phenomenon is also observed at other sites, and we call it the building canyon effect. In an urban environment roads are lined with buildings, so traffic is often not visible to the radar unless the beam shoots down along the road itself.Figure 3. LAS road clutter at 0.8°elevation. Left panel shows reflectivity, right panel shows radial velocity. The large wedge of blank reflectivity to the northeast of the radar is due to terrainblockage.Airplanes, of course, are also moving clutter. Because they are isolated targets, a point target filter deals with them effectively. Although the current operational algorithm merely censors these points, we plan to interpolate the base data across these points in the next major radar data acquisition (RDA) system software revision. The filtering algorithm presented in this paper should be an even better solution in the future.Finally, there are other moving targets that appear in TDWR data such as sea clutter and the spinning blades of a wind power turbine. The latter is expected to be an ever-growing source of clutter that is still in search of a solution. The work presented inthis paper does not specifically address these phenomena, as the focus has been on the data quality issues at SLC and LAS.3.MOVING CLUTTER SPECTRAL FILTERStationary clutter filters are typically applied on one range-azimuth dwell data at a time. Recognizing that more contextual information is necessary to identify moving clutter, techniques were developed that utilize multiple range gates of data. The point target filters employed on both the TDWR and the Weather Surveil-lance Radar-1988 Doppler (WSR-88D, more commonly known as NEXRAD) look for targets with reflectivity much higher than the neighboring range gates. This type of filter can remove aircraft and isolated avian signals, but the weather returns in the same cells are also lost.A more modern approach filters data in the two-dimensional (2D), Doppler velocity spectrum vs. range, domain (e.g., Sasaoka 2003; Meymaris 2007). Because moving clutter spectral signals tend to be spectrally compact and discontinuous in range, these techniques would look for a range-continuous signal (weather) and discard other spectral components (clutter). (Of course, stationary ground clutter can also be continuous in range, so it would have to be filtered out first.) Two drawbacks to this approach are that it is computationally intensive relative to traditional weather radar signal processing, and that the output base data are smoothed in range.With the development of a new RDA system (Cho et al.2005), which is currently running operationally at LAS and SLC, there is considerable spare computational capacity for the implementation of future algorithms. The scalable architecture easily allows for additional (and/or upgraded) central processing units (CPUs) to be installed to meet further computational demand. With regard to the second drawback of the existing 2D spectral processing approach for moving clutter filtering, spatial smoothing of the data runs counter to the T DWR’s mission of detecting wind shear. This is th e reason why we decided to develop our own moving clutter spectral filter for the TDWR.First, we will give a brief outline of the MCSF algorithm, and then delve into more details.To set up the processing environment, we form a Doppler velocity power spectrum at each range gate with the usual window-and-DFT approach. These spectra are stored in a 2D matrix (Figure 2, right). The following steps are then followed.1) Remove stationary ground clutter with the spectral filter of choice (Figure 5).2) Remove positive power anomalies along range at each spectral bin in a manner similar to a point target filter (Figure 6). Clutter signals that are not continuous in range are removed in this way.3) After suitable data massaging, determine the number and location of spectral modes (statistically significant peaks) at each range gate. A measure called the normalized circular excess mass (NCEM) is used to winnow out "insignificant" peaks in the spectra.4) Select one mode at each range gate such that the path connecting the modes has the shortest possible overall distance (Figure 7). This process favors retaining globally continuous (in range) signals over only locally continuous features. The assumption is that atmospheric signals will be continuous over longer ranges than moving clutter features.Figure 5. Stationary ground clutter is removed Figure 6. Isolated spectral peaks are removed from the spectra shown in Figure 2, right. from the spectra shown in Figure 5.5) For modes other than the ones selected by the shortest connecting path, reducethe number of "extra" modes using a stricter NCEM threshold. This step is needed to reduce the incidence of these "extra" modes being part of the atmospheric spectrum.6) Any leftover "extra" modes are deemed to be moving clutter and are removed by filling in with the computed spectral "noise" floor (Figure 8).7) Carry on with the rest of the usual signal processing for base data generation.Let us now elaborate on each step. (Note: The term "circular" used in this paper refers to the fact that the Doppler velocity spectrum aliases, or wraps around, at the end points.)There is nothing special about the first step of stationary clutter filtering. One of various different techniques can be used. However, note that the Gaussian model adaptive processing (GMAP) filter (Siggia and Passarelli 2004) assumes the absence of spectral signal other than a stationary ground clutter peak and a Gaussian weather component. Therefore, the presence of moving clutter signals distorts the weather moment estimation and can spuriously widen the "weather" spectrum within the filled ground clutter gap. We, thus, recommend against the use of Gaussian fitting and clutter-gap filling in the suspected presence of moving clutter.The isolated spectral peak filter in step 2 is similar to the TDWR point target filter, except that it runs along each spectral bin vs. range, and the number of neighbors considered in the spectral dimension expands with range away from the range gate of interest. This expansion prevents filtering of cases where the spectralrange signature has a shape like "\" "/" ">" or "<". So only features shaped like "—" or "·"are filtered. To be more specific, at range gate i and spectral index j, compare the spectral power P(i,j) to PP(i-m,j) and PP(i+m,j), and mark P(i,j) for removal if it is stronger than both PPs by a threshold T(m). The gate difference m goes from 1 to 3, and the threshold values used currently are T(1) = 8 dB, T(2) = 10 dB, and T(3) = 17 dB. Removal is accomplished by linear interpolation over range. PP is the peak value of spectral power taken over bins j-n to j + n (circularly wrapped around to the other side of the spectrum if needed). As stated earlier, this spectral neighborhood expands with range such that n = 2 for m = 1, n = 4 for m = 2, and n = 6 for m = 3.In step 3, in order to avoid identification of spurious spectral peaks as modes, we first smooth the spectra over the spectral bins. For this purpose we use a Gaussian kernel of width 0.3NDFT/(2v a), where NDFT is the number of DFT bins and v a is the Nyquist velocity. We also perform a three-point triangular moving average over range;this minimal smoothing is the only averaging that we do in the range dimension. Then we estimate the spectral noise floor (power per bin) (e.g., Hildebrand and Sekhon 1974).Now, for a spectrum at a range gate, we locate all the local maxima. Then for each maximum, we compute the NCEM. The excess mass is essentially the area under the peak bounded by the curve itself and a horizontal-line lower limit defined by the highest value taken from the following set-either of the neighboring minima or the spectral noise floor. (If a local maximum is below the noise floor, it is deleted from the maxima list.) A nice visual illustration of the excess mass is given in Figure 2 of a paper by Fisher and Marron (2001). NCEM is the excess mass divided by the per bin spectral noise power, with the distribution curve wrapping around at the ends.Figure 7. Spectral modes (white dots) are Figure 8. Undesirable spectral modes are identified at each range gate, and the shortest eliminated .The first moment (white line) path (white line) connecting them in range is. is shown for reference.determinedLocal maxima with NCEM below a threshold (currently 5 dB) are eliminated. Elimination of a maximum expands the size of a neighboring mode, so the NCEMs arerecalculated for the remaining maxima. The process of NCEM computation and maxima elimination is repeated until no more reduction takes place. The remaining modes are deemed to be significant. Finally, the pointers to the modes are adjusted to be at the center of mass of the modes, not at the peaks.In step 4, one mode at each range gate is selected such that the path connecting the modes has the shortest possible overall distance from the first to the last gate. If there is no mode in a range gate, that gate is skipped. "Distance" is defined to be α(△i)2 +(△j)2, where △i is the range gate difference,△j is the circular difference in spectral bin numbers between modes, and αis a constant determining the relationship between range distance and spectral bin distance. Currently αis set to one; however, the algorithm is not very sensitive to α.The shortest overall path is determined using Dijkstra's method (Dijkstra 1959). We want the endpoints to have only one mode, so if an endpoint has more than one mode, we compute the circular median (Fisher 1993) of the mode locations over ten range gates from the endpoint and select the mode closest to the median.In step 5, we attempt to consolidate the spectral modes that are not part of the shortest path. The reason for doing this is that the initial mode detection process allows for fairly minor modes to be kept, and thus the weather spectrum may be tagged with more than one mode. We want it to be tagged with only one mode so that the final mode elimination step will not erode the weather spectrum. To do this, we repeat the mode identification process of step 3, but with the NCEM threshold raised to 20 dB and the mode that is part of the shortest path protected from elimination.Finally, in step 6, the modes that are not part of the shortest overall connection path are eliminated by filling them in with the spectral noise floor power.4.RESULTSWe now present some initial testing results of the MCSF algorithm. Figure 9 is a case from SLC where widespread bird flock flights contaminated the data. The upper two plots show the results without MCSF, and the lower two plots show the corresponding results with MCSF. The filtering works very well in this case, and we have many other examples of bird clutter that are cleaned up by MCSF in a similar fashion, albeit with small amounts of unfiltered moving clutter in some instances.Figure 9. Reflectivity (left) and radial veloc ity (right) plots for data processed without MCSF (top) and with MCSF (bottom). This was a bird clutter case observed with the SLC TDWR at 0.5°.Of course, the ability to filter out moving clutter is worthless to the TDWR if wind shear events are also removed or altered. Figure 10 shows a microburst without (top) and with (bottom) MCSF. There is very little change between the two processed results, and MCSF preserves the strong velocity gradients. MCSF also does well on a few other wind shear cases that we have collected so far, but we are in the process of capturingmany more cases for testing.Figure 10. Reflectivity (left) and radial velocity (right) plots for data processed without MCSF (top) and with MCSF (bottom). This was a microburst observed with the PSF TDWR at0.3°elevation.The results for road clutter were only partially successful, with MCSF filtering out traffic returns from roads that were not parallel to the radar line of sight. The roads that lined up with the radar radials, however, were largely not filtered. MCSF fails in these cases, because the moving clutter extends continuously in range for longstretches at a time. Thus, MCSF is not a complete solution for road clutter, but it should reduce the size of CREM areas where roads currently force data censoring.5.SUMMARY DISCUSSIONWith the introduction of a new open and scalable RDA to operational TDWRs, enhanced signal processing algorithms can be successively implemented to improve data quality. The first RDA algorithm upgrade focuses on mitigating range-velocity ambiguity (Cho et al. 2005). Dubbed Build 2 (emulation of the legacy processing algorithms is Build 1) it is currently undergoing acceptance testing by the FAA. The MCSF algorithm discussed in this paper may be part of a subsequent software upgrade (Build 3).There is still considerable testing and development that needs to be conductedbefore MCSF is deemed acceptable for operational use. For example, MCSF has only been tested on moving clutter with Build 1 data, which uses the legacy transmission scheme of constant pulse repetition interval (PRI) and pulse phase. Starting with Build 2, the transmission scheme will become more complex, with a mix of various multiple PRI and pseudorandom phase-code processing techniques. On surface scans, which are used for wind-shear detection and where MCSF will be most needed, the default mode will be phase-code processing with the PRI changing every dwell. Therefore, the interaction of MCSF with the phase-code processing, which also takes place in the spectral domain, needs to be investigated and the results optimized. There are other new processing features in Build 2 that need to be tested together with MCSF. However, the collection of Build 2 data at the problematic sites (SLC and LAS) awaits the acceptance and operational fielding of Build 2. So for now, we are only able to investigate MCSF-Build 2 interaction using data from the non-operational radars in Oklahoma City, where the moving clutter problem is not nearly as severe as in SLC and LAS.Due to the simultaneous processing of spectra across many range gates, the real-time implementation of this algorithm may require changes to the RDA software architecture, which is currently designed to process chunks of range gates in parallel. The computational load will also increase significantly, so it must be determined whether the present CPUs will be able to keep up or whether a hardware upgrade would be needed.MCSF is certainly not foolproof. If there is no underlying weather signal, it will not be able to filter out the moving clutter. If the 2D spectral-range signature of the moving clutter extends continuously over a long range, MCSF may select to preserve it instead of the weather signal. As we have seen, roads that run parallel to the radar line of sight will not be filtered well. However, the testing so far shows that it can dramatically improve the base data quality during periods when the current signal processing algorithm fails to do anything with moving clutter. As long as it is proven to be robust against the degradation of wind shear information, it would be a valuable addition to the TDWR arsenal in fighting moving clutter.6. ACKNOWLEDGMENTI would like to thank Amrita Masurkar for implementing and evaluating theSasaoka and Meymaris algorithms. I would also like to thank Mike Donovan for identifying test cases, Rich Chafe (SLC) and Pat Hinkle (LAS) for collecting the data, and Jeff Simpson and Robert Schaefer for assistance with data handling.运用于机场多普勒天气雷达的移动杂波频谱滤波器1.引言机场多普勒天气雷达(TDWR)探测低空风切变是保障航空安全和有效的主要任务。
一种高光谱成像光谱仪光谱定标方法撖芃芃【摘要】介绍了一种高光谱成像光谱仪的光谱定标方法,高光谱成像光谱仪是一种结合光谱探测和成像特点的仪器,在CCD靶面上形成光谱和空间成像的二维图像,因此,其光谱定标方法较传统光谱定标方法有较大的不同.针对高光谱成像光谱仪的特点设计了一套光谱定标光路,采用高斯曲线拟合的方法确定中心波长的位置,提取光谱维方向的半高宽作为光谱带宽,采用最小二乘法进行全波段光谱定标,经过拟合计算得到该光谱定标方法的标准差为0.23 nm,满足使用要求.同时为该种光谱定标方法应用于多种类型的高光谱成像光谱仪定标过程中提供了宝贵的经验.【期刊名称】《长春工业大学学报(自然科学版)》【年(卷),期】2015(036)006【总页数】6页(P658-663)【关键词】成像光谱仪;透射光栅;光谱定标;光谱分辨率【作者】撖芃芃【作者单位】中国科学院长春光学精密机械与物理研究所,吉林长春130033【正文语种】中文【中图分类】TB8510 引言高光谱成像光谱仪是一种“图谱合一”的光学遥感仪器,其作用是获取地球目标的详细光谱景像,在陆地、海洋的辐射信息及大气等方面的监测有较多的应用[1-5]。
高光谱成像光谱仪的特点是成像技术和光谱技术有机地结合,能够获取大量的窄波段连续光谱图像数据。
成像光谱仪的工作原理如图1所示。
图1 成像光谱仪工作原理前端成像镜头将来自目标的光信息收集并成像于像面处,像面的任意一点均包含目标对应空间点的光谱信息。
通过一定的方式对第二维空间图像进行扫描,即可采集到由目标二维空间图像信息及其各点光谱信息所构成的三维数据立方[6-9]。
随着成像光谱仪技术的发展,对成像光谱仪定标技术提出了较为严格的要求,尤其是对光谱定标的准确度,光谱定标结果的准确性直接影响到成像光谱仪光谱分析的结果。
文中正是在这样一个背景下提出了一种高光谱成像光谱仪的光谱定标方法,并搭建了一套光谱定标系统对某种高光谱成像光谱仪进行光谱定标,该系统采用高斯曲线拟合的方法确定中心波长的位置,提取光谱维方向的半高宽作为光谱带宽,同时采用最小二乘法进行全波段光谱定标,经过拟合计算得到该光谱定标方法的标准差为0.23nm,满足应用要求。
Serie | 4, Built-in freezer, 87.4 x 54.1 cm, sliding hingeGID18ASE0GIncluded accessories1 x berry tray1 x ice cube trayThe freezer with 4 transparent freezerdrawers and SuperFreezing: freezes newitems placed inside even faster.An audible alarm system signals the door is openSuperFreezing: Protects frozen food from defrosting.Technical DataEnergy Efficiency Class: EAverage annual energy consumption in kilowatt hour per year(kWh/a): 178 kWh/annumSum of volume of frozen compartments: 102 lAirborne acoustical noise emissions : 38 dB(A) re 1 pWAirborne acoustical noise emission class: CThermometer freeze section: NoneLight: NoProduct category: Upright freezerConstruction type: Built-inDoor panel options: Not possibleFrost free system: NoHeight of the product: 874 mmWidth of the appliance: 541 mmDepth of the product: 542 mmDimensions of the packed product (HxWxD): 950 x 630 x 610mmNet weight: 35.7 kgGross weight: 38.1 kgConnection rating: 90 WFuse protection: 10 AFrequency: 50-60 HzApproval certificates: CE, VDELength of electrical supply cord: 230 cmDoor hinge: Right reversibleStorage Period in Event of Power Failure (h): 10 hDefrost process: manualWarning signal / malfunction: visual and audibleDoor lock: NoNumber of drawers/baskets (Stck): 4Number of freezing flaps (Stck): 0EAN code: 4242005206605Brand: BoschProduct name / Commercial code: GID18ASE0GProduct category: Upright freezer'!2E20A F-c a g a f!1/3Serie | 4, Built-in freezer, 87.4 x 54.1 cm,sliding hingeGID18ASE0GThe freezer with 4 transparent freezerdrawers and SuperFreezing: freezes newitems placed inside even faster.-Fully integratedFunctions-Sliding hinge-Sliding hinge-Combined to Fridge/Freezer combinationDesign features-SuperFreezing function with automatic deactivation-Freezer malfunction warning signal: optical, acousticalFood freshness system-4 freezer drawersKey features - Fridge section-Right hinged door, door reversibleDimension and installation-Dimensions: 87.4 cm H x 54.1 cm W x 54.2 cm D-Niche Dimensions: 88 cm H x 56 cm W x 55 cm DKey features - Freezer section-GID18ASE0GAdditional featuresDesign featuresDimension and installationPerformance and Consumption-EU19_EEK_D: E-Total Volume : 102 l-Net Freezer Volume : 102 l-Freezing capacity 24h : 6.6 kg-Annual Energy Consumption: 178 kWh/a-Climate Class: SN-ST-Noise Level : 38 dB , EU19_Noise emission class_D: C-Temperature rise time : EU19_Temperature rise time_D: 10 H2/3Serie | 4, Built-in freezer, 87.4 x 54.1 cm,sliding hingeGID18ASE0G3/3。
成都理工大学学生毕业设计(论文)外文译文极,(b)光电子是后来ηNph,(c)这些∝ηNph电子在第一倍增极和到达(d)倍增极的k(k = 1,2…)放大后为δk 并且我们假设δ1=δ2=δ3=δk=δ的,并且δ/δ1≈1的。
我们可以得出:R2=Rlid2=5.56δ/[∝ηNph(δ-1)] ≈5.56/Nel (3)Nel表示第一次到达光电倍增管的数目。
在试验中,δ1≈10>δ2=δ3=δk,因此,在实际情况下,我们可以通过(3)看出R2的值比实际测得大。
请注意,对于一个半导体二极管(不倍增极结构)(3)也适用。
那么Nel就是是在二极管产生电子空穴对的数目。
在物质不均匀,光收集不完整,不相称和偏差的影响从光电子生产过程中的二项式分布及电子收集在第一倍增极不理想的情况下,例如由于阴极不均匀性和不完善的重点,我们有:R2=Rsci2+Rlid2≈5.56[(νN-1/Nel)+1/Nel] (4)νN光子的产生包括所有非理想情况下的收集和1/Nel的理想情况。
为了说明,我们在图上显示,如图1所示。
ΔE/E的作为伽玛射线能量E的函数,为碘化钠:铊闪烁耦合到光电倍增管图。
1。
对ΔE/E的示意图(全曲线)作为伽玛射线能量E功能的碘化钠:铊晶体耦合到光电倍增管。
虚线/虚线代表了主要贡献。
例如见[9,10]。
对于Rsci除了1/(Nel)1/2的组成部分,我们看到有两个组成部分,代表在0-4%的不均匀性,不完整的光收集水平线,等等,并与在0-400代表非相称keV的最大曲线。
表1给出了E=662Kev时的数值(137Cs)在传统的闪烁体资料可见。
从图一我们可以清楚的看到在低能量E<100Kev,如果Nel,也就是Nph增大的话,是可以提高能量分辨率的。
这是很难达到的,因为光额产量已经很高了(见表1)在能量E>300Kev时,Rsci主要由能量支配其能量分辨率,这是没办法减小Rsci 的。
然而,在下一节我们将会讲到,可以用闪烁体在高能量一样有高的分辨率。
