结构力学第三章习题及答案范文
- 格式:doc
- 大小:929.00 KB
- 文档页数:6
结构力学(王焕定第三版)教材习题第三章答案全解——哈工大老师提供work Information Technology Company.2020YEAR结构力学(王焕定第三版)教材习题答案全解第三章习题答案3-1 (a) 答:由图(a)、(b)可知结构对称(水平反力为零)荷载对称,因此内力对称。
所以可只对一半进行积分然后乘以2 来得到位移。
如图示F P R(1−cos θ)M P = θ∈[0,π/2];M=R sin θθ∈[0,π/2]2 代入位移计算公式可得M P M 1 π2 M P M 2 π2 F P R(1−cos θ)∆Bx = ∑∫ EI d s = 2⋅EI ∫0 EI R dθ= EI ∫0 2 R sin θR dθ=F P R3 =(→)2EI3-1 (b) 答:如图(a)、(b)可建立如下荷载及单位弯矩方程pR ∆Bx =∑∫ MEIM d s =∫0π2 MEI P M R d θ= q EI 4∫0π2 (1−2cos θ+cos 2 θ)R d θqR 4 ⎡ θ 1 ⎤3π⎞ qR 4= EI ×⎢θ−2sin θ+ 2 + 4sin2θ⎥⎦0 =⎝⎜ 4 − 2⎠⎟ 2EI (→)2 ⎣3-2 答:作M P 图和单位力弯矩图如下图: 由此可得内力方程1 lx 0 62 0 6q lA BAqR Bα θ1θ( b )5 8 3 8根据题意EI(x) = EI (l + x)2l 代入位移公式并积分(查积分表)可得M P M l 2 q0x4∆Bx =∑∫ EI d x =∫0 6EI(l + x) d x7 q0l4 0.07 ql4= (ln 2−)× = (→)12 3EI EI3-3 答:分别作出荷载引起的轴力和单位力引起的轴力如下图所示:由此可得C 点的竖向为移为:F NP F N1 F NP F N1 ∆Cy =∑∫EA d s=∑ EA l =6 5112.5 kN× ×6 m+2×(62.5 kN× ×5 m+125 kN× ×5 m+75 kN× ×6 m)= 8 8EA=8.485×10−4 m当求CD 和CE 杆之间的夹角改变使:施加如图所示单位广义力并求作出F N2 图,则F∆=∑∫ F NP EA F N2 ds =∑ NP EAF N2 l2×62.5 kN×(−0.15)×5 m+(−112.5 kN)×0.25×6 m =EA=−1.4×10−4 rad ( 夹角减小)3-4 (a)答:先作出M p和M 如右图所示。
静定结构计算习题3—1 试做图示静定梁的M 、F Q 图。
解:首先分析几何组成:AB 为基本部分,EC 为附属部分。
画出层叠图,如图(b )所示。
按先属附后基本的原则计算各支反力(c)图。
之後,逐段作出梁的弯矩图和剪力图。
36.67KN15KN •m 20KNM 图(单位:KN/m )13.323.313.33F Q 图(单位:KN )3—3 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力F AX =48kN (→) M A =60 KN •m (右侧受拉) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。
(略)3—7 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力F AX =20kN (←) F AY =38kN(↑) F BY =62kN(↑) (2)逐杆绘M 图BCM 图(单位:KN/m ) F Q 图(单位:KN )3030F AX F N图(单位:60)20)(3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。
(略)3—9 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力F AX =0.75qL (←) F AY =-0.25qL( ) F BY =0.25qL(↑) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。
(略)3—11试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力F BX =40KN (←) F AY =30KN (↑) F BY =50kN(↑) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。
(略)C(a )qBY 23—17 试求图示抛物线三铰拱的支座反力,并求截面D 和E 的内力。
第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。
( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。
( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。
()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。
(2)错误。
0W 是使体系成为几何不变的必要条件而非充分条件。
(3)错误。
(4)错误。
只有当三个铰不共线时,该题的结论才是正确的。
(5)错误。
CEF 不是二元体。
(6)错误。
ABC 不是二元体。
(7)错误。
EDF 不是二元体。
习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
第三章 静定结构的内力与变形3-1 判断如图所各桁架的零力杆并计算各杆内力。
1P(a) (a)解:(1)0272210=⨯-⨯+=f故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆2-3,杆2-4,杆4-5,杆5-6。
对于结点1:N 1-2PN 1-33001P N =⨯-2121 P N 221=-0233121=+⨯--N N P N 331-=-对于结点3:N 3-43N 3-1P N N 31343-==--对于结点4:N 4-64N 4-3P N N 33464-==--对于结点2:N 2-52N 2-1PN N 21252==--对于结点5:N 5-75N 5-2P N N 22575==--(b)(b)解:(1)082313=⨯-+=f故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆1-2,杆2-3,杆2-4,杆5-4,杆6-4,杆6-7,杆6-8,杆1-5。
对于结点5:P5N 5-8P N -=-85对于结点8:N 7-88N 5-8Fθ05528785=+⨯--N N P N 55287=-对于结点7:N 7-47N 7-8P N 55247=-对于结点4:N 3-44N 7-4P N N 5524743==--对于结点3:N 1-33N 3-4P N N 5524331==--2(c)(c)解:(1)026228=⨯-⨯+=f故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆1-2,杆2-3,杆2-4,杆4-3,杆4-6。
对于结点1:N 1-61N 1-3Pθ05561=+⨯-P N P N 561-=-05526131=⨯+--N N P N 231=-对于结点3:3N 3-1N 3-5P N N 21353==--(e)(d)解:(1)02112316=⨯-⨯+=f故该结构为无多余约束的几何不变结构。
(2)零力杆:杆4-5,杆5-6,杆4-6,杆7-6,杆2-3,杆2-8,杆2-9,杆1-2,杆9-11,杆8-9,杆9-11.对于结点4:4N 4-7N 3-4450PP N 2243=- P N 2274=-对于结点7:7N 4-7N 3-7N 8-7P N N 22227374=⨯-=-- P N -=-73P N 2278=-对于结点3:3N 3-4N 3-7N 8-7022734332=⨯+=---N N N P N 2283=-对于结点8:022228982=⨯⎪⎭⎫ ⎝⎛+=--N P N运用截面法:N 1-2N 9-10N 9-11PP23456789由对9点的力矩平衡:0222221=⨯⨯-⨯+⨯-P a P a a N 021=-N对于结点9:9N 2-9N 9-11N 9-10N 9-88911910922---=⨯+N N N P N 22109-=-8N 3-8(e)(e)解:(1)024125=⨯-++=f故该结构为无多余约束的几何不变结构。
第三章 能量原理(习题解答)3-1 写出下列弹性元件的应变能和余应变能的表达式。
(a )等轴力杆;(b )弯曲梁;(c )纯剪矩形板。
解:(a )等轴力杆 应变能{}{}2220111()2222T VV VEf U AdV d dV dV E Lf E Lf L L εσεεσεε∆∆⎡⎤======⎢⎥⎣⎦⎰⎰⎰⎰余应变能22*21()2222V V fL fL N N L U BdV dV E E f Efσεσ=====⎰⎰其中L 为杆的长度,f 为杆的截面积,Δ为杆的变形量,E 为材料的弹性模量。
(b )弯曲梁 应变能{}{}{}{}222222222220111()()22211()()