aerial remote sensing,航空遥感aerial surveying camera,航摄仪aerodynamic balance,空气动力学天平aerodynamic noise,气体动力噪声aerograph,高空气象计aerogravity survey,航空重力测量aerometeorograph,高空气象计aerosol,县浮微料;气溶胶aging of column,柱老化agitator,搅拌器agricultural analyzer,农用分析仪air-borne gravimeter,航空重力仪air capacitor,空气电容器air consumption,耗气量air damper,空气阻尼器air-deployable buoy,空投式极地浮标air-drop automatic station,空投自动气象站air duct,风道air gun,空气枪air inlet,进风口air lock,气锁阀air-lock device,锁气装置air outlet,回风口air pressrue balance,空气压力天平air pressure test,空气压力试验air sleeve,风(向)袋air temperature,气温air-tight instrument,气密式仪器仪表air to close,气关air to open,气开airborne electromagnetic system;AEM system,航空电磁系统airborne flux-gate magnetometer,航空磁通门磁力仪airborne gamma radiometer,航空伽玛辐射仪airborne gamma spectrometer,航空伽玛能谱仪airborne infrared spectroradiometer,机载红外光谱辐射计airborne optical pumping magnetometer,航空光泵磁力仪airborne proton magnetometer,航空甚低频电磁系统airborne XBT,机载投弃式深温计airgun controller,气控制器airmeter,气流表alarm summery panel,报警汇总画面alarm unit,报警单元albedograph,反射计alcohol thermometer,酒精温度表algorithm,算法algorithmic language,算法语言alidade,照准仪alignment instrument,准线仪alkali flame ionization detector(AFID),碱焰离子化检测器alkaline error,碱误差alkalinity of seawater,海水碱度all-sky camera,全天空照相机all-weather wind vane and anemometer,全天候风向风速计allocation problem,配置问题;分配问题allowable load impedance,允许的负载阻抗allowable pressure differential,允许压差allowable unbalance,许用不平衡量alpha spectrometer,α粒子能谱仪alternating[exchange]load,交变负荷alternating-current linear variable differential transformer(AC-ACLVDT), 交流极谱仪alternating temperature humidity test chamber,交变湿热试验箱altimeter,高度计altitude angle,高度角altitude meter,测高仪ambient humidity range,环境湿度范围ambient pressure,环境压力ambient pressure error,环境压力误差ambient temperature,环境ambient temperature range,环境温度范围ambient vibration,环境振动ambiguity error,模糊误差ammeter,电流表ammonia(pressure)gauge,氨压力表amount of precipitation,雨量amount of unbalance,不平衡量amount of unbalance indicatior,不平衡量指示器ampere-hour meter,安时计amplitude,幅值amplitude detector module,振幅检测组件amplitude error,振幅误差amplitude modulation(AM),幅度调制;调幅amplitude-phase error,幅相误差amplitude ratio-phase difference instrument,振幅比—相位差仪amplitude response,幅值响应analog computer,模拟计算机analog control,模拟控制analog data,模拟数据analog deep-level seismograhp,模拟深层地震仪analog input,模拟输入analog magnetic tape record type strong-motion instrument,模拟磁带记录强震仪analog model,模拟模型analog output,模拟输出analog seismograph tape recorder,模拟磁带地震记录仪analog simulation,模拟仿真analog stereopotter,模拟型立体测图仪analog superconduction magnetometer,模拟式超导磁力仪analog system,模拟系统analog telemetering system,模拟遥测系统analog-to-digital conversion accuracy,模-数转换精确度analog-to-digital conversion rate,模-数转换速度analog transducer[sensor],模拟传感器analogue computer,模拟计算单元analogue date,模拟数据analogue measuring instrument,模拟式测量仪器仪表analogue representation of a physical quantity,物理量的模拟表示analogue signal,模拟试验analogue-digital converter;A/D converter,模-数转换器;A/D转换器analogue-to-digital conversion,模/数转[变]换analysis of simulation experiment,仿真实验分析analytical balance,分析天平analytical electron microscope,分析型电子显微镜analytical gap,分析间隙analytical instrument,分析仪器analytical line,分析线analytical plotter,解析测图仪analyzer tube,分析管anechoic chamber,消声室;电波暗室anechoic tank,消声水池anemograph,风速计anemometer,风速表anemometer meast,测风杆anemometer tower,测风塔aneroid barograph,空盒气压计aneroid barometer,空盒气压表;空盒气压计aneroidograph,空盒气压计angle,角度angle beam technique,斜角法angle beam testing,斜角法angle form,角型angle of attach,冲角angle of field of view,视场角angle of incidence,入射角angle of refraction,折射角angle of spread,指向角;半扩散角angle of view of telescope,望远镜视场角angle of X-ray projiction,X射线辐射圆锥角angle probe,斜探头angle resolved electron spectroscopy(ARES),角分辨电子谱法angle strain,角应变angle transducer[sensor],角度传感器anglg-attack transducer[sensor],迎角传感器angle valve,角形阀angular acceleration,角加速度angular acceleration transducer[sensor],角加速度传感器angular displacement,角加速度传感器angular displacement,角位移angular displacement grationg,角位移光栅angular encoder,角编码器angular sensitivity,角灵敏度angular velocity transducer[sensor],角速度传感器annular coil clearance,环形线圈间隙annular space,环形间隙annunciator,信号源anode,阳极answering,应答anti-cavitation valve,防空化阀anti-contamination device,防污染装置anti-coupling bi-frequency induced polarization instrument,抗耦双频激电仪anti-magnetized varistor,消磁电压敏电阻器antiresonance,反共振antiresonance frequency,反共振频率anti-stockes line,反斯托克线aperiodic dampong,非周期阻尼;过阻尼aperiodic vibration,非周期振动aperture,光阑aperture of pressure difference,压差光阑aperture photographic method,针孔摄影法aperture stop,孔径光栏aperture time,空隙时间apparatus for measuring d.c.magnetic characteristic with ballistic galvanometer, 冲击法直流磁特性测量装置apparent temperature,表观温度appearance potentical,出现电位appearance potential spectrometer,出现电热谱仪appearance potential spectrometer(APS),出现电热谱法application layer(AL),应用层application layer protocol specification,应用层协议规范application layer service definition,应用室服务定义application software,应用软件approval,批准approximate absolute temperature scale,近似绝对温标aqueous vapour,水汽arc suppressing varstor,消弧电压敏电阻器arctic buoy,极地浮标area effect,面积影响area location,区域定位area of cross section of the main air flow,主送风方向横截面积argon-ion gun,氩离子枪annular chamber,环室argon ionization detector,氩离子化检测器arithmetic logic unit(ALU),算术逻辑运算单元arithmetic mean,算术平均值arithmetic weighted mean,算术加权平均值arithmetical mean deviation of the(foughness)profile,(粗糙度)轮廓的算术平均偏差arm error,不等臂误差armature,动铁芯array,阵,阵列array configuration,阵排列arrester varistor,防雷用电压敏电阻器articulated robot,关节型机器人artificial defect,人工缺陷artificial environment,人工环境artificial field method instrument,人工电场法仪器artificial intelligence,人工智能artificial seawater,人工海水ash fusion point determination meter,异步通信接口适配器asynchronous input,异步输入asynchronous transmission,异步传输atmidometer,蒸发仪,蒸发表atmometer,蒸发仪;蒸发表atmoradiograph,天电强度计atmosphere,气氛atmospheric counter radiation,天气向下辐射atmospheric electricity,大气电atmospheric opacity,大气不透明度atmospheric pressure,气压atmospheric pressure altimeter,气压高度计atmospheric pressure ionization(API),大气压电离atmospherics,天电;远程雷电atom force microscope,原子力显微镜atomic absorption spectrometry,原子吸收光谱法atomic fluorescence spectrophotometer,原子荧光光度计atomic fluorescence spectrometry,原子荧光光谱法atomic mass unit,原子质量单位atomic number correction,原子序数修正atomin spectrum,原子光谱atomic-absorption spectrophotometer,原子吸收分光光度计atomization,原子化atomizer,原子化器attenuation,衰减attenuation coefficient,衰减系数attenuation length,衰减长度attenuator,衰减器attitude,姿态attitude transducer[sensor],姿态传感器audio monitor,监听器audio-frequency spectrometer,声频频谱仪audit,审核Auger electron energy spectrometer(AEES),俄歇电子能谱仪Auger electron image,俄歇电子象Auger electron spectrometer,俄歇电子能谱仪Auger electron spectroscopy(AES),俄歇电子能谱法aurora,极光auto-compensation logging instrument,电子自动测井仪auto-compound current transformer,自耦式混合绕组电流互感器auto-polarization compensator,自动极化补偿器autocorrelation function,自相关函数automatic a.c.,d.c.B-H curve tracer,交、直流磁特性自动记录装置automatic balancing machine,自动平衡机automatic control,自动控制automatic control souce of vacuum,真空自动控制电源automatic control system,自动控制系统automatic data processing,自动数据处理automatic exposure device,自动曝光装置automatic feeder for brine,盐水溶液自动补给器automatic focus and stigmator,自动调焦和消象散装置automatic level,自动安平水准仪automatic levelling compensator,视轴安平补偿器automatic/manual station;A/M station,自动/手动操作器automatic programming,自动程度设计automatic radio wind wane and anemometer,无线电自动风向风速仪automatic railway weigh bridge,电子轨道衡automatic scanning,自动扫查automatic spring pipette,自动弹簧式吸液管automatic testing machine,自动试验机automatic titrator,自动滴定仪automatic tracking,自动跟踪automatic vertical index,竖直度盘指标补偿器automatic weather station,自动气象站automation,自动化automaton,自动机auxiliary attachment,辅件auxiliary controller bus(ACB),辅助控制器总线auxiliary crate controller,辅助机箱控制器auxiliary devices,辅助装置auxiliary equipment(of potentiometer),(电位差计的)辅助设备auxiliary gas,辅助气体auxiliary output signal,辅助输出信号auxiliary storage,辅助存储器auxiliary terminal,辅助端auxiliary type gravimeter,助动型重力仪availability,可用性available time,可用时间average,平均值average availability,平均可用度average nominal characteristic,平均名义特性average sound level,平均声级average value of contarmination,污染的平均值average wind speed,平均风速axial clearance,轴向间隙axial current flow method,轴向通电法axial load,轴向载荷axial sensitivity,轴向灵敏度axial vibration,轴向振动axis of rotation,摆轴;旋转轴axix of strain gauge,应变计[片]轴线B-scope,B型显示back flushing,反吹background,后台,背景,本底background current,基流background mass spectrum,本底质谱background noise,背景噪声background processing,后台处理background program,后台程度Backman thermometer,贝克曼温度计backscattered electron image,背散射电子象backward channel,反向信道baffle wall,隔板balance,天平balance for measuring amount of precipitation,水量秤balance output,对称输出balance quality of rotor,转子平衡精度balance wieght,平衡块balanced plug,平衡型阀芯balancing,平衡balancing machine sensitivity,平衡机灵敏度balancing machine,平衡机balancing speed,平衡转速ball pneumatic dead wieght tester,浮球压力计ball screw assembly,滚珠丝杠副ball valve,球阀ballistic galvanometer,冲击栓流计band,频带bandwidth,带宽band width of video amplifier,视频放大器频宽bar primary bushing type current transformer,棒形电流互感器barograph,气压计barometer cistern,气压表水银槽barometer,气压表barometric correction,气压表器差修正barometrograph,空盒气压计barothermograph,气压温度计barrel distortion,桶形畸变;负畸变base,基底base line,基线base peak,基峰base unit(of measurement),基本(测量)单位baseband LAM,基带局域网baseline drift,基线漂移baseline noise,基线噪声baseline potential,空白电位baseline value,空白值basic NMR frequency,基本核磁共振频率basic standard,基础标准batch control,批量控制batch control station,批量控制站batch inlet,分批进样batch of strain gauge,应变计[片]批batch processing,成批处理batch processing simulation,批处理仿真Baud,波特beam,横梁;声速beam deflector,电子束偏转器beam path distance,声程beam ratio,声束比beam spot diameter,束斑直径beam-deflection ultrasonic flowmeter,声速偏转式超声流量计beam-loading thermobalance,水平式热天平bearing,轴承;刀承bearing axis,轴承中心线bdaring support,支承架beat frequency oscillator,拍频振荡器beat method(of measurement),差拍(测量)法Beaufort scale,蒲福风级Beckman differential thermometer,贝克曼温度计bed,机座Beer' law,比尔定律bell manometer,钟罩压力计bell prover,钟罩校准器bellows,波纹管bellows(pressure)gauge,波纹管压力表bellows seal bonnet,波纹管密封型上阀盖bench mark,水准点bending strength,弯曲强度bending vibration,弯曲振动bent stem earth thermometer,曲管地温表Besson nephoscope,贝森测云器betatron,电子回旋加速器;电子感应加速器bezel ring,盖环bias voltage,偏压bi-directional vane,双向风向标;双风信标bilateral current stabilizer,双向稳流器bimetallic element,双金属元件bimetallic instrument,双金属式仪表bimetallic temperature transducer[sensor],双金属温度传感器bimetallic thermometer,双金属温度计binary coded decimal(BCD),二-十进制编码binary control,二进制控制binary digital,二进制数字binary elastic scattering event,双弹性散射过程binary elastic scattering peak,双弹性散射峰binary element,二进制元binary signal,二进制信号biomedical analyzer,生物医学分析仪biochemical oxygen demand (BOD)microbial transducer[sensor],微生物BOD传感器biochemical oxygen demand meter for seawater,海水生化需氧量测定仪biochemical quantity transducer[sensor],生化量传感器biological quantity transducer[sensor],生物量传感器biosensor,生物传感器bird receiving system,吊舱接收系统bit,比特;位bit error rate,误码率bit serial,位串行bit-serial higgway,位串行信息公路bivane,双向风向标;双风信标black box,未知框black light filter,透过紫外线的滤光片black light lamp,紫外线照射装置blackbody,黑体blackbody chamber,黑体腔blackbody furnace,黑体炉bland test,空白试验balzed grating,闪耀光栅block,块体;字块;字组;均温块block check,块检验block diagram,方块(框)图block length,字块长度block transfer,块传递blood calcium ion transducer[sensor],血钙传感器blood carbon dioxide transducer[sensor],血液二氧化碳传感器blood chloried ion transducer[sensor],血氯传感器blood electrolyte transducer[sensor],血液电解质传感器blood flow transducer[sensor],血流传感器blood gas transducer[sensor],血气传感器blood-group immune transducer[sensor],免疫血型传感器blood oxygen transducer[sensor],血氧传感器blood PH transducer[sensor],血液PH传感器blood potassium ion transducer[sensor],血钾传感器blood-pressure transducer[sensor],血压传感器blood sodium ion transducer[sensor],血钠传感器blood-volume transducer[sensor],血容量传感器blower device,鼓风装置bluff body,阻流体Bode diagram,博德图body temperature transducer,体温传感器bolometer,辐射热计;热副射仪bomb head tray,弹头托盘honded strain gauge,粘贴式应变计bonnet,上阀盖boomerang grab,自返式取样器boomerang gravity corer,自返式深海取样管booster,增强器bore(of liquid-in-glass thermometer),(玻璃温度计的)内孔borehole acoustic television logger,超声电视测井仪borehole compensated sonic logger,补偿声波测井仪borehole gravimeter,井中重力仪borehloe gravimetry,井中重力测量borehole thermometer,井温仪bottorm echo,底面反射波bottom flange,下阀盖bottom-loading thermobalance,下皿式热天平bottom surface,底面Bouguer's law,伯格定律Bourdon pressure sensor,弹簧管压力检测元件Bourdon tube,弹簧管;波登管Bourdon tube(pressure)gauge,弹簧管压力表box gauge,箱式验潮仪BP-scope,BP 型显示Bragg's equation,布拉格方程braking time,制动时间braking torque(of an integrating instrument),(积分式仪表的)制动力矩branch,分支branch cable,支线电缆breakdown voltage rating,绝缘强度breakpoint,断点breather,换气装置bremsstrahlung,韧致辐射bridge,桥接器bridge's balance range,电桥平衡范围bright field electron image,明场电子象bridge for measuring temperature,测温电桥bridge resistance,桥路电阻brightness,亮度Brinell hardness number,布氏硬度值Brinell hardnell penetrator,布氏硬度压头Brienll hardenss tester,布氏硬度计broadband LAN,定带局域网broad-band random vibration,宽带随机振动broad band spectrum,宽波段broadcast,广播BT-calibrationg installation,深温计[BT]检定装置bubble,水准泡bubble-tube,吹气管bucket thermometer,表层温度表buffer,缓冲器buffer solution,缓冲溶液buffer storage,缓冲存储器built-in galvanometer,内装式检流计built-in-weigthts,挂码bulb,温包;感温泡bulb(of filled system themometer),(压力式温度计的)温包bulb(of liquid-in-glass thermometer),(玻璃温度计的)感温泡bulb length(of liquid-in-glass thermometer),(玻璃温度计的)感温泡长度bulk type semiconductor strain gauge,体型半导体应变计bulk zinc oxide varistor,体型氧化锌电压敏电阻器bump,连续冲击bump test,连续冲击试验;颠簸试验bump testing machine,连续冲击台buoy,浮标buoy array,浮标阵buoy float,浮标体buoy motion package,浮标运动监测装置buoy station,浮标站buoyancy correction,浮力修正buoyancy level measuring device,浮力液位测量装置burden(of a instrument transformer),(仪用互感器的)负载burning method,燃烧法burst acoustic emission signal,突发传输bus,总线bus line,总线bus master,总线主设备bus mother board,总线母板bus network,总线网bus slave,总线从设备bus topology,总线拓扑bus type电子类专业英语词汇CC-scope,C型显示cabinet ,柜cable noise,电缆噪声cable-tension transducer,电缆张力传感器cable type current transformer,电缆式电流互感器cage,套筒;潜水罐笼cage guiding,套筒导向cake adhesive retention meter,泥饼粘滞性测定仪calculated maximum flow coefficient,最大计算流量系数calcuated nornal folw coefficient,正常计算流量系数calibrate,定标calibrated measuringpvolumetric]tank,校准测量[容积计量]容器calibrating period,校准周期calibrating voltage,校准电压calibration,校准calibration (of thermometer),(温度计的)标定calibration block,标准试块calibration characteristics,校准特性;分度特性calibration coefficient of wave height,波高校正系数calibration component,校准组分calibration curve,校准曲线;分度曲线calibration cycle,校准循环calibration equation,校准公式,分度公式calibration equipment of reversing thermometers,颠倒温度表检定设备calibration factor of the primary device,一次装置的校准系数calibration gas mixture,校准混合气calibration hierarchy,校准层次calibration point,校准点;分度点calibration quantity,校准量calibration record,校准记录calibration rotor,标定转子calibration solution,校准液calibration table,校准表(格)calibration traceability,校准溯源性calibrator,校验器calibrator above ice-point,零上检定器calibrator below ice-point,零下检定器calibrator for ice-point,零点检定器caliper profiler,横幅厚度计calling,呼叫calomel electrode,甘汞电极calorifier,加热器calorimeter,热量计cam bezel ring,卡口式盖环CAMAC branch driver,CAMAC 分支驱动器CAMAC branch-highway,CAMAC 分支信息公路CAMAC compatible crate,CAMAC兼容机箱CAMAC crate,CAMAC 机箱CAMAC crate assembly,CAMAC 机箱装置CAMAC highway,CAMAC 信息公路CAMAC module,CAMAC 模块CAMAC operation,CAMAC 操作CAMAC parallel highway,CAMAC 并行信息公路CAMAC serial driver,CAMAC 串行驱动器CAMAC serial highway,CAMAC 串行信息公路CAMAC system,CAMAC 系统camera length,相机长度camflex valve,偏心旋转阀Campbell-stokes sunshine recorder,聚集日照计;歇贝斯托克日照计canonical state variable,规范化状态变量capacitance balance,电容平衡capacitance hygrometer,电视湿度计capacitance pressure transducer,电容式压力传感器capacity correction,容量修正capacity factor,容量因子capillary column,毛细管柱capillary gas chromatograph,毛细管气相色谱仪capillary gas chromatography,毛细管气相色谱法capillary phenomenon,毛细现象capillary tube (of liquid-in-glass thermometer),(玻璃温度计的)毛细管capillary viscometer,毛细管粘度计capsule,膜盒capsule(pressure)gauge,膜盒压力表captive chains calibration,链码校准carat balance,克拉天平carbon and hydrogen analysis meter,碳氢元素分析仪carbon humidity-dependent resistor,碳湿敏电阻器card punch,卡片穿孔机card reader,卜片阅读机Carlson type strain gauge,卡尔逊应变计carrier,载波carrier gas,载气carrier ring,夹持环carrier sense,载波侦听carrier sense multiple access with collision detection(CSMA/CD), 具有冲突检测的载波侦听多路访问carrier sync,载波同步cartridge disk,盒式磁盘cartridge disk drive,盒式磁盘机cascade control,串级控制cascade system,串级系统cascade[inductive]voltage transformer,级联式[感应式]电压互感器case,外壳casing,外壳cassette,盒式磁带;卡式磁带;暗盒catadioptric telescope,折反射望远镜catalysis element,催化元件catalytic analyzer,催化分析器catalytic chromatography,催化色谱法catalytic gas transducer[sensor],催化式气体传感器cathode,阴极cathode of electron gun,电子枪阴极cathode ray null indicator,阴极射线指零仪cavitation,空化cavitation corrosion,气蚀cavitation noise,空化噪声ceilometer,云幂仪cell,电池;传感器cell constant,电池常数cell potential transducer[sensor],细胞电位传感器Celsius,摄氏度Celsius temperature,摄氏温度Celsius temperature scale,摄氏温标center of strike,打击中心central conductor method,中心导体法;电流贯通法central principal inertia axis,中心主惯性轴central processing unit(CPU),中央处理单元central processor,中央处理器centrality,集中性centralized control,集中控制centralized intelligence,集中智能centralized management system,集中管理系统centralized network,集中式网络centralized process control computer,集中型过程控制计算机centrifugal balancing machine,离心力式平衡机centrifugal tachometer,离心式转速表ceramic microphone,陶瓷传声器ceraunograph,雷电计ceraunometer,雷电仪certificate of conformity,合格证书certificate of control,控制证书certification,认证certification of conformity of an instrument for explosive atmosphere,防爆合格证certification system,认证体系certified standard material,有证标准物质chained list,链接表change of temperature test,温度变化试验channel,信道;通道character,字符character code,字符码character recognition,字符识别character set,字符集;字符组character-at-time printer,一次一字符打印机[印刷机];串行打印机characteristic curve,特性曲线characteristic "fast",“快”特性characteristic "impulse",“脉冲”响应特性characteristic"slow",“慢”特性characteristic locus,特征轨迹characteristic impedance,特性阻抗characteristic X-ray,特征X射线charge amplifier,电荷放大器charge neutralization,电荷中和charge sensitivity,电荷灵敏度chart,记录纸chart driving mechanism,传纸机构chart lines,记录纸分度线chart scale length,记录纸标度尺长度closed loop transfer function,闭环传递函数closed loop zero,闭环零点closed position,关闭位置closed system,封闭系统closing valve time,关阀时间closure member,截流件cloud amount,云量cloud balancer,测支平衡器cloud base,云底cloud chamber,云室;云零室cloud detection radar,测云雷达cloud direction,云向cloud height indicator,云高指示器cloud height meter,云幂仪cloud searchlight,云幂灯cloud speed,云速cloud top,云顶cloud-base recorder,云底记录仪cloud-drop sampler,云滴取校器cloudiness radiometer,云辐射仪cloverleaf buoy,三叶浮标Coanda effect,附壁效应coarse vacuum,粗真空;前级真空coastal zone color scanner(CZCS),海岸带水色扫描仪coaxiality,同轴度code,代码;代号;规程;规范code converter;D/D converter,代码转换器;D/D转换器coded circle,编码度盘code-transparent data communication,代码透明的数据通信coefficient of chromatic aberration,色差系数coefficient of interference,干扰系数coefficient of radial distortion,径向畸变系数coefficient of rotational distortion,旋转畸变系数coefficient of spherical aberration,球差系数coefficient of variation,变异系数coercivity meter,矫顽力计coil galvanometer,线圈式振动子coil method,线圈材料coil method,线圈法coincidence discrimination,符合鉴别coincidence level,度盘合像装置cold test,寒冷试验cold-cathode source,冷阴极离子源collate,整理collector,集电器collector slit,接收器狭缝collimation axis,视轴collimation line,视准线collision,冲突,碰撞collisional activation,碰撞激活collisional activation mass spectrometer,碰撞激活质谱计colorimeter,比色计;色度计colour filter,颜色滤光片colour meter,水色计column,镜筒column capacity,柱效能column life,柱寿命coluD and D/2 pressure tappings,D和D/2取压口D-port,D型端口DC-DC LVDT displacement transducer,直流差动变压器式位移传感器d.c.bridge for measuring high resistance,直流高阻电桥d.c.bridge for measuring resistance,测量电阻用的直流电桥parator potentiometer,直流比较仪式电位差计parator type bridge,直流比较仪式电桥d.c.potentiometer,直流电位差计d.c.power voltage ripple,直流电源电压纹波d.c.resistance box,直流电阻箱d.c.resistor volt ratio box,直流电阻分压箱d.c.voltage calibrator,直流电压校准器Daly detector,戴利检测器damped frequency,阻尼频率damped natural frequency,阻尼固有频率damped oscillation,阻尼振荡damper,阻尼器damping,阻尼damping action,阻尼作用damping characteristic,阻尼特性damping constant,阻尼常数damping deflection period,阻尼比damping torque,阻尼力矩damping torque coefficient,阻尼力矩系数dangerous articles package,危险品包装dark field electron image,暗场电子象data,数据data acquistion,数据采集data acquisition equipment,数据采集设备data acquisition station,数据采集站data base,数据库data base management system,数据库管理系统data buoy system,数据浮标系统data circuit,数据电路data circuit-terminating equipment(DCE),数据电路终接设备data communication,数据通信data concentration,数据集中data concentrator,数据集中分配器data driven,数据驱动data encryption,数据加密data flow diagram,数据流图data highway,数据公路data integrity,数据完整性data link,数据链路data link layer(DLL),数据链路层data link protocol specification,数据链路协议规范data link service definition,数据链路服务定义data logger,数据记录装置data logging,数据记录data network,数据网络data preprocessing,数据预处理data processing,数据处理data processing system,数据处理器[机]data set,数传机data signalling rate,数据传信率data sink,数据宿;数据接收器data source,数据源data station,数据站data terminal equipment,(DTE),数据终端设备data transfer,数据传递data transfer rate,数据传送率;数据传输速率data transmission,数据传输data transmission interface,数据传输接口dataway,(机箱)数据路dataway operation,(机箱)数据路操作dead band,死区dead band error,死区误差dead layer,死层dead time,时滞;死时dead volume,死体积;静容量dead weight tester,活塞式压力计dead zone,盲区dead zone error,死区误差debugging,调试decade resistance box,十进电阻箱decalibration,标定降级decentrality,分散性decentralization,分散化decentralized control,分散控制decentralized control system,分散控制系统decentralized model,分散模型decentralized robust control,分散鲁棒控制decentralized stochastic control,分散随机控制decision analysis,决策分析decision model,决策模decision program,决策程序decision space,决策空间decision support system,决策支持系统decision table,判定表decision theory,决策(理)论decision tree,决策树decrement ratio,减幅比deep sea instrument capsule,深海仪器舱defect,缺陷defining fixed point,定义固定点definitionm,清晰度deflecting torque,偏转力矩deflection,挠度deflection method,偏位法deflection period,摆动周期defocus contrast,离焦衬度dehumidification,除湿dehumidifier,除湿器delay distance,滞后距离delay time,滞后时间delayed echo,迟到反射波delayed telemetry,延时遥测delimiter bit,定界位delimiter byte,定界定节delta-T,时间差;时差delta-T timing unit,时差计时单元demagnetization,退磁demagnetizer,退磁机;退磁装置demagnetizing coil,消磁线圈demand,请求demand handling,请求处理demand message,请求报文democratic system,民主系统demodulation,解调demodulator,解调器densitometer,密度计;黑度计density,密度density correction,密度修正density logger,密度测井仪density meter(of ionizing radiaiton),(电离辐射)密度计density of heat flow,热流密度density of snow,积雪密度density(photographic),(照相的)黑度density transducer[sensor],密度传感器depressor,沉降器depth bellows,深波纹管depth controller,深度控制器depth of field,景深depth of focus,焦深depth of penetration,穿透深度depth of snow,雪深depth scan,前后扫查depth sounding,测深derivative absorption spectrum,导数吸收光谱derivative action;D-action,微分作用;D-作用derivative action coefficient,微分作用系数derivative action gain,微分作用增益derivative action time,微分作用时间derivative differential thermal analysis,导数差示热分析derivative differential thermal curve,导数差示热曲线derivative dilatometry,导数膨胀法derivative feedback,微分反馈derivative thermogravimetric curve,导数热重曲线derivative thermogravimetry,导数热重法derivative unit,微分器derived unit(of measurement),导出(测量)单位describing function,描述函数design automation,设计自动化design constant,设计常数design distance,设计距离design of simulation dxperiment,仿真实验设计designed immersion depth,设计浸入深度desired value,预期值desorption chemical ionization(DCI),解吸化学电离destination,目的站detectability,可检测性;能检测性;检测能力detectability(chromatographic),(色谱)检测限detecting instrument,检出器;检测元件;检波器developer,显示剂development tank,展开罐deviation,偏差deviation alarm sensor,偏差报警检测器deviation from lonearity,偏离线性度deviation of the e.m.f.(with respect to the certified value), 电动势的偏差值(相对于检定值) device,装置Device Net,Device Net 总线;装置网dew cell,露池dew-point,露点dew-point hygrograph,露点计dew point hygrometer,露点湿度计;露点湿度表dew point temperature,露点温度dew point transducer[sensor],露点传感器dewgauge,露量表;露量器diagnostic function,诊断功能diagnostic model,诊断模型diagnostic program,诊断程序diagonal beam,斜束dial,标度盘diameter,直径diameter ratio,直径比diamond array,菱形阵diaphragm,膜片;隔膜;保护膜diaphragm actrator,薄膜执行机构diaphragm capsule,膜盒deaphragm gas meter,膜式煤气表deaphragm(pressure)gauge,膜片压力表diaphragm pressure span,膜片压力量程diaphragm-seal(pressure) gauge,隔膜压力表diaphragm strain gauge,膜片式应变计diaphragm valve,隔膜阀dielectric ampliude imduction logging instrument,幅度介电感应测井仪dielectric phase induction logger,相位介电感应测井仪difference absorption spectrum,差式吸引光谱difference galvanometer,差动检流计difference input,差分输入differential amplifier,差动放大器differential chromatography,差示色谱法differential coil,差动线圈differential ditector,微分型检测器differential dilatometry,差示热膨胀法differential error of the slope,斜率的微分误差differential galvanometer,差动检流计differential gap,切换差differential Manchester encoding,差分曼彻斯特编码differential measurement,微差测量differential measuring instrument,差动测量仪表differential method of calibrating thermocouple,热电偶微差检定法differential method of measurement,微差测量法differential pistorn,差动活塞differential preamplifier,差动前置放大器differential pressure,差压differential pressure devices,差压装置differential pressure flow trearly failue,早期失效earth leakage detector,接地漏电检示器earth resistance meter,接地电阻表earth resource technology satellite(ERTS),地球资源技术卫星earthed input,接地输出earthed voltage transformer,接地型电压互感器ease of ignition,易起燃性eccentric load,偏心载荷eccentric orifice plate,偏心孔板。
万能式断路器(框架断路器、空气断路器)ACB塑料外壳式断路器MCCB真空断路器VCB小型断路器(微型断路器)MCB接触器MSACB air circuit breaker 空气断路器MCB molded case circuit breaker 模板式断路器(微断)DSL line desconnect switch 隔脱离关PTpotential transformer电压互感器XFMRtransfoormer变压器CT current transformer 电流互感器Aa. c .balance indicator------交流平衡指示器a. c. bridge------交流电桥a. c. current calibrator------交流电流校准器a. c. current distortion------交流电流失真a. c. induced polarization instrument------交流激电仪a. c. potentiometer------交流电位差计a. c. resistance box------交流电阻箱a. c. standard resistor------交流标准电阻器a. c. voltage distortion------交流电压校准器a. c. voltage distortion------交流电压失真Abbe comparator------阿贝比长仪aberration------象差ability of anti prereduced component------抗先还原物质能力ablative thickness transducer [sensor]------烧蚀厚度传感器abrasion testing machine------磨损试验机absolute calibration------绝对法校准absolute coil------独立线圈absolute error------绝对误差(absolute)error of measurement------测量的(绝对)误差absolute gravimeter------绝对重力仪absolute gravity survey------绝对重力测量absolute humidity------绝对湿度absolute method------绝对法absolute moisture of the soil------土壤(绝对)湿度absolute pressure------绝对压力absolute(pressure transducer------绝对压力表absolute pressure transducer[sensor]------绝对压力传感器absolute read-out------单独读出absolute resolution------绝对分辨率absolute salinity------绝对盐度absolute stability------绝对稳定性absolute stability of a linear system------线性系统的绝对稳定性absolute static pressure of the fluid------流体绝对静压absolute temperature scale------绝对温标absorbance------吸光度absorbed current image------吸收电流象absorptance------吸收比absorptiometer------吸收光度计absorption cell------吸收池absorption coefficient------吸收系数absorption correction------吸收修正absorption edges------吸收边absorption factor------吸收系数absorption hygrometer------吸收温度表absorption spectrum------吸收光谱absorption X-ray spectrometry------吸收X射线谱法absorptivity------吸收率absorptivity of an absorbing------吸引材料的吸收率abstract system------抽象系统abundance sensityivity------丰度灵敏度AC-ACLVDT displacement transducer------交流差动变压器式位移传感器accelerated test------加速试验accelerating voltage------加速电压acceleration------加速度acceleration error coefficient------加速度误差系数acceleration of gravity------重力加速度acceleration simulator------加速度仿真器acceleration transducer[sensor]------加速度传感器accelerometer------加速度计acceptance of the mass filter------滤质器的接收容限acceptance test------验[交]收检验access------存取access time------存取时间accessibility------可及性accessories of testing machine------试验机附件accessory(for a measuring instrument)------(测量仪表的)附件accessory hardware------附属硬件accessory of limited interchangeability------有限互换附件accumulated error------积累误差accumulated time difference------累积时差accumulative raingauge------累积雨量器accumulator------累加器accuracy------精[准]确度accuracy class------精[准]确度等级accuracy limit factor(of a protective currenttransformer)------ (保护用电流互感器的)精确度极限因数accuracy of measurement------测量精[准]确度accuracy of the wavelength------波长精确度accuracy rating------精确度限acetylene(pressure)gauge------乙炔压力表acetylene regulator------乙炔减压器acoustic amplitude logger------声波幅度测井仪acoustic beacon------水声信标acoustic current meter------声学海流计acoustic element------声学元件acoustic emission------声发射acoustic emission amplitude------声发射振幅acoustic emission analysis system------声发射分析系统acoustic emission detection system------声发射检测系统acoustic emission detector------声发射检测仪acoustic emission energy------声发射能量acoustic emission event------声发射事件acoustic emission preamplifier------声发射前置放大器acoustic emission pulser------声发射脉冲发生器acoustic emission rate------声发射率acoustic emission signalprocessor[conditioner]------声发射信号处理器acoustic emission rate------声发射信号acoustic emission source location and analysissystem------声发射源定位及分析系统acoustic emission source location system------声发射源定位系统acoustic emission source------声发射源acoustic emission spectrum------声发射频谱acoustic emission technique------声发射技术acoustic emission transducer[sensor]------声发射换能器acoustic fatigue------声疲劳acoustic impedance------声阻抗acoustic logging instrument------声波测井仪acoustic malfunction------声失效acoustic matching layer------声匹配层acoustic(quantity)transducer[sensor]------声(学量)传感器acoustic ratio------声比acoustic releaser------声释放器acoustic resistance------声阻acoustic thermometer------声学温度计;声波温度表acoustic tide gauge------回声验潮仪acoustic transponder------声应答器acoustical frequency electric------声频大地电场仪acoustical hologram------声全息图acoustical holography------声全息acoustical holography by electron-beamscanning------电子束扫描声全息acoustical holography by laser scanning------激光束扫描声全息acoustical holography by mechanical scanning------机械扫查声全息acoustical imaging by Bragg diffraction------布拉格衍射声成像acoustical impedance method------声阻法acoustical lens------声透镜acoustically transparent pressure vessel------透声压力容器acquisition time------取数据时间actinometer------光能计;直接日射强度表;日射表(active)energy meter------(有功)电度表active gauge length------有效基长active gauge width------有效基宽active metal indicated electrode------活性金属指示电极active remote sensing------主动遥感active transducer[sensor]------有源传感器activity------活度activity coefficient------活度系数actual material calibration------实物校准actual time of observation------实际观测时间actual transformation ratio of voltagetransformer------电压互感器的实际变化actral transformation ratio of currenttransformer------电流互感器的实际变化actual value------实际值actual voltage ratio------实际电压比actuator------执行机构;驱动器actuator bellows------执行机构波纹管actuator load------执行机构负载actuator power unit------执行机构动力部件actuator sensor interface(ASI)------执行器传感器接口actuator shaft------执行机构输出轴actuator spring------执行机构弹簧actuator stem------执行机构输出杆actuator stem force------执行机构刚度actuator travel characteristic------执行机构行程特性adaptation layer------适应层adaptive control------(自)适应控制adaptive control system------适应控制系统adaptive controller------适应控制器adaptive prediction------适应预报adaptive telemetering system------适应遥测系统adder------加法器addition method------叠加法additional correction------补充修正additivity of mass spectra------质谱的可迭加性address------地址adiabatic calorimeter------绝热式热量计adjust buffer total ion strength------总离子强度调节缓冲剂adjustable cistern barometer------动槽水银气压表adjustable relative humidity range------相对湿度可调范围adjustable temperature range------温度可调范围adjusted retention time------调整保留时间adjusted retention volume------调整保留体积adjuster------调整机构;调节器adjustment------调整adjustment bellows------调节波纹管adjustment device------调整装置adjusting pin------校正针adsorbent------吸附剂adsorption chromatography------吸附色谱法aerial camera------航空照相机aerial remote sensing------航空遥感aerial surveying camera------航摄仪aerodynamic balance------空气动力学天平aerodynamic noise------气体动力噪声aerograph------高空气象计aerogravity survey------航空重力测量aerometeorograph------高空气象计aerosol------县浮微料;气溶胶aging of column------柱老化agitator------搅拌器agricultural analyzer------农用分析仪air-borne gravimeter------航空重力仪air capacitor------空气电容器air consumption------耗气量air damper------空气阻尼器air-deployable buoy------空投式极地浮标air-drop automatic station------空投自动气象站air duct------风道air gun------空气枪air inlet------进风口air lock------气锁阀air-lock device------锁气装置air outlet------回风口air pressrue balance------空气压力天平air pressure test------空气压力试验air sleeve------风(向)袋air temperature------气温air-tight instrument------气密式仪器仪表air to close------气关air to open------气开airborne electromagnetic system;AEM system------航空电磁系统airborne flux-gate magnetometer------航空磁通门磁力仪airborne gamma radiometer------航空伽玛辐射仪airborne gamma spectrometer------航空伽玛能谱仪airborne infrared spectroradiometer------机载红外光谱辐射计airborne optical pumping magnetometer------航空光泵磁力仪airborne proton magnetometer------航空甚低频电磁系统airborne XBT------机载投弃式深温计airgun controller------气控制器airmeter------气流表alarm summery panel------报警汇总画面alarm unit------报警单元albedograph------反射计alcohol thermometer------酒精温度表algorithm------算法algorithmic language------算法语言alidade------照准仪alignment instrument------准线仪alkali flame ionization detector(AFID)------碱焰离子化检测器alkaline error------碱误差alkalinity of seawater------海水碱度all-sky camera------全天空照相机all-weather wind vane and anemometer------全天候风向风速计allocation problem------配置问题;分配问题allowable load impedance------允许的负载阻抗allowable pressure differential------允许压差allowable unbalance------许用不平衡量alpha spectrometer------α粒子能谱仪alternating[exchange]load------交变负荷alternating-current linear variable differentialtransformer(AC-ACLVDT)------ 交流极谱仪alternating temperature humidity test chamber------交变湿热试验箱altimeter------高度计altitude angle------高度角altitude meter------测高仪ambient humidity range------环境湿度范围ambient pressure------环境压力ambient pressure error------环境压力误差ambient temperature------环境ambient temperature range------环境温度范围ambient vibration------环境振动ambiguity error------模糊误差ammeter------电流表ammonia(pressure)gauge------氨压力表amount of precipitation------雨量amount of unbalance------不平衡量amount of unbalance indicatior------不平衡量指示器ampere-hour meter------安时计amplitude------幅值amplitude detector module------振幅检测组件amplitude error------振幅误差amplitude modulation(AM)------幅度调制;调幅amplitude-phase error------幅相误差amplitude ratio-phase differenceinstrument------振幅比—相位差仪amplitude response------幅值响应analog computer------模拟计算机analog control------模拟控制analog data------模拟数据analog deep-level seismograhp------模拟深层地震仪analog input------模拟输入analog magnetic tape record type strong-motion instrument------模拟磁带记录强震仪analog model------模拟模型analog output------模拟输出analog seismograph tape recorder------模拟磁带地震记录仪analog simulation------模拟仿真analog stereopotter------模拟型立体测图仪analog superconduction magnetometer------模拟式超导磁力仪analog system------模拟系统analog telemetering system------模拟遥测系统analog-to-digital conversion accuracy------模-数转换精确度analog-to-digital conversion rate------模-数转换速度analog transducer[sensor]------模拟传感器analogue computer------模拟计算单元analogue date------模拟数据analogue measuring instrument------模拟式测量仪器仪表analogue representation of a physicalquantity------物理量的模拟表示analogue signal------模拟试验analogue-digital converter;A/Dconverter------模-数转换器;A/D转换器analogue-to-digital conversion------模/数转[变]换analysis of simulation experiment------仿真实验分析analytical balance------分析天平analytical electron microscope------分析型电子显微镜analytical gap------分析间隙analytical instrument------分析仪器analytical line------分析线analytical plotter------解析测图仪analyzer tube------分析管anechoic chamber------消声室;电波暗室anechoic tank------消声水池anemograph------风速计anemometer------风速表anemometer meast------测风杆anemometer tower------测风塔aneroid barograph------空盒气压计aneroid barometer------空盒气压表;空盒气压计aneroidograph------空盒气压计angle------角度angle beam technique------斜角法angle beam testing------斜角法angle form------角型angle of attach------冲角angle of field of view------视场角angle of incidence------入射角angle of refraction------折射角angle of spread------指向角;半扩散角angle of view of telescope------望远镜视场角angle of X-ray projiction------X射线辐射圆锥角angle probe------斜探头angle resolved electron spectroscopy(ARES)------角分辨电子谱法angle strain------角应变angle transducer[sensor]------角度传感器anglg-attack transducer[sensor]------迎角传感器angle valve------角形阀angular acceleration------角加速度angular acceleration transducer[sensor]------角加速度传感器angular displacement------角加速度传感器angular displacement------角位移angular displacement grationg------角位移光栅angular encoder------角编码器angular sensitivity------角灵敏度angular velocity transducer[sensor]------角速度传感器annular coil clearance------环形线圈间隙annular space------环形间隙annunciator------信号源anode------阳极answering------应答anti-cavitation valve------防空化阀anti-contamination device------防污染装置anti-coupling bi-frequency induced polarizationinstrument------抗耦双频激电仪anti-magnetized varistor------消磁电压敏电阻器antiresonance------反共振antiresonance frequency------反共振频率anti-stockes line------反斯托克线aperiodic dampong------非周期阻尼;过阻尼aperiodic vibration------非周期振动aperture------光阑aperture of pressure difference------压差光阑aperture photographic method------针孔摄影法aperture stop------孔径光栏aperture time------空隙时间apparatus for measuring d.c.magnetic characteristic with ballistic galvanometer------ 冲击法直流磁特性测量装置apparent temperature------表观温度appearance potentical------出现电位appearance potential spectrometer------出现电热谱仪appearance potential spectrometer(APS)------出现电热谱法application layer(AL)------应用层application layer protocol specification------应用层协议规范application layer service definition------应用室服务定义application software------应用软件approval------批准approximate absolute temperature scale------近似绝对温标aqueous vapour------水汽arc suppressing varstor------消弧电压敏电阻器arctic buoy------极地浮标area effect------面积影响area location------区域定位area of cross section of the main airflow------主送风方向横截面积argon-ion gun------氩离子枪annular chamber------环室argon ionization detector------氩离子化检测器arithmetic logic unit(ALU)------算术逻辑运算单元arithmetic mean------算术平均值arithmetic weighted mean------算术加权平均值arithmetical mean deviation ofthe(foughness)profile------(粗糙度)轮廓的算术平均偏差arm error------不等臂误差armature------动铁芯array------阵,阵列array configuration------阵排列arrester varistor------防雷用电压敏电阻器articulated robot------关节型机器人artificial defect------人工缺陷artificial environment------人工环境artificial field method instrument------人工电场法仪器artificial intelligence------人工智能artificial seawater------人工海水ash fusion point determination meter------异步通信接口适配器asynchronous input------异步输入asynchronous transmission------异步传输atmidometer------蒸发仪,蒸发表atmometer------蒸发仪;蒸发表atmoradiograph------天电强度计atmosphere------气氛atmospheric counter radiation------天气向下辐射atmospheric electricity------大气电atmospheric opacity------大气不透明度atmospheric pressure------气压atmospheric pressure altimeter------气压高度计atmospheric pressure ionization(API)------大气压电离atmospherics------天电;远程雷电atom force microscope------原子力显微镜atomic absorption spectrometry------原子吸收光谱法atomic fluorescence spectrophotometer------原子荧光光度计atomic fluorescence spectrometry------原子荧光光谱法atomic mass unit------原子质量单位atomic number correction------原子序数修正atomin spectrum------原子光谱atomic-absorption spectrophotometer------原子吸收分光光度计atomization------原子化atomizer------原子化器attenuation------衰减attenuation coefficient------衰减系数attenuation length------衰减长度attenuator------衰减器attitude------姿态attitude transducer[sensor]------姿态传感器audio monitor------监听器audio-frequency spectrometer------声频频谱仪audit------审核Auger electron energy spectrometer(AEES)------俄歇电子能谱仪Auger electron image------俄歇电子象Auger electron spectrometer------俄歇电子能谱仪Auger electron spectroscopy(AES)------俄歇电子能谱法aurora------极光auto-compensation logging instrument------电子自动测井仪auto-compound current transformer------自耦式混合绕组电流互感器auto-polarization compensator------自动极化补偿器autocorrelation function------自相关函数automatic a.c.------d.c.B-H curvetracer------交、直流磁特性自动记录装置automatic balancing machine------自动平衡机automatic control------自动控制automatic control souce of vacuum------真空自动控制电源automatic control system------自动控制系统automatic data processing------自动数据处理automatic exposure device------自动曝光装置automatic feeder for brine------盐水溶液自动补给器automatic focus and stigmator------自动调焦和消象散装置automatic level------自动安平水准仪automatic levelling compensator------视轴安平补偿器automatic/manual station;A/M station------自动/手动操作器automatic programming------自动程度设计automatic radio wind wane and anemometer------无线电自动风向风速仪automatic railway weigh bridge------电子轨道衡LV current transformerMV instrument transformerPower supplyAnalogue panel meterDigital panel meterShuntKwh meterSwitchMould case circuit breakerMini circuit breakerEarth leakage circuit breakerDistribution boxContactorThermal relayRelayFuseCapacitorIndicate lamp & PushbuttonFanIndustry Plug & SocketLockWarning lightTerminalsElectric Accessories最佳答案低压电流互感器压互感器电源模拟面板仪表数字面板表分流电能表开关模具外壳式断路器小型断路器漏电断路器配电箱接触器热继电器继电器保险丝电容器显示灯和按键风扇工业插头插座锁警示灯码头。
[选取日期][键入文档副标题] | 微软用户微软中国 [键入文档标题]电工词汇中英文对照a. c .balance indicator, 平衡指示器a. c. bridge ,交流电桥a. c. current calibrator,交流电流校准器a. c. current distortion,交流电流失真a. c. induced polarization instrument,交流激电仪a. c. potentiometer,交流电位差计a. c. resistance box,交流电阻箱a. c. standard resistor,交流标准电阻器a. c. voltage distortion,交流电压校准器a. c. voltage distortion,交流电压失真Abbe comparator,阿贝比长仪aberration,象差ability of anti prereduced component,抗先还原物质能力ablative thickness transducer [sensor],烧蚀厚度传感器abrasion testing machine,磨损试验机absolute calibration,绝对法校准absolute coil,独立线圈absolute error,绝对误差(absolute)error of measurement,测量的(绝对)误差absolute gravimeter,绝对重力仪absolute gravity survey,绝对重力测量absolute humidity,绝对湿度absolute method,绝对法absolute moisture of the soil,土壤(绝对)湿度absolute pressure,绝对压力absolute(pressure transducer,绝对压力表absolute pressure transducer[sensor],绝对压力传感器absolute read-out,单独读出absolute resolution,绝对分辨率absolute salinity,绝对盐度absolute stability,绝对稳定性absolute stability of a linear system,线性系统的绝对稳定性absolute static pressure of the fluid,流体绝对静压absolute temperature scale,绝对温标absorbance,吸光度absorbed current image,吸收电流象absorptance,吸收比absorptiometer,吸收光度计absorption cell,吸收池absorption coefficient,吸收系数absorption correction,吸收修正absorption edges,吸收边absorption factor,吸收系数absorption hygrometer,吸收温度表absorption spectrum,吸收光谱absorption X-ray spectrometry,吸收X射线谱法absorptivity,吸收率absorptivity of an absorbing,吸引材料的吸收率abstract system,抽象系统abundance sensityivity,丰度灵敏度AC-ACLVDT displacement transducer,交流差动变压器式位移传感器accelerated test,加速试验accelerationg voltage,加速电压acceleration,加速度acceleration error coefficient,加速度误差系数acceleration of gravity,重力加速度acceleration simulator,加速度仿真器acceleration transducer[sensor],加速度传感器accelerometer,加速度计acceptance of the mass filter,滤质器的接收容限acceptance test,验[交]收检验access,存取 access time,存取时间accessibility,可及性accessories of testing machine,试验机附件accessory(for a measuring instrument),(测量仪表的)附件accessory hardware,附属硬件accessory of limited interchangeability,有限互换附件accumulated error,积累误差accumulated time difference,累积时差accumulative raingauge,累积雨量器accumulator,累加器accuracy,精[准]确度accuracy class,精[准]确度等级accuracy limit factor(of a protective current transformer), (保护用电流互感器的)精确度极限因数accuracy of measurement,测量精[准]确度accuracy of the wavelength,波长精确度accuracy rating,精确度限acetylene(pressure)gauge,乙炔压力表acetylene regulator,乙炔减压器acoustic amplitude logger,声波幅度测井仪acoustic beacon,水声信标acoustic current meter,声学海流计acoustic element,声学元件acoustic emission,声发射acoustic emission amplitude,声发射振幅acoustic emission analysis system,声发射分析系统acoustic emission detection system,声发射检测系统acoustic emission detector,声发射检测仪acoustic emission energy,声发射能量acoustic emission event,声发射事件acoustic emission preamplifier,声发射前置放大器acoustic emission pulser,声发射脉冲发生器acoustic emission rate,声发射率acoustic emission signal processor[conditioner],声发射信号处理器acoustic emission rate,声发射信号acoustic emission source location and analysis system,声发射源定位及分析系统acoustic emission source location system,声发射源定位系统acoustic emission source,声发射源acoustic emission spectrum,声发射频谱acoustic emission technique,声发射技术acoustic emission transducer[sensor],声发射换能器acoustic fatigue,声疲劳acoustic impedance,声阻抗acoustic logging instrument,声波测井仪acoustic malfunction,声失效acoustic matching layer,声匹配层acoustic(quantity)transducer[sensor],声(学量)传感器acoustic ratio,声比acoustic releaser,声释放器acoustic resistance,声阻acoustic thermometer,声学温度计;声波温度表acoustic tide gauge,回声验潮仪acoustic transponder,声应答器acoustical frequency electric,声频大地电场仪acoustical hologram,声全息图acoustical holography,声全息acoustical holography by electron-beam scanning,电子束扫描声全息acoustical holography by laser scanning,激光束扫描声全息acoustical holography by mechanical scanning,机械扫查声全息acoustical imaging by Bragg diffraction,布拉格衍射声成像acoustical impedance method,声阻法acoustical lens,声透镜acoustically transparent pressure vessel,透声压力容器acquisition time,取数据时间actinometer,光能计;直接日射强度表;日射表(active)energy meter,(有功)电度表active gauge length,有效基长active gauge width,有效基宽active metal indicated electrode,活性金属指示电极active remote sensing,主动遥感active transducer[sensor],有源传感器activity,活度 activity coefficient,活度系数actual material calibration,实物校准actual time of observation,实际观测时间actual transformation ratio of voltage transformer,电压互感器的实际变化actral transformation ratio of current transformer,电流互感器的实际变化actual value,实际值actual voltage ratio,实际电压比actuator,执行机构;驱动器actuator bellows,执行机构波纹管actuator load,执行机构负载actuator power unit,执行机构动力部件actuator sensor interface(ASI),执行器传感器接口actuator shaft,执行机构输出轴actuator spring,执行机构弹簧actuator stem,执行机构输出杆actuator stem force,执行机构刚度actuator travel characteristic,执行机构行程特性adaptation layer,适应层adaptive control,(自)适应控制adaptive control system,适应控制系统adaptive controller,适应控制器adaptive prediction,适应预报adaptive telemetering system,适应遥测系统adder,加法器addition method,叠加法additional correction,补充修正additivity of mass spectra,质谱的可迭加性address,地址 adiabatic calorimeter,绝热式热量计adjust buffer total ion strength,总离子强度调节缓冲剂adjustable cistern barometer,动槽水银气压表adjustable relative humidity range,相对湿度可调范围adjustable temperature range,温度可调范围adjusted retention time,调整保留时间adjusted retention volume,调整保留体积adjuster,调整机构;调节器adjustment,调整adjustment bellows,调节波纹管adjustment device,调整装置adjusting pin,校正针adsorbent,吸附剂adsorption chromatography,吸附色谱法aerial camera,航空照相机aerial remote sensing,航空遥感aerial surveying camera,航摄仪aerodynamic balance,空气动力学天平aerodynamic noise,气体动力噪声aerograph,高空气象计aerogravity survey,航空重力测量aerometeorograph,高空气象计aerosol,县浮微料;气溶胶aging of column,柱老化agitator,搅拌器agricultural analyzer,农用分析仪air-borne gravimeter,航空重力仪air capacitor,空气电容器air consumption,耗气量air damper,空气阻尼器air-deployable buoy,空投式极地浮标air-drop automatic station,空投自动气象站air duct,风道air gun,空气枪air inlet,进风口air lock,气锁阀air-lock device,锁气装置air outlet,回风口air pressrue balance,空气压力天平air pressure test,空气压力试验air sleeve,风(向)袋air temperature,气温air-tight instrument,气密式仪器仪表air to close,气关air to open,气开airborne electromagnetic system;AEM system,航空电磁系统airborne flux-gate magnetometer,航空磁通门磁力仪airborne gamma radiometer,航空伽玛辐射仪airborne gamma spectrometer,航空伽玛能谱仪airborne infrared spectroradiometer,机载红外光谱辐射计airborne optical pumping magnetometer,航空光泵磁力仪airborne proton magnetometer,航空甚低频电磁系统airborne XBT,机载投弃式深温计airgun controller,气控制器airmeter,气流表alarm summery panel,报警汇总画面alarm unit,报警单元albedograph,反射计alcohol thermometer,酒精温度表algorithm,算法 algorithmic language,算法语言alidade,照准仪alignment instrument,准线仪alkali flame ionization detector(AFID),碱焰离子化检测器alkaline error,碱误差alkalinity of seawater,海水碱度all-sky camera,全天空照相机all-weather wind vane and anemometer,全天候风向风速计allocation problem,配置问题;分配问题allowable load impedance,允许的负载阻抗allowable pressure differential,允许压差allowable unbalance,许用不平衡量alpha spectrometer,α粒子能谱仪alternating[exchange]load,交变负荷alternating-current linear variable differentialtransformer(AC-ACLVDT), 交流极谱仪 alternating temperature humidity test chamber,交变湿热试验箱altimeter,高度计altitude angle,高度角altitude meter,测高仪ambient humidity range,环境湿度范围ambient pressure,环境压力ambient pressure error,环境压力误差ambient temperature,环境ambient temperature range,环境温度范围ambient vibration,环境振动ambiguity error,模糊误差ammeter,电流表ammonia(pressure)gauge,氨压力表amount of precipitation,雨量amount of unbalance,不平衡量amount of unbalance indicatior,不平衡量指示器ampere-hour meter,安时计amplitude,幅值amplitude detector module,振幅检测组件amplitude error,振幅误差amplitude modulation(AM),幅度调制;调幅amplitude-phase error,幅相误差amplitude ratio-phase difference instrument,振幅比—相位差仪amplitude response,幅值响应analog computer,模拟计算机analog control,模拟控制analog data,模拟数据analog deep-level seismograhp,模拟深层地震仪analog input,模拟输入analog magnetic tape record type strong-motion instrument,模拟磁带记录强震仪analog model,模拟模型analog output,模拟输出analog seismograph tape recorder,模拟磁带地震记录仪analog simulation,模拟仿真analog stereopotter,模拟型立体测图仪analog superconduction magnetometer,模拟式超导磁力仪analog system,模拟系统analog telemetering system,模拟遥测系统analog-to-digital conversion accuracy,模-数转换精确度analog-to-digital conversion rate,模-数转换速度analog transducer[sensor],模拟传感器analogue computer,模拟计算单元analogue date,模拟数据analogue measuring instrument,模拟式测量仪器仪表analogue representation of a physical quantity,物理量的模拟表示analogue signal,模拟试验analogue-digital converter;A/D converter,模-数转换器;A/D转换器analogue-to-digital conversion,模/数转[变]换analysis of simulation experiment,仿真实验分析analytical balance,分析天平analytical electron microscope,分析型电子显微镜analytical gap,分析间隙analytical instrument,分析仪器analytical line,分析线analytical plotter,解析测图仪analyzer tube,分析管anechoic chamber,消声室;电波暗室anechoic tank,消声水池anemograph,风速计anemometer,风速表anemometer meast,测风杆anemometer tower,测风塔aneroid barograph,空盒气压计aneroid barometer,空盒气压表;空盒气压计aneroidograph,空盒气压计angle,角度angle beam technique,斜角法angle beam testing,斜角法angle form,角型angle of attach,冲角angle of field of view,视场角angle of incidence,入射角angle of refraction,折射角angle of spread,指向角;半扩散角angle of view of telescope,望远镜视场角angle of X-ray projiction,X射线辐射圆锥角angle probe,斜探头angle resolved electron spectroscopy(ARES),角分辨电子谱法angle strain,角应变angle transducer[sensor],角度传感器anglg-attack transducer[sensor],迎角传感器angle valve,角形阀angular acceleration,角加速度angular acceleration transducer[sensor],角加速度传感器angular displacement,角加速度传感器angular displacement,角位移angular displacement grationg,角位移光栅angular encoder,角编码器angular sensitivity,角灵敏度angular velocity transducer[sensor],角速度传感器annular coil clearance,环形线圈间隙annular space,环形间隙annunciator,信号源anode,阳极answering,应答anti-cavitation valve,防空化阀anti-contamination device,防污染装置anti-coupling bi-frequency induced polarization instrument,抗耦双频激电仪anti-magnetized varistor,消磁电压敏电阻器antiresonance,反共振antiresonance frequency,反共振频率anti-stockes line,反斯托克线aperiodic dampong,非周期阻尼;过阻尼aperiodic vibration,非周期振动aperture,光阑aperture of pressure difference,压差光阑aperture photographic method,针孔摄影法aperture stop,孔径光栏aperture time,空隙时间apparatus for measuring d.c.magnetic characteristic with ballistic galvanometer, 冲击法直流磁特性测量装置apparent temperature,表观温度appearance potentical,出现电位appearance potential spectrometer,出现电热谱仪appearance potential spectrometer(APS),出现电热谱法application layer(AL),应用层application layer protocol specification,应用层协议规范application layer service definition,应用室服务定义application software,应用软件approval,批准approximate absolute temperature scale,近似绝对温标aqueous vapour,水汽arc suppressing varstor,消弧电压敏电阻器arctic buoy,极地浮标area effect,面积影响area location,区域定位area of cross section of the main air flow,主送风方向横截面积argon-ion gun,氩离子枪annular chamber,环室argon ionization detector,氩离子化检测器arithmetic logic unit(ALU),算术逻辑运算单元arithmetic mean,算术平均值arithmetic weighted mean,算术加权平均值arithmetical mean deviation of the(foughness)profile,(粗糙度)轮廓的算术平均偏差arm error,不等臂误差armature,动铁芯array,阵,阵列array configuration,阵排列arrester varistor,防雷用电压敏电阻器articulated robot,关节型机器人artificial defect,人工缺陷artificial environment,人工环境artificial field method instrument,人工电场法仪器artificial intelligence,人工智能artificial seawater,人工海水ash fusion point determination meter,异步通信接口适配器asynchronous input,异步输入asynchronous transmission,异步传输atmidometer,蒸发仪,蒸发表atmometer,蒸发仪;蒸发表atmoradiograph,天电强度计atmosphere,气氛atmospheric counter radiation,天气向下辐射atmospheric electricity,大气电atmospheric opacity,大气不透明度atmospheric pressure,气压atmospheric pressure altimeter,气压高度计atmospheric pressure ionization(API),大气压电离atmospherics,天电;远程雷电atom force microscope,原子力显微镜atomic absorption spectrometry,原子吸收光谱法atomic fluorescence spectrophotometer,原子荧光光度计atomic fluorescence spectrometry,原子荧光光谱法atomic mass unit,原子质量单位atomic number correction,原子序数修正atomin spectrum,原子光谱atomic-absorption spectrophotometer,原子吸收分光光度计atomization,原子化atomizer,原子化器attenuation,衰减attenuation coefficient,衰减系数attenuation length,衰减长度attenuator,衰减器attitude,姿态attitude transducer[sensor],姿态传感器audio monitor,监听器audio-frequency spectrometer,声频频谱仪audit,审核Auger electron energy spectrometer(AEES),俄歇电子能谱仪Auger electron image,俄歇电子象Auger electron spectrometer,俄歇电子能谱仪Auger electron spectroscopy(AES),俄歇电子能谱法aurora,极光auto-compensation logging instrument,电子自动测井仪auto-compound current transformer,自耦式混合绕组电流互感器auto-polarization compensator,自动极化补偿器autocorrelation function,自相关函数automatic a.c.,d.c.B-H curve tracer,交、直流磁特性自动记录装置automatic balancing machine,自动平衡机automatic control,自动控制automatic control souce of vacuum,真空自动控制电源automatic control system,自动控制系统automatic data processing,自动数据处理automatic exposure device,自动曝光装置automatic feeder for brine,盐水溶液自动补给器automatic focus and stigmator,自动调焦和消象散装置automatic level,自动安平水准仪automatic levelling compensator,视轴安平补偿器automatic/manual station;A/M station,自动/手动操作器automatic programming,自动程度设计automatic radio wind wane and anemometer,无线电自动风向风速仪automatic railway weigh bridge,电子轨道衡automatic scanning,自动扫查automatic spring pipette,自动弹簧式吸液管automatic testing machine,自动试验机automatic titrator,自动滴定仪automatic tracking,自动跟踪automatic vertical index,竖直度盘指标补偿器automatic weather station,自动气象站automation,自动化automaton,自动机auxiliary attachment,辅件auxiliary controller bus(ACB),辅助控制器总线auxiliary crate controller,辅助机箱控制器auxiliary devices,辅助装置auxiliary equipment(of potentiometer),(电位差计的)辅助设备auxiliary gas,辅助气体auxiliary output signal,辅助输出信号auxiliary storage,辅助存储器auxiliary terminal,辅助端auxiliary type gravimeter,助动型重力仪availability,可用性available time,可用时间average,平均值average availability,平均可用度average nominal characteristic,平均名义特性average sound level,平均声级average value of contarmination,污染的平均值average wind speed,平均风速axial clearance,轴向间隙axial current flow method,轴向通电法axial load,轴向载荷axial sensitivity,轴向灵敏度axial vibration,轴向振动axis of rotation,摆轴;旋转轴axix of strain gauge,应变计[片]轴线。
The MS2711B/D Handheld Spectrum Analyzer provides the “ulti-mate” in measurement flexibility for field environments and applica-tions requiring mobility. Unlike traditional spectrum analyzers, the MS2711B/D features a rugged, ultra-lightweight, battery-operated design that enables users to conduct spectrum analysis measure-ments – anywhere, anytime.Providing complete freedom from AC/DC power requirements, the MS2711B/D enables you to locate, identify, record and solve com-munication systems problems quickly and easily, without sacrificing measurement accuracy.Whether you are installing, maintaining, or troubleshooting a modern wireless communication system, the MS2711B/D provides excep-tional performance combined with ease-of-use and broad functional-ity – making it an ideal solution for engineers and technicians who conduct field measurements in the 100 kHz to 3.0 GHz frequency range. In fact, it is ideal for finding the source of interfering signals in modern wireless systems.Rugged and ReliableBecause the MS2711B/D was designed specifically for field environ-ments, it can easily withstand the day-to-day punishment of field use. Rugged packaging also keeps the MS2711B/D performing in harsh environments.Easy-to-UseNot only is the MS2711B/D the lightest fully-functional spectrum an-alyzer available at 4.5 pounds (base model including battery), oper-ation is straight-forward and driven by firmware that simplifies the process of making measurements and interpreting the results shown on the large, high-resolution LCD display. The menu-driven user in-terface is easy to use and requires little training.A full range of marker capabilities such as peak, center and delta functions are also provided, giving users a faster and more compre-hensive measurement of displayed signals. Limit lines simplify am-plitude measurements, giving users the capability to create quick, simple, pass/fail measurements. Frequency, span and amplitude functions are easily configured for optimum performance. Used to-gether with the Save Setup feature, these functions can help to make testing easier and faster for less experienced users.Powerful Trace ManagementUsers are able to store ten test setups along with 200 measurement traces internally in the unit’s memory. The stored data can be easily down-loaded to a personal computer (PC) or a printer via an RS-232 serial cable for further analysis. A notebook computer can be used with the RS-232 interface for automated control and data collection in the field.A standard preamplifier (option 8) plus a number of available options including an internal tracking generator (option 20, MS2711B) or transmission measurement (option 21, MS2711D) expand the MS2711B/D’s capabilities.Fast, Accurate, Repeatable,Portable Spectrum AnalysisTo meet the challenges of today’s wireless market, Anritsu Companyhas incorporated a pre-amp (standard) for its revolutionaryMS2711B/D Handheld Spectrum Analyzer which increases the ana-lyzer’s sensitivity and dynamic range while improving measurementtime. With the built-in pre-amp feature, the MS2711B/D is particular-ly effective in measuring low-level signals. The handheld spectrumanalyzer’s sensitivity is improved to –115 dBm for MS2711B and–135 dBm for MS2711D (100 Hz RBW) (full span). With this option,the MS2711B/D can identify and make measurements on low-levelsignals much faster than previously possible.The improved sensitivity, dynamic range, and measurement speedcomplement the existing benefits of the MS2711B/D. Weighing only4.9 pounds (including a NiMH battery, fully loaded, base model only4.5 pounds), the MS2711B/D is the world’s lightest fully functionalhandheld spectrum analyzer with the built-in tracking generator op-tion (option 20).MS2711B/D has been enhanced so that it can make highly accuratechannel power measurements, occupied bandwidth and AdjacentChannel Power Ratio (ACPR) measurements. These are increasing-ly critical measurements, particularly for power amplifiers used inwireless communication systems. With the enhancements, theMS2711B/D has dedicated one button channel power, occupiedbandwidth, and ACPR measurement capability to significantly re-duce test time and expense. The MS2711B/D also features local lan-guage graphical user interface support (in Chinese, Japanese,French, German, and Spanish).N E W316For product ordering information, see pages 3 – 6 3175Features•Lightweight (4.5 lbs - base model, 4.9 lbs with tracking generator -option 20, or transmission measurement, option 21) •Synthesizer-based performance •Wide dynamic range•One button, ACPR, OBW, channel power, C/I measurement •Quick zoom-in, zoom-out display •5 minute warm up•Manual and automatic attenuator control•Improved user interface, with local language support in five differ-ent languages•Automatic overload and ESD protection •Built-in AM/FM demodulation•Built-in field strength measurement •Built-in interference analysis•Ability to store and recall up to six antenna factors•Full range of marker capabilities including peak, center, and delta functions•Limit lines for quick, simple pass/fail measurements •Rugged, reliable packaging •Battery operated design–2.5 hours of continuous operation–Built-in energy conservation that extends battery life beyond an eight-hour workday–Operation using a 12.5 Vdc source AC-DC adapter or automotive cigarette lighter adapter, which simultaneously charges the battery –Field replaceable battery •Built in clock and calender•Low cost ownership, global warranty•Data storage and memory–Store up to ten test setups and 200 measurement traces in non-volatile memory–Stored data is easily and quickly downloaded to a personal com-puter (PC) or printer•Powerful trace management–Automatically date/time stamped –Alphanumeric labeling •PC reporting software–Windows ®95/98/2000/ME, XP , NT Workstation compatible –Supports long file names for descriptive labeling–Can display an unlimited number of traces for comparison to his-torical performance•Optional Monochrome or Color LCD with backlight capability display •Direct printer control via RS232 serial portApplicationsConvenient operating procedures, high sensitivity, and excellent re-peatability enable the MS2711B/D to pinpoint the smallest system performance degradation and allow for easy verification of system compliance. Typical applications include:•Transmitter Spectrum Analysis – occupied bandwidth, power, mod-ulation measurements, location and identification of in-band, out-of-channel spurious and out-of-band spurious signals•Receive Signal Analysis – measure receiver sensitivity, locate and identify sources of interfering signals•Modulation identification, modulation depth, deviation, and spectral mask •Signal Strength Mapping – to determine the most suitable location for antennas, base stations, and repeaters; or pinpoint Electromagnetic (EM) leakage in broadcast systemsF r e q u e n c yModelMS2711BMS2711DFrequency range 100 kHz to 3.0 GHz Frequency reference Aging: ±1 ppm/yr Accuracy: ±2 ppmFrequency span 1 kHz to 3 GHz in 1, 2, 5 step selections in auto mode, plus zero span 10 Hz to 2.99 GHz in 1, 2, 5 step selections in auto mode, plus zero span Sweep time≥6500 msec full span; 500 msec zero span≤1.1 second full span;≤50 msec to 20 second zero span Resolution bandwidth (–3dB width)10 kHz, 30 kHz, 100 kHz, 1 MHz, ±20%100 Hz to 1 MHz in 1-3 sequence, ±5%Video bandwidth (–3dB)100 Hz to 300 kHz in 1-3 sequence3 Hz to 1 MHz in 1-3 sequence, ±5%SSB Phase Noise (1 GHz) @30 kHz Offset ≤–75 dBc/Hz Spurious responses Input related ≤–45 dBc Spurious residual responses ≤–90 dBm (≥500 kHz)A m p l i t u d eMeasurement range+20 dBm to –115 dBm (with preamp on)+20 dBm to –135 dBm (with preamp on)Displayed average noise level–115 dBm (≥1 MHz typical with preamp on)≤–95 dBm (≥500 kHz, typical)≤–80 dBm (< 500 kHz, typical)≤-135 dBm typical, ≥1 MHz (preamp on)≤–115 dBm typical, ≥500 kHz to <1 MHz ≤–110 dBm typical, < 500 kHzfor input terminated, 0 dB attenuation, RMS detection, 100 Hz RBWDynamic range >65 dB, typicalTotal level accuracy±2 dB, ≥500 kHz, typical;±3 dB, <500 kHz, typical(For input signal level ≥–60 dBm)±0.5 dB typical (±1 dB max), ≥10 MHz to 2 GHz ±1 dB typical (±1.5 dB max), >2 GHz to 3 GHz ±2 dB, ≥500 kHz to <10 MHz ±3 dB typical, <500 kHzfor input signal levels ≥–60 dBm, excludes input VSWR mismatchDisplay range1 to 15 dB/div in 1 dB steps, Ten divisions displayedMax input level without damage +23 dBm, ±50 Vdc+43 dBm (Peak), ±50 VdcAttenuator Range 0 to 50 dB, selected manually or automatically coupled to the reference level. Resolution in 10 dB steps 0 to 51 dB, selected manually or automatically coupled to the reference level. Resolution in 1 dB steps.RF inputVSWR 2.0:11.5:1 typical, (≥20 dB atten., 10 MHz to2.4 GHz)SpecificationsContinued on next page318For product ordering information, see pages 3 – 6G e n e r a lModelMS2711BMS2711DInternal trace memory 200 maximumSetup storage 10 test setupsDisplayVGA Monochrome LCD VGA Color or VGA Monochrome LCD Inputs and Outputs Ports RF In RF Out Ext trig InExt Freq Ref In (2 MHz to 20 MHz)Serial InterfaceType N, female, 50 ΩType N, female, 50 ΩN/A N/ARS-232 9 pin D-sub, three wire serialType N, female, 50 ΩType N, female, 50 ΩBNC, female (5V TTL)Shared BNC, female, 50 Ω(–15 dBm to +10 dBm)RS-232 9 pin D-sub, three wire serialElectromagnetic compatibility Meets European community requirements for CE marking SafetyConforms to EN 61010-1 for Class 1 portable equipmentTemperature Operating Non-operating0°C to 50°C, humidity 85% or less–20°C to +75°C (recommend battery stored separately between 0°C to 40°C for any prolonged storage period)–10°C to 55°C, humidity 85% or less–51°C to +71°C (recommend battery stored separately between 0°C to 40°C for any prolonged storage period)Power supplyExternal DC Input Internal+12.5 to +15 volts dc, 1350 mA max NiMH battery: 10.8 volts, 1800 mA mAHDimensionsSize (W x H x D)Weight25.4 cm x 17.8 cm x 6.10 cm (10.0 in x 7.0 in x 2.4 in)2.04 kg (4.5 lbs.) includes battery, 2.2 kg (4.9 lbs)includes tracking generator25.4 cm x 17.8 cm x 6.10 cm (10.0 in x 7.0 in x 2.4 in)<2.14 kg (4.7 lbs.) includes battery,<2.28 kg (5 lbs) includes transmission measurementBias TeeVoltage +18 VdcCurrent1 A peak 200 ms, 300 mA max steady stateMS2711B/D (Option 10) Bias Tee specificationsMS2711D (Option 21) Transmission Measurement specificationsFrequency Frequency range Frequency resolution 25 MHz to 3 GHz 10 HzOutputOutput power level Output impedance–10 dBm typical 50 ΩFCN4760 Frequency Converter specificationsF r e q u e n c yFrequency range 4.7 GHz to 6 GHz Frequency resolution ∗110 HzFrequency referenceAging: ±1 ppm/yr Accuracy: ±2 ppm SSB Phase Noise (6 GHz) @30 kHz Offset ≤–65 dBc/Hz Spurious responses Input related ≤–45 dBc Spurious residual responses 1≤–90 dBmA m p l i t u d eMeasurement range –40 dBm to –100 dBm Sensitivity ∗1(displayed avg. noise level)–100 dBm Maximum input level without damage–5 dBmRF inputVSWR 2.0:1 max G e n e r a lInputs and Outputs Ports RF In RF OutCommunication Interface T ype N, female, 50 ΩT ype N, male, 50 Ω10 pin D subElectromagnetic compatibility Meets European community requirements for CE marking SafetyConforms to EN 61010-1 for Class 1 portable equipment Temperature Operating Non-operating –10°C to 50°C, humidity 85% or less –50°C to +80°C Power dissipation 850 mW maxDimensionsSize (W x H x D)Weight6.6 cm x 10.9 cm x 3.3 cm (2.6 in x 4.3 in x 1.3 in)<0.45 kg (< 1 lb.)∗1: Specifications apply when connected to the MS2711D spectrum analyzer15 test setups5 Ordering InformationPlease specify model/order number, name, and quantity when ordering.Model/Order MS2711B/8 Handheld Spectrum Analyzer: 100 kHz to 3.0 GHzMS2711D Handheld Spectrum Analyzer: 100 kHz to 3.0 GHzStandard AccessoriesUser’s Guide, MS2711BSoft Carrying CaseAC – DC AdapterAutomotive Cigarette Lighter/12 Volt DC AdapterOne Y ear WarrantyCD ROM containing Software Management ToolsSerial Interface CableRechargeable battery, NiMHPre-amplifier (built-in)Option AccessoriesOption 3Color display - MS2711D onlyOption 6Frequency converter controller module for use withFCN4760 (MS2711D only)Option 10Bias Tee (built-in)Option 20T racking generator (built-in) - MS2711B onlyOption 21Transmission measurement (built-in) - MS2711D only Option 29Power Meter (MS2711D only)Optional Accessories5400-71N50RF Detector, N(m), 50 Ω, 1 to 3000 MHz42N50A-3030 dB, 50 Watt, Bi-directional, DC to 18 GHz,N(m) to N(f) Attenuator34NN50A Precision Adapter, DC to 18 GHz, 50 Ω, N(m) to N(m)34NFNF50C Precision Adapter, DC to 18 GHz, 50 Ω, N(f) to N(f)15NN50-1.5C T est port cable armored, 1.5 meter, N(m) to N(m), 6.0 GHz 15NN50-3.0C T est port cable armored, 3.0 meter, N(m) to N(m), 6.0 GHz 15NN50-5.0C T est port cable armored, 5.0 meter, N(m) to N(m), 6.0 GHz 15NNF50-1.5C T est port cable armored, 1.5 meter, N(m) to N(f), 6.0 GHz 15NNF50-3.0C T est port cable armored, 3.0 meter, N(m) to N(f), 6.0 GHz 15NNF50-5.0C T est port cable armored, 5.0 meter, N(m) to N(f), 6.0 GHz 15ND50-1.5C Test port cable armored, 1.5 meter, N(m) to7/16 DIN(m), 3.5 GHz15NDF50-1.5C Test port cable armored, 1.5 meter, N(m) to7/16 DIN(f), 3.5 GHz510-90Adapter 7/16 (f) to N(m), 3.5 GHz510-91Adapter, 7/16 DIN(f) to N(f), 7.5 GHz510-92Adapter, 7/16 DIN(m) to N(m) 7.5 GHz510-96Adapter 7/16 DIN (m) to 7/16 DIN (m), 7.5 GHz510-97Adapter 7/16 DIN(f) to 7/16 DIN(f), 7.5 GHz61N50RF SWR Bridge, 10-2500 MHz, 50 Ω, N(m)61NF50RF SWR Bridge, 10-2500 MHz, 50 Ω, N(f)Model/Order 1030-86Band Pass Filter, 800 MHz band, 806-869 MHz,Loss = 1.7 dB, N(m)-SMA(f)1030-87Band Pass Filter, 900 MHz band, 902-960 MHz,Loss = 1.7 dB, N(m)-SMA(f)1030-88Band Pass Filter, 1900 MHz band, 1.85-1.99 GHz,Loss = 1.8 dB, N(m)-SMA(f)1030-89Band Pass Filter, 2400 MHz band, 2.4-2.5 GHz,Loss = 1.9 dB, N(m)-SMA(f)48258Spare soft carrying case40-115Spare AC/DC adapter806-62Spare automotive cigarette lighter/12 Volt DC adapter 800-441Spare serial interface cable760-229 Transit case for Anritsu Handheld Spectrum Analyzer 2300-347 Anritsu Handheld Software Tools10580-00074Anritsu HHSA User’s Guide, Model MS2711B (spare) 10580-00071Anritsu HHSA Programming Manual, Model MS2711B 10580-00072Anritsu HHSA Maintenance Manual, Model MS2711B 10580-00097Anritsu HHSA User’s Guide, Model MS2711D10580-00098Anritsu HHSA Programming Manual, Model MS2711D 10580-00099Anritsu HHSA Maintenance Manual, Model MS2711D 633-27Rechargeable battery, NiMH551-1691USB to Serial adapter70-28Headset2000-1029Battery charger, NiMH with universal power supply 2000-1030Portable antenna, 50 Ω, SMA (m) 1.71-1.88 GHz 2000-1031Portable antenna, 50 Ω, SMA (m) 1.85-1.99 GHz 2000-1032Portable antenna, 50 Ω, SMA (m) 12.4-2.5 GHz2000-1035Portable antenna, 50 Ω, SMA (m) 896-941 MHz2000-1200Portable antenna, 50 Ω, SMA (m) 806-869 MHzPrinters2000-1214 HP DeskJet printerIncludes: interface cable, black print cartridge, and USpower cable2000-753 Spare serial-to-parallel converter cable2000-663 Power cable (Europe) for DeskJet printer2000-664 Power cable (Australia) for DeskJet printer2000-1218 Power cable (UK) for DeskJet printer2000-667 Power cable (So. Africa) for DeskJet printer2000-1217Rechargeable battery for DeskJet printer2000-1216Black print cartridge for DeskJet printerMS2711B (Option 20) Tracking generator specificationsFrequency Frequency range10 MHz to 3 GHz Frequency resolution 5 KHzTracking offset range±5 MHzOutput Output power level0 to –60 dBmOutput power level resolutionAbsolute level accuracy±1.5 dB, 0 to –40 dBm±4 dB, –40 dBm to –60 dBm Output flatness≤±1.5 dB (10 MHz – 3 GHz) Output tracking VSWR<2.0:1, <0 dBmSpurious harmonics≤–20 dBcNon-Spurious≤–20 dBc0.1 dBFrequency Range 3 MHz to 3.0 GHzT otal Level Accuracy ±1 dB max (±0.5 dB typical) for input signal levels >-60 dBm (10 MHz to 2 GHz, excludes input VSWR)±1.5 dB max (±1 dB typical), >2 GHz to 3 GHz±2 dB max, 3 MHz to 10 MHzMeasurement Range+20 dBm to -80 dBmFrequency Span 3 MHz to 2.99 GHzDisplay Range+80 dBm to -80 dBmOffset Range0 to 60 dBMaximum Input Power+20 dBm without input attenuatorMS2711B (Option 29) Power meter specifications319。
第 39 卷第 6 期2020 年 12 月Vol. 39 No. 6December 2020红外与毫米波学报J. Infrared Millim. Waves文章编号:1001-9014(2020)06-0767-11DOI :10. 11972/j. issn. 1001-9014. 2020. 06.015热红外高光谱成像仪(ATHIS)对矿物和气体的实验室光谱测量李春来匸刘成玉],金健],徐睿],谢佳楠],吕刚-袁立银-柳潇3,徐宏根3**,王建宇心收稿日期:2020- 05- 06 ,修回日期:2020- 10- 14 Received date :2020- 05- 06 , Revised date :2020- 10- 14基金项目:中国科学院青年创新促进会项目(2016218),“十三五”民用航天预研项目(D040104)”Foundation items : Supported by Youth Innovation Promotion Association CAS (2016218), and the National Defense Pre -Research Foundation of China during the 13th Five -Year Plan Period (D040104)作者简介(Biography ):李春来(1982-),男,汉族,湖北当阳人,博士 ,研究员,主要研究方向为高分辨率红外高光谱成像技术、新型计算光谱成 像技术等.E -mail :lichunlai@mail. sitp. ac. cn* 通讯作者(Corresponding author ) : E -mail : honggen_xu@163. com , jywang@mail. sitp. ac. cn(1.中国科学院空间主动光电技术重点实验室,上海200083;2.中国科学院大学杭州高等研究院,浙江杭州310024;3.中国地质调查局武汉地质调查中心,湖北武汉430205)摘要:首先介绍了热红外高光谱成像应用的独特优势,然后论述了机载热红外高光谱成像仪(Airborne Thermal Infrared Hyperspectral Imaging System ,ATHIS )灵敏度优化设计方法,结合仪器特点介绍了实验室矿物发射光谱和 气体吸收光谱测量的辐射模型,分析了样本红外光谱与温度分离的数据处理流程。
电气英语词汇Aa. c .balance indicator交流平衡指示器 a. c. bridge交流电桥a. c. current calibrator交流电流校准器 a. c. current distortion交流电流失真a. c. induced polarization instrument交流激电仪 a. c. potentiometer交流电位差计a. c. resistance box交流电阻箱 a. c. standard resistor交流标准电阻器a. c. voltage distortion交流电压校准器 a. c. voltage distortion交流电压失真Abbe comparator阿贝比长仪aberration象差ability of anti prereduced component抗先还原物质能力ablative thickness transducer [sensor]烧蚀厚度传感器abrasion testing machine磨损试验机absolute calibration绝对法校准absolute coil独立线圈absolute error绝对误差(absolute)error of measurement测量的(绝对)误差absolute gravimeter绝对重力仪absolute gravity survey绝对重力测量absolute humidity绝对湿度absolute method绝对法absolute moisture of the soil土壤(绝对)湿度absolute pressure绝对压力absolute pressure transducer绝对压力表absolute pressure transducer[sensor]绝对压力传感器absolute read-out单独读出absolute resolution绝对分辨率absolute salinity绝对盐度absolute stability绝对稳定性absolute stability of a linear system线性系统的绝对稳定性absolute static pressure of the fluid流体绝对静压absolute temperature scale绝对温标absorbance吸光度absorbed current image吸收电流象absorptance吸收比absorptiometer吸收光度计absorption cell吸收池absorption coefficient吸收系数absorption correction吸收修正absorption edges吸收边absorption factor吸收系数absorption hygrometer吸收温度表absorption spectrum吸收光谱absorption X-ray spectrometry吸收X射线谱法absorptivity吸收率absorptivity of an absorbing吸引材料的吸收率abstract system抽象系统abundance sensityivity丰度灵敏度AC-ACLVDT displacement transducer交流差动变压器式位移传感器accelerated test加速试验accelerating voltage加速电压acceleration加速度acceleration error coefficient加速度误差系数acceleration of gravity重力加速度acceleration simulator加速度仿真器acceleration transducer[sensor]加速度传感器accelerometer加速度计acceptance of the mass filter滤质器的接收容限acceptance test验[交]收检验access存取 access time存取时间accessibility可及性accessories of testing machine试验机附件accessory(for a measuring instrument)(测量仪表的)附件accessory hardware附属硬件accessory of limited interchangeability有限互换附件accumulated error积累误差accumulated time difference累积时差accumulative raingauge累积雨量器accumulator累加器accuracy精[准]确度accuracy class精[准]确度等级accuracy of measurement测量精[准]确度accuracy of the wavelength波长精确度accuracy rating精确度限acetylene(pressure)gauge乙炔压力表acetylene regulator乙炔减压器acoustic amplitude logger声波幅度测井仪acoustic beacon水声信标acoustic current meter声学海流计acoustic element声学元件acoustic emission声发射acoustic emission amplitude声发射振幅acoustic emission analysis system声发射分析系统acoustic emission detection system声发射检测系统acoustic emission detector声发射检测仪acoustic emission energy声发射能量acoustic emission event声发射事件acoustic emission preamplifier声发射前置放大器acoustic emission pulser声发射脉冲发生器acoustic emission rate声发射率acoustic emission signal processor[conditioner]声发射信号处理器acoustic emission rate声发射信号acoustic emission source location and analysis system声发射源定位及分析系统acoustic emission source location system声发射源定位系统acoustic emission source声发射源acoustic emission spectrum声发射频谱acoustic emission technique声发射技术acoustic emission transducer[sensor]声发射换能器acoustic fatigue声疲劳acoustic impedance声阻抗acoustic logging instrument声波测井仪acoustic malfunction声失效acoustic matching layer声匹配层acoustic(quantity)transducer[sensor]声(学量)传感器acoustic ratio声比acoustic releaser声释放器acoustic resistance声阻acoustic thermometer声学温度计;声波温度表acoustic tide gauge回声验潮仪acoustic transponder声应答器acoustical frequency electric声频大地电场仪acoustical hologram声全息图acoustical holography声全息acoustical holography by electron-beam scanning电子束扫描声全息acoustical holography by laser scanning激光束扫描声全息acoustical holography by mechanical scanning机械扫查声全息acoustical imaging by Bragg diffraction布拉格衍射声成像acoustical impedance method声阻法acoustical lens声透镜acoustically transparent pressure vessel透声压力容器acquisition time取数据时间actinometer光能计;直接日射强度表;日射表(active)energy meter(有功)电度表active gauge length有效基长active gauge width有效基宽active metal indicated electrode活性金属指示电极active remote sensing主动遥感active transducer[sensor]有源传感器activity活度 activity coefficient活度系数actual material calibration实物校准actual time of observation实际观测时间actual transformation ratio of voltage transformer电压互感器的实际变化actral transformation ratio of current transformer电流互感器的实际变化actual value实际值actual voltage ratio实际电压比actuator执行机构;驱动器actuator bellows执行机构波纹管actuator load执行机构负载actuator power unit执行机构动力部件actuator sensor interface(ASI)执行器传感器接口actuator shaft执行机构输出轴actuator spring执行机构弹簧actuator stem执行机构输出杆actuator stem force执行机构刚度actuator travel characteristic执行机构行程特性adaptation layer适应层adaptive control(自)适应控制adaptive control system适应控制系统adaptive controller适应控制器adaptive prediction适应预报adaptive telemetering system适应遥测系统adder加法器addition method叠加法additional correction补充修正additivity of mass spectra质谱的可迭加性address地址 adiabatic calorimeter绝热式热量计adjust buffer total ion strength总离子强度调节缓冲剂adjustable cistern barometer动槽水银气压表adjustable relative humidity range相对湿度可调范围adjustable temperature range温度可调范围adjusted retention time调整保留时间adjusted retention volume调整保留体积adjuster调整机构;调节器adjustment调整adjustment bellows调节波纹管adjustment device调整装置adjusting pin校正针adsorbent吸附剂adsorption chromatography吸附色谱法aerial camera航空照相机aerial remote sensing航空遥感aerial surveying camera航摄仪aerodynamic balance空气动力学天平aerodynamic noise气体动力噪声aerograph高空气象计aerogravity survey航空重力测量aerometeorograph高空气象计aerosol县浮微料;气溶胶aging of column柱老化agitator搅拌器agricultural analyzer农用分析仪air-borne gravimeter航空重力仪air capacitor空气电容器air consumption耗气量air damper空气阻尼器air-deployable buoy空投式极地浮标air-drop automatic station空投自动气象站air duct风道air gun空气枪air inlet进风口air lock气锁阀air-lock device锁气装置air outlet回风口air pressrue balance空气压力天平air pressure test空气压力试验air sleeve风(向)袋air temperature气温air-tight instrument气密式仪器仪表air to close气关air to open气开airborne electromagnetic system;AEM system航空电磁系统airborne flux-gate magnetometer航空磁通门磁力仪airborne gamma radiometer航空伽玛辐射仪airborne gamma spectrometer航空伽玛能谱仪airborne infrared spectroradiometer机载红外光谱辐射计airborne optical pumping magnetometer航空光泵磁力仪airborne proton magnetometer航空甚低频电磁系统airborne XBT机载投弃式深温计airgun controller气控制器airmeter气流表alarm summery panel报警汇总画面alarm unit报警单元albedograph反射计alcohol thermometer酒精温度表algorithm算法 algorithmic language算法语言alidade照准仪alignment instrument准线仪alkali flame ionization detector(AFID)碱焰离子化检测器alkaline error碱误差alkalinity of seawater海水碱度all-sky camera全天空照相机all-weather wind vane and anemometer全天候风向风速计allocation problem配置问题;分配问题allowable load impedance允许的负载阻抗allowable pressure differential允许压差allowable unbalance许用不平衡量alpha spectrometerα粒子能谱仪alternating[exchange]load交变负荷alternating-current linear variable differential transformer(AC-ACLVDT) 交流极谱仪alternating temperature humidity test chamber交变湿热试验箱altimeter高度计altitude angle高度角altitude meter测高仪ambient humidity range环境湿度范围ambient pressure环境压力ambient pressure error环境压力误差ambient temperature环境ambient temperature range环境温度范围ambient vibration环境振动ambiguity error模糊误差ammeter电流表ammonia(pressure)gauge氨压力表amount of precipitation雨量amount of unbalance不平衡量amount of unbalance indicatior不平衡量指示器ampere-hour meter安时计amplitude幅值amplitude detector module振幅检测组件amplitude error振幅误差amplitude modulation(AM)幅度调制;调幅amplitude-phase error幅相误差amplitude ratio-phase difference instrument振幅比—相位差仪amplitude response幅值响应analog computer模拟计算机analog control模拟控制analog data模拟数据analog deep-level seismograhp模拟深层地震仪analog input模拟输入analog magnetic tape record type strong-motion instrument模拟磁带记录强震仪analog model模拟模型analog output模拟输出analog seismograph tape recorder模拟磁带地震记录仪analog simulation模拟仿真analog stereopotter模拟型立体测图仪analog superconduction magnetometer模拟式超导磁力仪analog system模拟系统analog telemetering system模拟遥测系统analog-to-digital conversion accuracy模-数转换精确度analog-to-digital conversion rate模-数转换速度analog transducer[sensor]模拟传感器analogue computer模拟计算单元analogue date模拟数据analogue measuring instrument模拟式测量仪器仪表analogue representation of a physical quantity物理量的模拟表示analogue signal模拟试验analogue-digital converter;A/D converter模-数转换器;A/D转换器analogue-to-digital conversion模/数转[变]换analysis of simulation experiment仿真实验分析analytical balance分析天平analytical electron microscope分析型电子显微镜analytical gap分析间隙analytical instrument分析仪器analytical line分析线analytical plotter解析测图仪analyzer tube分析管anechoic chamber消声室;电波暗室anechoic tank消声水池anemograph风速计anemometer风速表anemometer meast测风杆anemometer tower测风塔aneroid barograph空盒气压计aneroid barometer空盒气压表;空盒气压计aneroidograph空盒气压计angle角度angle beam technique斜角法angle beam testing斜角法angle form角型angle of attach冲角angle of field of view视场角angle of incidence入射角angle of refraction折射角angle of spread指向角;半扩散角angle of view of telescope望远镜视场角angle of X-ray projictionX射线辐射圆锥角angle probe斜探头angle resolved electron spectroscopy(ARES)角分辨电子谱法angle strain角应变angle transducer[sensor]角度传感器anglg-attack transducer[sensor]迎角传感器angle valve角形阀angular acceleration角加速度angular acceleration transducer[sensor]角加速度传感器angular displacement角加速度传感器angular displacement角位移angular displacement grationg角位移光栅angular encoder角编码器angular sensitivity角灵敏度angular velocity transducer[sensor]角速度传感器annular coil clearance环形线圈间隙annular space环形间隙annunciator信号源anode阳极answering应答anti-cavitation valve防空化阀anti-contamination device防污染装置anti-coupling bi-frequency induced polarization instrument抗耦双频激电仪anti-magnetized varistor消磁电压敏电阻器antiresonance反共振antiresonance frequency反共振频率anti-stockes line反斯托克线aperiodic dampong非周期阻尼;过阻尼aperiodic vibration非周期振动aperture光阑aperture of pressure difference压差光阑aperture photographic method针孔摄影法aperture stop孔径光栏aperture time空隙时间apparatus for measuring d.c.magnetic characteristic with ballistic galvanometer 冲击法直流磁特性测量装置apparent temperature表观温度appearance potentical出现电位appearance potential spectrometer出现电热谱仪appearance potential spectrometer(APS)出现电热谱法application layer(AL)应用层application layer protocol specification应用层协议规范application layer service definition应用室服务定义application software应用软件approval批准approximate absolute temperature scale近似绝对温标aqueous vapour水汽arc suppressing varstor消弧电压敏电阻器arctic buoy极地浮标area effect面积影响area location区域定位area of cross section of the main air flow主送风方向横截面积argon-ion gun氩离子枪annular chamber环室argon ionization detector氩离子化检测器arithmetic logic unit(ALU)算术逻辑运算单元arithmetic mean算术平均值arithmetic weighted mean算术加权平均值arithmetical mean deviation of the(foughness)profile(粗糙度)轮廓的算术平均偏差arm error不等臂误差armature动铁芯array阵,阵列array configuration阵排列arrester varistor防雷用电压敏电阻器articulated robot关节型机器人artificial defect人工缺陷artificial environment人工环境artificial field method instrument人工电场法仪器artificial intelligence人工智能artificial seawater人工海水ash fusion point determination meter异步通信接口适配器asynchronous input异步输入asynchronous transmission异步传输atmidometer蒸发仪,蒸发表atmometer蒸发仪;蒸发表atmoradiograph天电强度计atmosphere气氛atmospheric counter radiation天气向下辐射atmospheric electricity大气电atmospheric opacity大气不透明度atmospheric pressure气压atmospheric pressure altimeter气压高度计atmospheric pressure ionization(API)大气压电离atmospherics天电;远程雷电atom force microscope原子力显微镜atomic absorption spectrometry原子吸收光谱法atomic fluorescence spectrophotometer原子荧光光度计atomic fluorescence spectrometry原子荧光光谱法atomic mass unit原子质量单位atomic number correction原子序数修正atomin spectrum原子光谱atomic-absorption spectrophotometer原子吸收分光光度计atomization原子化atomizer原子化器attenuation衰减attenuation coefficient衰减系数attenuation length衰减长度attenuator衰减器attitude姿态attitude transducer[sensor]姿态传感器audio monitor监听器audio-frequency spectrometer声频频谱仪audit审核Auger electron energy spectrometer(AEES)俄歇电子能谱仪Auger electron image俄歇电子象Auger electron spectrometer俄歇电子能谱仪Auger electron spectroscopy(AES)俄歇电子能谱法aurora极光auto-compensation logging instrument电子自动测井仪auto-compound current transformer自耦式混合绕组电流互感器auto-polarization compensator自动极化补偿器autocorrelation function自相关函数automatic a.c.d.c.B-H curve tracer交、直流磁特性自动记录装置automatic balancing machine自动平衡机automatic control自动控制automatic control souce of vacuum真空自动控制电源automatic control system自动控制系统automatic data processing自动数据处理automatic exposure device自动曝光装置automatic feeder for brine盐水溶液自动补给器automatic focus and stigmator自动调焦和消象散装置automatic level自动安平水准仪automatic levelling compensator视轴安平补偿器automatic/manual station;A/M station自动/手动操作器automatic programming自动程度设计automatic radio wind wane and anemometer无线电自动风向风速仪automatic railway weigh bridge电子轨道衡automatic scanning自动扫查automatic spring pipette自动弹簧式吸液管automatic testing machine自动试验机automatic titrator自动滴定仪automatic tracking自动跟踪automatic vertical index竖直度盘指标补偿器automatic weather station自动气象站automation自动化automaton自动机auxiliary attachment辅件auxiliary controller bus(ACB)辅助控制器总线auxiliary crate controller辅助机箱控制器auxiliary devices辅助装置auxiliary equipment(of potentiometer)(电位差计的)辅助设备auxiliary gas辅助气体auxiliary output signal辅助输出信号auxiliary storage辅助存储器auxiliary terminal辅助端auxiliary type gravimeter助动型重力仪availability可用性available time可用时间average平均值average availability平均可用度average nominal characteristic平均名义特性average sound level平均声级average value of contarmination污染的平均值average wind speed平均风速axial clearance轴向间隙axial current flow method轴向通电法axial load轴向载荷axial sensitivity轴向灵敏度axial vibration轴向振动axis of rotation摆轴;旋转轴axix of strain gauge应变计[片]轴线BB-scopeB型显示back flushing反吹background后台,背景,本底background current基流background mass spectrum本底质谱background noise背景噪声background processing后台处理background program后台程度Backman thermometer贝克曼温度计backscattered electron image背散射电子象backward channel反向信道baffle wall隔板balance天平balance for measuring amount of precipitation水量秤balance output对称输出balance quality of rotor转子平衡精度balance wieght平衡块balanced plug平衡型阀芯balancing平衡balancing machine sensitivity平衡机灵敏度balancing machine平衡机balancing speed平衡转速ball pneumatic dead wieght tester浮球压力计ball screw assembly滚珠丝杠副ball valve球阀ballistic galvanometer冲击栓流计band频带bandwidth带宽band width of video amplifier视频放大器频宽bar primary bushing type current transformer棒形电流互感器barograph气压计barometer cistern气压表水银槽barometer气压表barometric correction气压表器差修正barometrograph空盒气压计barothermograph气压温度计barrel distortion桶形畸变;负畸变base基底base line基线base peak基峰base unit(of measurement)基本(测量)单位baseband LAM基带局域网baseline drift基线漂移baseline noise基线噪声baseline potential空白电位baseline value空白值basic NMR frequency基本核磁共振频率basic standard基础标准batch control批量控制batch control station批量控制站batch inlet分批进样batch of strain gauge应变计[片]批batch processing成批处理batch processing simulation批处理仿真Baud波特beam横梁;声速beam deflector电子束偏转器beam path distance声程beam ratio声束比beam spot diameter束斑直径beam-deflection ultrasonic flowmeter声速偏转式超声流量计beam-loading thermobalance水平式热天平bearing轴承;刀承bearing axis轴承中心线bdaring support支承架beat frequency oscillator拍频振荡器beat method(of measurement)差拍(测量)法Beaufort scale蒲福风级Beckman differential thermometer贝克曼温度计bed机座Beer' law比尔定律bell manometer钟罩压力计bell prover钟罩校准器bellows波纹管bellows(pressure)gauge波纹管压力表bellows seal bonnet波纹管密封型上阀盖bench mark水准点bending strength弯曲强度bending vibration弯曲振动bent stem earth thermometer曲管地温表Besson nephoscope贝森测云器betatron电子回旋加速器;电子感应加速器bezel ring盖环bias voltage偏压bi-directional vane双向风向标;双风信标bilateral current stabilizer双向稳流器bimetallic element双金属元件bimetallic instrument双金属式仪表bimetallic temperature transducer[sensor]双金属温度传感器bimetallic thermometer双金属温度计binary coded decimal(BCD)二-十进制编码binary control二进制控制binary digital二进制数字binary elastic scattering event双弹性散射过程binary elastic scattering peak双弹性散射峰binary element二进制元binary signal二进制信号biomedical analyzer生物医学分析仪biochemical oxygen demand (BOD)microbial transducer[sensor]微生物BOD传感器 biochemical oxygen demand meter for seawater海水生化需氧量测定仪biochemical quantity transducer[sensor]生化量传感器biological quantity transducer[sensor]生物量传感器biosensor生物传感器bird receiving system吊舱接收系统bit比特;位bit error rate误码率bit serial位串行bit-serial higgway位串行信息公路bivane双向风向标;双风信标black box未知框black light filter透过紫外线的滤光片black light lamp紫外线照射装置blackbody黑体blackbody chamber黑体腔blackbody furnace黑体炉bland test空白试验balzed grating闪耀光栅block块体;字块;字组;均温块block check块检验block diagram方块(框)图block length字块长度block transfer块传递blood calcium ion transducer[sensor]血钙传感器blood carbon dioxide transducer[sensor]血液二氧化碳传感器blood chloried ion transducer[sensor]血氯传感器blood electrolyte transducer[sensor]血液电解质传感器blood flow transducer[sensor]血流传感器blood gas transducer[sensor]血气传感器blood-group immune transducer[sensor]免疫血型传感器blood oxygen transducer[sensor]血氧传感器blood PH transducer[sensor]血液PH传感器blood potassium ion transducer[sensor]血钾传感器blood-pressure transducer[sensor]血压传感器blood sodium ion transducer[sensor]血钠传感器blood-volume transducer[sensor]血容量传感器blower device鼓风装置bluff body阻流体Bode diagram博德图body temperature transducer体温传感器bolometer辐射热计;热副射仪bomb head tray弹头托盘honded strain gauge粘贴式应变计bonnet上阀盖boomerang grab自返式取样器boomerang gravity corer自返式深海取样管booster增强器bore(of liquid-in-glass thermometer)(玻璃温度计的)内孔borehole acoustic television logger超声电视测井仪borehole compensated sonic logger补偿声波测井仪borehole gravimeter井中重力仪borehloe gravimetry井中重力测量borehole thermometer井温仪bottorm echo底面反射波bottom flange下阀盖bottom-loading thermobalance下皿式热天平bottom surface底面Bouguer's law伯格定律Bourdon pressure sensor弹簧管压力检测元件Bourdon tube弹簧管;波登管Bourdon tube(pressure)gauge弹簧管压力表box gauge箱式验潮仪BP-scopeBP 型显示Bragg's equation布拉格方程braking time制动时间braking torque(of an integrating instrument)(积分式仪表的)制动力矩branch分支branch cable支线电缆breakdown voltage rating绝缘强度breakpoint断点breather换气装置bremsstrahlung韧致辐射bridge桥接器bridge's balance range电桥平衡范围bright field electron image明场电子象bridge for measuring temperature测温电桥bridge resistance桥路电阻brightness亮度Brinell hardness number布氏硬度值Brinell hardnell penetrator布氏硬度压头Brienll hardenss tester布氏硬度计broadband LAN定带局域网broad-band random vibration宽带随机振动broad band spectrum宽波段broadcast广播BT-calibrationg installation深温计[BT]检定装置bubble水准泡bubble-tube吹气管bucket thermometer表层温度表buffer缓冲器buffer solution缓冲溶液buffer storage缓冲存储器built-in galvanometer内装式检流计built-in-weigthts挂码bulb温包;感温泡bulb(of filled system themometer)(压力式温度计的)温包bulb(of liquid-in-glass thermometer)(玻璃温度计的)感温泡bulb length(of liquid-in-glass thermometer)(玻璃温度计的)感温泡长度bulk type semiconductor strain gauge体型半导体应变计bulk zinc oxide varistor体型氧化锌电压敏电阻器bump连续冲击bump test连续冲击试验;颠簸试验bump testing machine连续冲击台buoy浮标buoy array浮标阵buoy float浮标体buoy motion package浮标运动监测装置buoy station浮标站buoyancy correction浮力修正buoyancy level measuring device浮力液位测量装置burden(of a instrument transformer)(仪用互感器的)负载burning method燃烧法burst acoustic emission signal突发传输bus总线bus line,总线bus master总线主设备bus mother board总线母板bus network总线网bus slave总线从设备bus topology总线拓扑bus type current transformer母线式电流互感器bushing type current transformer套管式流互感器busy忙busy state忙碌状态butterfly valve蝶阀 by-pass旁路by-pass injector旁通进样器by-pass manifold旁路接头by-pass valve旁通阀Byram anemometer拜拉姆风速表byte字节byte frame字节帧byte serial字节串行byte-serial highway字节串行住信处公路CC-scopeC型显示cabinet 柜cable noise电缆噪声cable-tension transducer电缆张力传感器cable type current transformer电缆式电流互感器cage套筒;潜水罐笼cage guiding套筒导向cake adhesive retention meter泥饼粘滞性测定仪calculated maximum flow coefficient最大计算流量系数calcuated nornal folw coefficient正常计算流量系数calibrate定标calibrated measuringpvolumetric]tank校准测量[容积计量]容器calibrating period校准周期calibrating voltage校准电压calibration校准calibration (of thermometer)(温度计的)标定calibration block标准试块calibration characteristics校准特性;分度特性calibration coefficient of wave height波高校正系数calibration component校准组分calibration curve校准曲线;分度曲线calibration cycle校准循环calibration equation校准公式,分度公式calibration equipment of reversing thermometers颠倒温度表检定设备calibration factor of the primary device一次装置的校准系数calibration gas mixture校准混合气calibration hierarchy校准层次calibration point校准点;分度点calibration quantity校准量calibration record校准记录calibration rotor标定转子calibration solution校准液calibration table校准表(格)calibration traceability校准溯源性calibrator校验器calibrator above ice-point零上检定器calibrator below ice-point零下检定器calibrator for ice-point零点检定器caliper profiler横幅厚度计calling呼叫calomel electrode甘汞电极calorifier加热器calorimeter热量计cam bezel ring卡口式盖环CAMAC branch driverCAMAC 分支驱动器CAMAC branch-highwayCAMAC 分支信息公路CAMAC compatible crateCAMAC兼容机箱CAMAC crateCAMAC 机箱CAMAC crate assemblyCAMAC 机箱装置CAMAC highwayCAMAC 信息公路CAMAC moduleCAMAC 模块CAMAC operationCAMAC 操作CAMAC parallel highwayCAMAC 并行信息公路CAMAC serial driverCAMAC 串行驱动器CAMAC serial highwayCAMAC 串行信息公路CAMAC systemCAMAC 系统camera length相机长度camflex valve偏心旋转阀Campbell-stokes sunshine recorder聚集日照计;歇贝斯托克日照计canonical state variable规范化状态变量capacitance balance电容平衡capacitance hygrometer电视湿度计capacitance pressure transducer电容式压力传感器capacity correction容量修正capacity factor容量因子capillary column毛细管柱capillary gas chromatograph毛细管气相色谱仪capillary gas chromatography毛细管气相色谱法capillary phenomenon毛细现象capillary tube (of liquid-in-glass thermometer)(玻璃温度计的)毛细管capillary viscometer毛细管粘度计capsule膜盒capsule(pressure)gauge膜盒压力表captive chains calibration链码校准carat balance克拉天平carbon and hydrogen analysis meter碳氢元素分析仪carbon humidity-dependent resistor碳湿敏电阻器card punch卡片穿孔机card reader卜片阅读机Carlson type strain gauge卡尔逊应变计carrier载波carrier gas载气carrier ring夹持环carrier sense载波侦听carrier sense multiple access with collision detection(CSMA/CD) 具有冲突检测的载波侦听多路访问carrier sync载波同步cartridge disk盒式磁盘cartridge disk drive盒式磁盘机cascade control串级控制cascade system串级系统cascade[inductive]voltage transformer级联式[感应式]电压互感器case外壳casing外壳cassette盒式磁带;卡式磁带;暗盒catadioptric telescope折反射望远镜catalysis element催化元件catalytic analyzer催化分析器catalytic chromatography催化色谱法catalytic gas transducer[sensor]催化式气体传感器cathode阴极cathode of electron gun电子枪阴极cathode ray null indicator阴极射线指零仪cavitation空化cavitation corrosion气蚀cavitation noise空化噪声ceilometer云幂仪cell电池;传感器cell constant电池常数cell potential transducer[sensor]细胞电位传感器Celsius摄氏度Celsius temperature摄氏温度Celsius temperature scale摄氏温标center of strike打击中心central conductor method中心导体法;电流贯通法central principal inertia axis中心主惯性轴central processing unit(CPU)中央处理单元central processor中央处理器centrality集中性centralized control集中控制centralized intelligence集中智能centralized management system集中管理系统centralized network集中式网络centralized process control computer集中型过程控制计算机centrifugal balanc ing machine离心力式平衡机centrifugal tachometer离心式转速表ceramic microphone陶瓷传声器ceraunograph雷电计ceraunometer雷电仪certificate of conformity合格证书certificate of control控制证书certification认证certification of conformity of an instrument for explosive atmosphere防爆合格证certification system认证体系certified standard material有证标准物质chained list链接表change of temperature test温度变化试验channel信道;通道character字符character code字符码character recognition字符识别character set字符集;字符组character-at-time printer一次一字符打印机[印刷机];串行打印机characteristic curve特性曲线characteristic "fast"“快”特性characteristic "impulse"“脉冲”响应特性characteristic"slow"“慢”特性characteristic locus特征轨迹characteristic impedance特性阻抗characteristic X-ray特征X射线charge amplifier电荷放大器charge neutralization电荷中和charge sensitivity电荷灵敏度chart记录纸chart driving mechanism传纸机构chart lines记录纸分度线chart scale length记录纸标度尺长度closed loop transfer function闭环传递函数closed loop zero闭环零点closed position关闭位置closed system封闭系统closing valve time关阀时间closure member截流件cloud amount云量cloud balancer测支平衡器cloud base云底cloud chamber云室;云零室cloud detection radar测云雷达cloud direction云向cloud height indicator云高指示器cloud height meter云幂仪cloud searchlight云幂灯cloud speed云速cloud top云顶cloud-base recorder云底记录仪cloud-drop sampler云滴取校器cloudiness radiometer云辐射仪cloverleaf buoy三叶浮标Coanda effect附壁效应coarse vacuum粗真空;前级真空coastal zone color scanner(CZCS)海岸带水色扫描仪coaxiality同轴度 code代码;代号;规程;规范code converter;D/D converter代码转换器;D/D转换器coded circle编码度盘code-transparent data communication代码透明的数据通信coefficient of chromatic aberration色差系数 coefficient of interference干扰系数 coefficient of radial distortion径向畸变系数coefficient of rotational distortion旋转畸变系数coefficient of spherical aberration球差系数coefficient of variation变异系数coercivity meter矫顽力计coil galvanometer线圈式振动子coil method线圈材料coil method线圈法coincidence discrimination符合鉴别coincidence level度盘合像装置cold test寒冷试验cold-cathode source冷阴极离子源collate整理collector集电器collector slit接收器狭缝collimation axis视轴collimation line视准线collision冲突,碰撞collisional activation碰撞激活collisional activation mass spectrometer碰撞激活质谱计colorimeter比色计;色度计colour filter颜色滤光片colour meter水色计column镜筒column capacity柱效能column life柱寿命column-parity field列奇偶校验字段column switching柱切换coma彗差combination digital logger数字式综合测井仪combination electrode复合电极combination logging instrument组合测井仪combination water meter复式水表combined column复合柱combined load testing machine得合试验机combined pressure and vacuum gauge压力真空表combined test综合试验combined test cabinet综合试验箱command命令command accepted命令接受command message命令报文command operation命令操作command-reply transaction命令—回答事务commissioning test运行试验common control signals公共控制信号common magnet galvanometer共磁式振动子common mode rejection共模抑制common mode rejection ratio(CMRR)共模抑制比common mode signal共模信号common mode voltage共模电压communication subnet通信子网communication system通信系统communications terminal通信终端commutation error换码误差commutation point转码点comparative read-out比较读出comparator比较器comparator coil比较线圈compare比较comparing element比较元件comparison calibration比较法校准comparison method of calibrating thermocouple热电偶比较检定法comparison method of calibration比较法标定comparison(method of )measurement比较测量法comparison standard比较标准器comparison value比较值compass罗盘(仪)compass theodolite罗盘经纬仪compatibility兼容性;相容性compensated micromanometer补偿微压计compensated pyrgeliometer补偿直接日射强度表compensated scale barometer定槽水银气压表compensating element补偿元件compensating error of automatic vertical index竖直度盘指标补偿误差compensating extension lead补偿型延长导线compensating gauge补偿计(片)compensating setting error of leveling compensator视轴安平补偿误差。
TC-5901B Pneumatic Shield BoxApplicationTC-5901B Pneumatic Shield Box is about 50% larger in test area andheight than our popular TC-595X series shield boxes providing moreflexibility in handling larger devices and test fixtures. This productprovides an efficient RF-isolated test environment for manufacturingmobile phones and wireless PDA’s.Key Features! Reliable High RF shielding up to 5GHz owing to simple up-down lid motion! Pneumatic control of lid open-close and optional automatic test fixture motions! EMI filters on all data ports and power line! Manual or remote operation(RS-232C)! Modular I/O design for possible customization of data and RF connection! Fixture control air outputs for custom test fixture! Red and Green LED ‘s for Pass/Fail indication! Dual pressure control and Lid Down Sensor for safety! CE compliant : EN 292-1:1991, EN 292-2:1991/A1:1995, EN 983:1996, EN 1050:1996, EN 60204-1:1997Specification! Shielding Effectiveness : >70 dB, from DC to 2.5 GHz,including connectors! Remote control : RS-232C, 3 wire, DB-9 M! Input air pressure : 5bar to 10 bar! Main air connector : 6mm OD hose, one-touch push-on fitting! Fixture control air connectors : 4mm OD, one-touch push-on fitting! Line voltage : 100 to 240 VAC, 50/60 Hz, 15 watt max! Working space : 408(W) x 218(D) x 135(H) mm! Dimension : 459(W) x 300(D) x 302(H) mm, lid closed. 449(H) mm, lid open! Weight without optional test fixture : 20 kgLid Characteristics! Long Life Up-Down design! Lid Speed Control Valve! Dual Pressure : Lid closes without air pressure! Lid Down Sensor: Lid opens if the lid doesn’t close fully within 2 sec.! Initial Lid Position : Lid opens when the air is connected regardless of AC power! Internal Electronic Cycle Counter (downloadable to PC thru RS-232C)Electrical I/OUser Data I/O Connectors! DATA #1, #2 : DB9-P outside, DB9-S inside, 1000pF Pi filter! DATA #3 : DB25-P outside, DB25-S inside, 1000pF Pi filter! DATA #4 : DB9-P outside, DB9-S inside, for USB 2.0 or 100MBps LAN, 100pF Pi filterRF Connectors! RF #1,#2 : N-type outside, SMA insideRemote Control Connector! RS-232C : DB9-PAC Line Input! IEC Type, DetachableFixture CustomizationTC-5901B system with a custom fixture TC-59014A allows automation of most of the test processes. The fixture holds the device, brings it inside the shield box, makes test signal connections and returns the device to the starting position when the test is completed. Once the device is manually loaded on the DUT cradle and the serial number scanned, the rest of the test procedures can be automated. The custom fixture option, TC-59014A may be ordered through Tescom by supplying the necessary device information and samples to help design and verification. Typically, every device has unique shape and electrical connections requiring mechanical and electrical customizations from its basic platform design.A sample design is shown below.TC-59014A Typical Fixture Fixtures fittedOrdering InformationTC-5901B, Pneumatic Shield BoxTC-59014A, Custom Fixture for 5901B5901-71, Dual open/close switch5901-80, Spare gasket Assy, set of 2 pcsDesign Patent 240189SPECIFICATIONS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE View of TC-59014A fixture。
Case Study of Micro-Contamination ControlShou-Nan Li1*, Hui-Ya Shih1, Shaw-Yi Yen1, Jean Yang21 Energy and Environment Research Laboratories Industrial Technology Research Institute, 11F,Bldg. 51 195-10 Sec. 4 Chung-Hsing Rd., Chutung, Hsinchu Taiwan 310, R.O.C.2 TPO Displays Corp., Taiwan, R.O.C.AbstractAirborne contaminants (gases and particles) pose serious threats to hi-tech industries with the critical dimension of a micro-electronics chip quickly shrinking to nano-scale and the glass substrate of an LCD panel substantially enlarging to 1.9 m by 2.2 m (Generation 7.5). Due to the fast technology evolution, the cleanliness requirement of cleanroom air quality is highly critical. For example, for the 45 nm technology node, ammonia concentration is required to be less than 2.5 part-per-billion (ppb) and concerned particle size is down to 23 nm. To tackle the contamination problem for the rapidly evolving processes, the related information and technique should be shared and learned quickly. In this study, four cases of contamination control are described and they are: (1) corrosive gases (e.g., HBr, HCl, HF, SiF4) outgassing from newly dry-etched wafers, (2) gas leaking from an exhaust pipeline in a semiconductor cleanroom, (3) optical lens hazed by fine particles in a thin-film-transistor liquid-crystal-display (TFT-LCD) fab, and (4) re-entrained boron contaminating the glass substrates inside an LCD stocker. By sharing the case scenarios, it is expected that similar micro-contamination problems could be avoided and the product yield be enhanced. Besides, new monitoring and control techniques for micro-contamination might also be developed based on the results found in this study.Keywords: Airborne molecular contamination (AMC); Cleanroom air quality;Micro-contamination.* Corresponding author. Tel.: +886-3-5915016, Fax: +886-3-5820378E-mail address: SNLi@.twINTRODUCTIONAirborne contaminants render various defects on an electronic device. For example, molecular acid (MA) causes corrosion problem (Higley and Joffe, 1996); molecular base (MB) induces T-topping damage (Ruede et al., 2001); molecular condensable (MC) shifts the deposited film property from Si-N to Si-O (Saga and Hattori, 1997) and hazes the photo lens (Barzaghi et al., 2001); molecular dopant (MD) swaps the p-type and n-type properties (Lebens et al., 1996); ozone (O3) lowers the device capacitance (Park et al., 2001). The contaminants in each of the five airborne molecular contamination (AMC) categories are shown in Fig. 1(Ayre et al., 2005). Besides, a particle larger than 1/3 of the feature size might fail a die (Kitajima and Shiramizu, 1997). To reduce the wafer losses resulting from airborne contamination, the yield enhancement committee of the International Technology Roadmap for Semiconductors (ITRS) annually publishes a guideline to detail the tolerable concentrations for various airborne contaminants in each technology node (ITRS, 2006). For the forthcoming 45 nm process, for instance, ITRS recommends that ammonia concentration be less than 2.5 ppb and critical particle size be 23 nm.Fig. 1. Schematic of five AMC categories.In theory, the best strategy to control the contaminants is to locate the emitting origin and to terminate the releasing source. As shown in Fig. 2,in a cleanroom, the contaminants mainly originate from two sources: (a) incoming outdoor air, and (b) internal activities. For the incoming outdoor air, as long as the contaminants are identified, a combination of particle and chemical filter can effectively remove the pollutants at the make-up air unit (MAU) (Kanzawa and Kitano, 1995; Muller, 2004; Yeh et al., 2004).However, for the contaminants releasing from internal activities, the contaminating chemicals could easily damage the electronic device (e.g., wafer, glass substrate) due to proximity and localized high concentration. Therefore, huge product losses generally result from internally generated contaminants. Based on the literature, the internal contaminants could come from several sources: MA and particles from preventive maintenance (PM) activities (Li et al., 2005), MB from neighboring chemical-mechanical-polishing (CMP) and photo-resist stripper areas (Demandante et al., 2000), MC from plastic utilities (e.g., wafer cassette, gloves) (Saga and Hattori, 1996; Schnabel et al., 2001), MD from glass fiber filter (Stevie et al., 1991) and filter sealant (Lebens et al., 1996), O3 from a O3-water mixing chamber (Li et al., 2003), particles from persons, garments and wipers (Kitajima and Shiramizu, 1997; Bhattacharjee and Paley, 1998; Ensor et al., 2001). For the aforementioned cases, applying appropriate sampling and analytical techniques are crucial to accurately spot and then control the contamination sources. In this study, beside the already referenced internal sources, four additional AMC tracking and controlling cases will be presented.Fig. 2. Schematic of air flow circulation and OP-FTIRs monitoring lines in a cleanroom.MATERIALS AND METHODSTo determine the gas compositions and concentrations outgassing from the newly dry-etched wafers, as shown in Fig. 3, a compressed dry air (CDA) flow of 3 L/min, regulated by a mass flow controller (MFC), was used to continuously purge a batch of wafers (no. = 25). The purging N2 flow was then directed to the 10 m gas cell (EA-2 L/10 m, Gemini Scientific Instruments,Calif., U.S.A.) of a movable extractive fourier transform infrared (FTIR) spectrometer (Work IR-104, ABB Bomem, Quebec, Canada). The contaminants in the purging N2 were instantly identified and quantified by the FTIR because of the fingerprint nature of the IR absorbance spectra for each gas and the advances of computer calculation capability.Fig. 3. Experimental set-up for wafer outgassing tests.Fig. 4. Major components of the gas-leaking detection system (GLDS).For the leaking spot locating, the gas-leaking-detection-system (GLDS) (Li et al., 2007) shown in Fig. 4 was applied to pinpoint the emitting source among thousands of gas pipelines. The GLDS is composed of two open-path Fourier transform infrared (OP-FTIR) spectrometers, a gas composition database and a diagnosis software to help determine the emitting origin. As Fig. 2 shows, one OP-FTIR is installed at the make-up air unit (MAU) to continuously monitor the incoming pollutants; the other OP-FTIR is situated at the recirculation air unit (RAU) to sense airborne contaminants inside the cleanroom. Upon detection of the contaminants at the RAU, as shown in Fig. 4, the diagnosis software will compare the gas compositions measured by twoOP-FTIRs to determine if the pollutant originates inside the cleanroom. If yes, the software automatically searches through the database to match the most probable leaking source and then sends a warning signal to the emergency response center (ERC) or to a responsible engineer for a follow-up mitigation action.To realize the chemical compositions that caused the optical lens hazing, a personal porous-metal denuder (Tsai et al., 2001) with a sampling flow rate of 2 L/min was applied to sample the air inside the optical equipment (193 nm) for 2 hours. After the sampling, the used, chemical-impregnated porous-metal disks were carefully sent back to the laboratory, extracted by distilled, deionized water (DDW) and then analyzed by an ion chromatography (IC) (ICS-90, Dionex, Calif., U.S.A.).For the boron contamination investigation, the air samples inside and outside three suspected stockers were simultaneously taken by using KOH-impregnated cellulose filters (Fogg et al., 1983) for 48 hours at a sampling flow rate of 10 L/min. The used 47 mm cellulose filters were extracted by a 10 mL DDW solution added with 2 M HCl (~100 μL) and analyzed by an inductively coupled plasma/mass spectrometer (ICP/MS) (7500s, Agilent Technologies, U.S.A.). After the air sample analysis, it was found that only in one LCD stocker the inside boron concentration was higher than the outside one. It means that there is a contaminating source inside this stocker. To trace the contamination origin, the stainless-steel frames of this stocker were wiped by the KOH-soaked Teflon filters. The wipe samples were then extracted by DDW-HCl solution and analyzed by an inductively coupled plasma/mass spectrometer (ICP/MS).RESULTS AND DISCUSSIONS(a)MA outgassing from newly dry-etched wafersFig. 5 shows the releasing gas concentration profiles from a batch of newly dry-etched wafers. High concentrations of acid gases (SiF4, HBr, HCl, HF) continuously release from wafers for more than 30 minutes. Without appropriate control measures, the MAs would emit into the cleanroom to contaminate near-by wafers and to cause corrosion on equipment surfaces. In four MAs, SiF4, a dry-etching product (Si + F Æ SiF4), constitutes the major emissions with a peak concentration of 48 part-per-million (ppm); HBr and HCl are residual process gases and HF is the by-product of SiF4 hydrolysis.To prevent the MAs from spreading around the cleanroom, a well-vented storage cabinet shown in Fig. 6 was constructed. The dimensions of the storage cabinet are 1.4 m by 1.5 m by 0.75 m and the internal circulation air flow rate equal to 4200 L/min.Based on the findings of this study, the newly dry-etched wafers were temporarily arranged inside the cabinet for 20-60 minutes to diffuse out the MAs before being sent to the next process equipment. With this arrangement, the effect of throughput losses can be minimized.Fig. 5. Concentration variations of acid gases outgassing from newly dry-etched wafers (no. = 25).Fig. 6. Photo of a wafer storage cabinet for capturing the outgassing acid gases.(Dimensions: 1.4 m by 1.5 m by 0.75 m, circulation air flow rate = 4200 L/min).By effectively controlling the acid gas emissions, the contaminating particle counts on the wafers were significantly reduced (Li et al., 2003). This is because the MAs react with the MBs (e.g., NH3, amines) present in the cleanroom to form fine salt particles (Kanzawa and Kitano, 1995). Due to proximity, the in-situ generated fine particles could easily deposit on the wafer surface and cause device defects. However, when the MAs were drawn away from the wafer surface, the number of chemically-generated fine salt particles would be greatly reduced, whichresulted in the decrease of particle counts on the wafer.(b)Gas leaking from an exhaust pipelineAlthough no odor complaint nor gas-sensor alarming was issued, the GLDS shown in Fig. 4 continuously sent a gas leaking warning to the responsible engineer. As Fig. 7 shows, there is an SF6 emission source inside the fab because the measured SF6 concentrations at the RAU (inside the fab) are significantly higher than those at the MAU (outside the fab). With the assistance of the computer software and the database, the suspected leaking source was identified as the exhaust pipelines of poly-etchers. By comparing the measured on-off times of SF6 (by OP-FTIR) with the operation records of poly-etchers and by applying a mobile extractive FTIR along the exhaust pipelines, the leaking spot was then determined to be a cracking duct behind a poly-etcher pump. By applying the GLDS, the gas leaking can be sensed in a very early stage and the losses caused by the gas leakage can also be greatly reduced.Fig. 7. Measured SF6 concentrations at the RAU (diamond symbols) and at the MAU (square symbols) by two OP-FTIRs.(c) Optical lens hazed by fine particles in a TFT-LCD fabIn a TFT-LCD manufacturing plant, the production lines were halted because the optical lens of an exposure equipment were blurred. The air quality inside the exposure tool was then evaluated by using a personal porous-metal denuder. After analyzing the sampled porous-metal disks by an IC, it was found that the hazing chemical was composed of ammonium-nitrate (NH4NO3). The results were very similar to those found by Johnstone et al. (2004) in a semiconductor manufacturing plant. It indicated that the contaminant causing the optical lens hazing might be the fine salt particles generated from the reaction of NH3 and HNO3.To find the emission source, an extractive FTIR was used to measure the air quality around asuspected photo-resist stripper during its preventive maintenance (PM) activity. As Fig. 8 shows, high concentration of NH3 was continuously emitted into the cleanroom during the PM of the photo-resist stripper, which used mono-ethanol-amine (MEA) as its stripping chemical. The three photos shown on the top of Fig. 8 represent NH3 emissions from used wiping cloth (left one), from the gap around the chamber door rim (middle one) and from the activities of cleaning the chamber inner surfaces (right one). To control the NH3 emission, air-tight chamber lids were applied around the rims of the process tool and distilled-water flush steps were added to reduce residual chemicals condensed on the internal walls. For the potential HNO3 (or similar chemical) source, unfortunately, it was not found.Fig. 8. Fugitive NH3 emissions in the PM activity of an LCD stripper which uses mono-ethanol-amine (MEA) as its stripping chemical.(d)Boron cross-contaminating the glass substrates inside an LCD stockerFig. 9 shows the measured boron quantity on each frame surface of an LCD stocker by randomly wiping an area of 0.1 m-by-0.1 m with KOH-impregnated filters. The results clearly demonstrate that the stainless-steel frames, which are used to support the LCD glass substrates in a stocker, are a boron emission source. When the glass substrates were stored inside the stocker to wait for the next process equipment, they were contaminated by the boron emitting from the surfaces of the stainless-steel frames. The boron on the frames could originally come from the fugitive emissions of the glass substrates. With long-time (~1 year) accumulation, the boron quantity on the frames became significant and detrimental although the boron emission from each glass substrate was insignificant. To resolve the boron contamination problem inside the LCD stocker, it was recommended that the stainless-steel frames be cleaned periodically (~once per month) with KOH-DDW solution to avoid significant boron accumulation.Fig. 9. Accumulated boron quantity on each support frame of an LCD stocker.CONCLUSIONSLocating the contamination source and then mitigating the releasing origin proves to be an effective way to tackle the airborne molecular contamination (AMC) problem. In this study, a mobile extractive FTIR showed its capability to successfully identify and quantify the point contaminating sources; the GLDS, composed of two open-path FTIRs, accurately and quickly pinpointed a leaking spot among thousands of gas pipelines. Besides, a personal porous metal denuder demonstrated to be a useful tool to sample trace amount of MAs, MBs and particles; chemical-impregnated filters appeared useful for collecting the surface contaminants. After finding the contamination sources, based on on-site situations, different mitigation measures were then adopted. The results and experiences found in this study would be useful and beneficial for solving various contamination problems, which originates from dynamic hi-tech manufacturing processes and their demanding requirement on cleanroom air quality.REFERENCESAyre, C.R., Mittal, A.K. and O’sullivan, J.F. (2005). The Influence and Measurement of Airborne Molecular Contaminants in Advanced Semiconductor Processing. Semicond. Fabtech. 24th Edition, .Barzaghi, S., Pilenga, A., Vergani, G., Guadagnuolo, S. and Getters, S. (2001). Purged Gas Purification for Contamination Control of DUV Stepper Lenses. Solid State Technol. September: 99-104.Bhattacharjee, H.R. and Paley, S.J. (1998). Comprehensive Particle and Fiber Testing for Cleanroom Wipers. J. of the IEST. Nov/Dec, 41(6): 19-25.Demandante, B., Murray, K. and Alexander, M. (2000). Protect DUV Processes with Real-time Molecular Monitoring. Semicond. Int. September, / semiconductor.Ensor, D.S., Elion J.M. and Eudy, J. (2001). The Size Distribution of Particles Released by Garments During Helmke Drum Tests. J. of the IEST. Fall, 44(4): 24-27.Fogg, T.R., Duce, R.A. and Fasching, J.L. (1983). Sampling and Determination of Boron in the Atmosphere. Anal. Chem. 55: 2179-2184.Higley, J.K. and Joffe, M.A. (1996). Airborne Molecular Contamination: Cleanroom Control Strategies. Solid State Technol. July: 211-214.International Technology Roadmap for Semiconductors (ITRS). Yield Enhancement, 2006 edition.Johnstone, E.V., Chovino. C., Reyes, J. and Dieu, L. (2004). Haze Control: Reticle/Environment Interactions at 193 nm. Solid State Technol. May: 69-73.Kanzawa, K. and Kitano J. (1995). A Semiconductor Device Manufacturer’s Efforts for Controlling and Evaluating Atmospheric Pollution. IEEE/SEMI Adv. Semicond. Manu. Conf.: 190-193.Kitajima, H. and Shiramizu, Y. (1997). Requirement for Contamination Control in the Gigabit Era. IEEE Trans. Semicond. Manu. May, 10(2): 267-272.Lebens, J.A., McColgin, W.C., Russell, J.B., Mori, E.J. and Shive, L.W. (1996). Unintentional Doping of Wafers Due to Organophosphates in the Clean Room Ambient. J. Electrochem. Soc. September, 143 (9): 2906-2909.Li, S.N., Chen, Y.Y., Shih, H.Y. and Hong J.L. (2003). Using an Extractive Fourier Transform Infrared (FTIR) Spectrometer for Improving Cleanroom Air Quality in a Semiconductor Manufacturing Plant. Am. Ind. Hyg. Assoc. J. May/June: 408-414.Li, S.N., Shih, H.Y., Wang, K.S., Hsieh, K., Chen, Y.Y., Chen, Y.Y. and Chou, J. (2005). Preventive Maintenance Measures for Contamination Control. Solid State Technol. December: 53-56.Li, S.N., Leu, G.H., Yen, S.Y., Chiou, S.F., Wang, K.S., Yu, S.J. and Hsu, C.F. (2007). Gas-Leaking Detection System (GLDS) for Contaminant Control. Solid State Technol. in press.Muller, C. (2004). Guidelines and Considerations for Emerging AMC Control. CleanRooms, January, .Park, Y.K., Kim, H.J., Kim, D.W. and Park, J.H. (2001). Environmental Ozone Effect on the Growth of Hemispherical Grained Silicon for ULSI DRAM Stacked Capacitor. J. Electrochem. Soc. 148 (8): F170-F174.Ruede, D., Ercken, M. and Borgers, T. (2001). The Impact of Airborne Molecular Base on DUV Photoresists. Solid State Technol. August: 63-70.Saga, K. and Hattori, J. (1996). Identification and Removal of Trace Organic Contamination on Silicon Wafers Stored in Plastic Boxes. J. Electrochem. Soc. October, 143 (10): 3279-3284. Saga, K. and Hattori T. (1997). Influence of Surface Organic Contamination on the IncubationLi et al., Aerosol and Air Quality Research, V ol. 7, No. 3, pp. 432-442, 2007Time in Low-Pressure Chemical Vapor Deposition. J. Electrochem. Soc. September, 144 (9): L253-L255.Schnabel, P.H., Lindley, P.M., Nehrkorn, D. and Kendall, M. (2001). Identifying the Types and Potential Sources of Airborne Molecular Contamination: a Multi-Technique Approach. Semicond. Fabtech 11th: 123-129.Stevie, F.A., Martin, E.P., Kahora, P.M., Cargo, J.T., Nanda, A.K., Harrus, A.S., Muller, A.J. and Krautter, H.W. (1991). Boron Contamination of Surfaces in Silicon Microelectronics Processing: Characterization and Causes. J. Vac. Sci. Technol., Sep/Oct, A9 (5): 2813-2816. Tsai, C.J., Huang, C.H., Wang, S.H. and Shih, T.S. (2001). Personal Porous-Metal Denuder. Aerosol Sci. Technol. (35): 611-616.Yeh, C.F., Hsiao C.W., Lin S.J., Hsieh C.M., Kusumi, T., Aomi H., Kaneko H., Dai, B.T. and Tsai, M.S. (2004). The Removal of Airborne Molecular Contamination in Cleanroom Using PTFE and Chemical Filters. IEEE Trans. Semicond. Manu. May, 17(2): 214-220.Received for review, May 15, 2007Accepted, June 27, 2007442。
An Airborne A-Band Spectrometer for Remote SensingOf Aerosol and Cloud Optical PropertiesMichael Pitts, Chris Hostetler, Lamont Poole, Carl Holden, and Didier RaultNASA Langley Research Center, MS 435, Hampton, VA 23681ABSTRACTAtmospheric remote sensing with the O2 A-band has a relatively long history, but most of these studies were attempting to estimate surface pressure or cloud-top pressure. Recent conceptual studies have demonstrated the potential of spaceborne high spectral resolution O2 A-band spectrometers for retrieval of aerosol and cloud optical properties. The physical rationale of this new approach is that information on the scattering properties of the atmosphere is embedded in the detailed line structure of the O2 A-band reflected radiance spectrum. The key to extracting this information is to measure the radiance spectrum at very high spectral resolution. Instrument performance requirement studies indicate that, in addition to high spectral resolution, the successful retrieval of aerosol and cloud properties from A-band radiance spectra will also require high radiometric accuracy, instrument stability, and high signal-to-noise measurements. To experimentally assess the capabilities of this promising new remote sensing application, the NASA Langley Research Center is developing an airborne high spectral resolution A-band spectrometer. The spectrometer uses a plane holographic grating with a folded Littrow geometry to achieve high spectral resolution (0.5 cm-1) and low stray light in a compact package. This instrument will be flown in a series of field campaigns beginning in 2001 to evaluate the overall feasibility of this new technique. Results from these campaigns should be particularly valuable for future spaceborne applications of A-band spectrometers for aerosol and cloud retrievals.Keywords: Aerosols, clouds, climate, A-band, remote sensing1. INTRODUCTIONAerosols and clouds exert an enormous influence on the Earth’s solar and thermal radiation budgets and only through a detailed understanding of their role in the climate system will reliable climate simulations be possible. In fact, recent assessments of global climate change by the National Research Council1 (NRC), the Intergovernmental Panel on Climate Change2 (IPCC), and NASA agree that the largest uncertainties in our ability to predict future climate change are associated with the radiative effects of aerosols and clouds. These large uncertainties are, in part, due to a limited knowledge of the optical properties of aerosols and clouds on a global scale. A myriad of new sensors and satellite missions is currently being planned to aggressively pursue answers to this major question confronting credible prediction of climate change. However, as noted by the NRC1, these new measurements may not possess sufficient accuracy to significantly improve predictive capability.A promising new approach for spaceborne aerosol and cloud remote sensing is the retrieval of aerosol and cloud optical properties from high spectral resolution measurements of reflected sunlight in the oxygen A-band. Although the oxygen A-band has been utilized for a wide variety of remote sensing studies in the past, these studies were primarily focused on the retrieval of cloud top pressure3,4 or surface pressure5,6. O’Brien and Mitchell7 were among the first to recognize that measurements of reflected sunlight within the O2 A-band also contain information on the scattering properties of the atmosphere. This study suggested that the information on the optical properties of aerosol or cloud scattering layers is embedded in the detailed line structure of the O2 A-band, but will only be observable by very high spectral resolution instruments. Recently, Stephens and Heidinger8 developed the theoretical foundation for retrieval of aerosol and cloud optical properties from high-resolution spectral measurements of O2 line absorption. In a related paper, Heidinger and Stephens9 proposed a conceptual approach for retrieval of aerosol and cloud properties from a spaceborne A-band instrument. These two companion studies demonstrated the potential of high spectral resolution A-band spectrometers for the determining the optical properties of scattering layers, such as aerosol or cloud optical depth, aerosol single scatter albedo, and cirrus cloud asymmetry parameter. These conceptual studies, however, argued that a spectral resolution of at least 1 cm-1 would be necessary to extract the desired aerosol and cloud particle information from the A-band measurements. This required spectral resolution is significantly higher than exists in current spaceborne A-band spectrometers such as the GlobalOzone Monitoring Experiment 10 (GOME) and significantly higher than considered in past studies. In addition to the high spectral resolution requirement, this technique also demands high signal-to-noise and high radiometric precision, which in turn requires exceptional mechanical and thermal stability of the instrumentation. To date, very limited high-resolution A-band data are available to experimentally assess the feasibility of this new approach, in part due to the technical challenges associated with making these measurements.The Radiation and Aerosols Branch of NASA’s Langley Research Center (LaRC) is developing an airborne A-band spectrometer with the performance specifications necessary to enable the retrieval of aerosol and cloud properties. This spectrometer will serve as a unique science and technology test bed to explore the information content of the O 2 A-band spectra, the instrument performance requirements necessary for these measurements, and the overall feasibility of this new A-band technique for aerosol and cloud retrievals. After comprehensive laboratory characterization and calibration, the A-band spectrometer will be flown on a research aircraft in a series of field measurement campaigns. The experimental data from these field campaigns will serve as the basis for evaluating the capabilities of this instrument and quantifying the accuracy of the A-band retrievals. This new aircraft spectrometer should be a valuable tool for developing future spaceborne applications of A-band spectrometers for remote sensing of aerosol and cloud optical properties.2. INSTRUMENT DESCRIPTIONThe LaRC airborne A-band spectrometer is being designed and fabricated by Ball Aerospace and Technologies Corporation to provide high spectral resolution (0.5 cm -1) radiance measurements of reflected sunlight over the portion of the oxygen A-band spectral region from 13010 to 13110 cm -1. The spectrometer is specifically designed for use in a research aircraft environment and utilizes a plane, holographic grating with a folded Littrow geometry to achieve high spectral resolution in a compact package. The use of the holographic grating allows better stray light rejection than possible with conventional echelle gratings, which is a critical requirement for successful retrievals of aerosol and cloud properties. The spectrometer housing is approximately 102.9 cm x 39.4 cm x 25.4 cm, weighs about 100 lbs., and has three entrance apertures to allow flexibility for aircraft mounting. The CCD electronics are housed in a separate CCD detector interface unit that is approximately 15 cm x 31 cm x 39.1 cm and weighs about 20 lbs. A schematic diagram of the instrument mechanical layout is shown in Figure 1. A plan view of the spectrometer is shown in Figure 2.Figure 1. Mechanical layout of LaRC airborne A-band spectrometer.Fold MirrorFigure 2. Plan view of the LaRC airborne A-band spectrometer layout.The entrance slit is the field stop for the aircraft A-band spectrometer. The spectrometer entrance slit is oriented with the slit length in the cross-track direction and the slit width along-track. The cross-track spatial resolution is determined by the image of the slit length on the Earth’s surface and the along-track spatial resolution is determined by the aircraft ground speed and integration time. The combination of a 30 µm x 12 mm entrance slit and a 400-mm focal length collecting telescope provides an instantaneous cross-track footprint on the Earth’s surface of approximately 300 m at an aircraft altitude of 10 km. The integration time will vary with aircraft speed, but nominally will be 1.5 s for an aircraft ground speed of 200 m/s to yield an along-track spatial resolution of 300 m.The spectrometer detector is a commercially available two-dimensional scientific CCD spectroscopic array from ISA (ATECCD-2000x800-7). The 2000 x 800 pixel CCD array is back illuminated and air-cooled with a 2-stage TEC. The individual pixels in the array are 15 µm square yielding a total image area of 30 mm x 12 mm. The spectrometer’s wavelength dispersion is along the width (2000 pixel dimension) of the CCD array. The width of the spectrometer entrance slit corresponds to 2 pixels, which matches the spectral resolution requirement of 0.5 cm-1. As a result, only about 400 of the available 2000 pixels in the wavelength dimension will actually be utilized to cover the desired 100 cm-1 spectral range. A summary of the tentative spectrometer specifications is provided in Table 1.3. RETRIEVAL APPROACHThe key to retrieval of aerosol and cloud properties from the A-band spectra is the high spectral resolution of the measurements. The high spectral resolution provides a large dynamic range in molecular oxygen absorption that is observed in each measured spectrum. Since molecular oxygen is a well-mixed gas and the dominant absorber in the A-band spectral region, the absorption of scattered sunlight at A-band wavelengths is known for a clear atmosphere. However, the presence of aerosol and cloud scattering layers affect the amount of O2 absorption by increasing the optical path of the photons as they travel through the atmosphere. The reflected spectral radiances are related to the length and direction of the photon paths in the scattering layer, which are distinct functions of the aerosol/cloud optical properties10. Thus, information on the optical depth, angular scattering characteristics, and absorption of scattering layers is imbedded in the shape of the measured O2 A-band radiance spectrum. Information on the height of the scattering layer is contained in the ratio of the radiances in and out of the deep absorption lines. A conceptual illustration of the sensitivity of nadir viewing A-band measurements to the optical depth and altitude of a scattering layer is shown in Figure 3. As this figure illustrates, a high cloud with an optical depth of 10.0, a mid-level cloud with an optical depth of 1.0, and boundary layer aerosol with an optical depth of 0.1 will produce three distinctly different reflected radiance spectra when observed from above with a high spectral resolution spectrometer. The ability to measure the A-band spectrum at high resolution allows a retrieval to selectively tune out contributions fromTotal spectral range 13010 cm-1 to 13110 cm-1 (762.8 nm to 768.6 nm)Spectral resolution0.5 cm-1 (29.3 pm)Total number of spectralsamples> 400CCD array pixel size15 µm x 15 µmTotal pixels2000 wide x 800 highGrating type plane, holographicDigitizer resolution16 bitIntegration time (nominal) 1.5 sSNR(SZA=60o, albedo=0.05)700Table 1. Tentative Specifications for LaRC Airborne A-band Spectrometer.photons scattered by the underlying surface from photons scattered by aerosols or clouds. The retrievals will exploit these sensitivities to estimate the optical properties of the aerosol and cloud layers.The retrieval approach that we have adopted is based on the optimal estimation method of Rogers11 and is similar to that utilized by Heidinger and Stephens9 in their conceptual study. When aerosol or cloud scattering layers are present in the atmosphere, the nature of the A-band radiance spectrum measured at the top of the atmosphere is essentially controlled by six physical parameters:•aerosol or cloud optical depth, τ•single scatter albedo, ωο•scattering phase function (expressed in terms of an asymmetry parameter, g)•surface albedo, αsfc•pressure top of scattering layer, p t•pressure thickness of scattering layer, ∆p .The retrieval algorithm considers a retrieval vector that consists of these six independent variables. The best-fit set of these parameters is determined through a multidimensional minimization of the residuals between the measured A-band spectrum and a modeled spectrum calculated from a forward radiative transfer model with multiple scattering. The solution is obtained iteratively, starting from a set of a priori values for the six parameters.The information content of the measurements is not sufficient to successfully determine the entire set of retrieval parameters under all conditions and only a subset of these six variables is typically retrieved for a given atmospheric scenario. For instance, clouds scatter conservatively across the A-band spectral region and ωο can be assumed to be known (=1) for all cloud retrievals. In addition, the inclusion of simultaneous lidar data can provide accurate information on the altitude and thickness of an aerosol or cloud scattering layer and eliminate these parameters from the retrieval vector. In fact, simulation studies show that incorporation of lidar information into the retrievals as highly accurate a priori estimates of layer top pressure and pressure thickness dramatically increases the accuracy of retrievals performed with A-band radiance spectra alone. An example of the beneficial impact of lidar data on the accuracy of the retrievals is illustrated in Figure 4. To take advantage of the benefits of coincident lidar data to the retrievals, we are evaluating several potential lidar systems to fly in conjunction with the A-band spectrometer. Under this scenario, the aerosol retrievals will focus on aerosol optical depth, single scatter albedo, and surface albedo, while cloud retrievals will target cloud optical depth, asymmetry parameter, and surface albedo.Simulation studies are underway to explore the retrieval capabilities of the LaRC A-band spectrometer. These studies are based on synthetic A-band spectra produced with an instrument model that incorporates the expected instrument performance specifications for the LaRC A-band spectrometer. Illustrative examples of aerosol optical depth and cirrus cloud optical depth retrievals are shown in Figures 5 and 6, respectively. These figures illustrate the unique capability of this A-band approach to retrieve aerosol and cloud optical depths over both dark ocean surfaces and bright land surfaces where current passive instruments such as MODIS have difficulty. Preliminary simulation studies have shown that it may be possible to retrieve aerosol optical depth to better than 15% accuracy globally for optical depths greater than about 0.2. Cirrus cloud optical depth retrievals may be somewhat more problematic due to uncertain knowledge of the asymmetry parameter. Additional simulation studies are being performed to examine the accuracy of the A-band aerosol single scatter albedo and cirrus asymmetry parameter retrievals. A summary of the principal A-band retrieval parameters and their corresponding accuracy goals are listed in Table 1.Figure 3. Concept for remote sensing of aerosol and cloud optical properties with a high resolution A-band spectrometer.Figure 4. Coincident lidar data provides information on layer height and thickness that improves the accuracy of the A-band retrievals.Figure 5. Example of A-band aerosol optical depth retrieval for an aerosol layer placed between the surface and 2.0 km.0.00.20.40.60.8 1.0Actual Aerosol Optical Depth 02468101214O p t i c a l D e p t h E r r o r (%)Figure 6. Example of A-band cirrus cloud optical depth retrieval of a cirrus cloud placed between 300 – 400 mb.ProductAccuracy Goal AerosolsOptical depth, τa15% globally Single scatter albedo, ωo+/- 0.05 for τa > 0.2CloudsOptical depth, τc15-30% globally Cirrus asymmetry parameter, g0.04Table 2. Principal A-band spectrometer aerosol and cloud data products and accuracy goals.0.00.20.40.60.8 1.0Actual Cirrus Optical Depth 02468101214O p t i c a l D e p t h E r r o r (%)4.INSTRUMENT PERFORMANCE REQUIREMENTSSensitivity studies were performed to define the performance requirements for the LaRC airborne A-band spectrometer. These studies indicate that the most critical sources of error in the retrievals will be from spectral cross talk, radiometric calibration, and spectral registration. Spectral cross talk refers to the “smoothing” of the measured radiance spectrum that occurs due to a combination of the finite spectral response of the instrument and scattered light from the grating. This is a serious concern for the A-band retrievals because this scattered light results in an apparent “filling in” of the deep oxygen absorption lines with photons from adjacent spectral regions, which will effectively reduce the spectral resolution of the measurements. An example of the effect of spectral cross talk on the A-band radiance spectrum is shown in Figure 7. The left-hand panel shows the shape of a theoretical instrument response function (FWHM = 0.5 cm-1) for various levels spectral cross talk. The scattered light contribution affects the shape of the response function’s far wings and is sometimes referred to as the far out-of-band (OOB) or stray light component. In this example, response functions are shown with OOB levels ranging from 10-6 to 10-2. The right-hand panel of Figure 7 illustrates the effect the different levels of OOB on the A-band radiance spectrum. For clarity, only a small segment of the A-band spectrum is shown. The thin solid line in the right-hand panel represents the “true” A-band radiance spectrum produced with line-by-line radiative transfer calculations. As the figure illustrates, high levels of scattered light (OOB) significantly smooth and reduce the dynamic range of the radiance spectrum. As levels of OOB drop to 10-4 or less, the effect on the radiance spectrum is reduced considerably. The LaRC spectrometer utilizes a holographic grating to reduce the effect of scattered light and is expected to exhibit OOB levels of less than 10-4.High radiometric accuracy is also important for successful retrievals. Sensitivity studies show that the information content of the A-band spectra depends not only on the measurement resolution, but also on the accuracy of the measurements. Therefore, large instrument calibration errors will effectively reduce the number of independent pieces of information contained in the A-band spectrum. For radiance ratio quantities used in some of the retrievals, calibration errors tend to cancel which will significantly reduce the impact of these errors. In general, however, the A-band measurements must meet or exceed an absolute calibration accuracy of 4-6% for successful retrievals.Shifts in the spectral registration of the spectrometer are induced by thermal and mechanical instabilities in the instrument. Given the detailed line structure in the A-band, even small errors in the spectral registration will produce dramatic differences between the measured and modeled radiance spectra and lead to significant errors in the retrievals. Fortunately, the combination of high spectral resolution which allows the individual absorption lines within the A-band to be resolved and accurate a priori knowledge of the line center locations from laboratory spectroscopy will permit accurate spectral registration of each measured spectrum. Prototype spectral registration algorithms indicate that spectral registration can be performed to an accuracy of 0.01 cm-1and, as a result, spectral registration will not be a significant source of retrieval error.A comprehensive understanding of the instrument performance and careful instrument calibration will obviously be paramount to the success of A-band aerosol and cloud retrievals. Accordingly, after its delivery to LaRC (scheduled for late 2000), the spectrometer performance will go into a laboratory for full characterization and calibration. Tests will be conducted to document all aspects of instrument performance including instrument throughput, dark current, read noise, linearity, and pixel non-uniformity. Special effort will be also be made to accurately measure the slit function of the spectrometer since preliminary retrieval simulations suggest that accurate knowledge of the slit function is also a key requirement for successful aerosol and cloud retrievals5.FUTURE FIELD MEASUREMENT CAMPAIGNSA series of field measurement campaigns are planned to obtain a large volume of A-band spectra from various atmospheric scenarios. The aircraft platform for the LaRC A-band spectrometer will be a Learjet. This aircraft has two down-looking windows for science data collection and has a flight ceiling of approximately 40,000 feet, which will allow it to fly above cirrus cloud layers.The aircraft measurement campaigns will proceed in two phases. The first phase will be designed to sample single aerosol or cirrus cloud layers in otherwise clear sky conditions to evaluate the optical depth measurement capability of the A-band spectrometer. The aircraft will operate in the vicinity of the Chesapeake Light ocean platform located about 30 km fromLaRC. This platform, which is an active Aerosol RObotic NETwork (AERONET) site and also serves as a Baseline Surface Radiation Network (BSRN) quality site, should provide a valuable data base for correlative comparisons. A second phase of field measurements is planned to evaluate the more challenging aspects of the retrieval problem such as aerosol single scatter albedo. For this phase, we will also obtain in situ measurements to provide some closure to the question of A-band retrieval accuracy.Figure 7. (a) Example of instrument response functions with various levels of spectral cross talk and (b) smoothing effect of spectral cross talk on A-band radiance spectrum.5. REFERENCES1. National Research Council, A Plan for a Research Program on Aerosol Radiative Forcing and Climate Change ,National Academy Press, 1996.2. Intergovernmental Panel on Climate Change, Climate Change 1995- The Science of Climate Change , J. T. Houghton etal., eds., Cambridge Univ. Press, 1996.3. Yamamoto, G. A., and D. Q. Wark, Discussion of the letter by R. A. Hanel, “Determination of cloud altitude from asatellite,” J. Geophys. Res., 66, p.3596, 1961.4. Fischer, J., and H. Grassl, “Detection of cloud-top height from backscattered radiances with the oxygen A band. Part 1:Theoretical study,” J. Appl. Met., 30, pp.1245-1259, 1991.5. Mitchell, R. M., and D. M. O’Brien, “Error estimates for passive satellite measurements of surface pressure usingabsorption in the A-band of oxygen,” J. Atmos. Sci., 44, pp.1981-1990, 1987.6. Breon, F.,-M., Bouffies, S., “Land surface pressure estimate from measurements in the oxygen A band,” J. Appl. Met.,35, 1996.-100-50050100Wavenumber, cm 10-610-510-410-310-210-1100R e s p o n s e F u n c t i o n -110-210-310-410-6Wavenumber, cm T O A R a d i a n c e , W m s s r -2-1-1µm -113055130601306505101520-1(a) Instrument Response Function(b) Smoothing Effect on SpectrumOOB7.O’Brien, D. M., and R. M. Mitchell, “Error estimates for retrieval of cloud-top pressure using absorption in the A bandof oxygen,” J. Appl. Met., 31, pp.1179-1192, 1992.8.Stephens, G. L., and A. K. Heidinger, “Molecular line absorption in a scattering atmosphere: I Theory,” J. Atmos. Sci.,57, pp.1599-1614, 2000.9.Heidinger, A. K., and G. L. Stephens, “Molecular line absorption in a scattering atmosphere: II Application to remotesensing in the O2 A-band,” J. Atmos. Sci., 57, pp.1615-1634, 2000.10.Burrows J.P., M. Buchwitz, M. Eisinger, V. Rozanov, M. Weber, A. Richter, and A. Ladstaetter-Weissenmayer,” TheGlobal Ozone Monitoring Experiment (GOME): Mission, Instrument Concept, and First Scientific Results, “ Proc. 3rd ERS Symposium, Florence, 1997.11.Van de Hulst, H. C., Multiple Light Scattering. Volume 2, Academic Press, 1980.12.Rogers, C. D., Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,Rev. Geophys. Space Phys., 14, 609-624, 1976.。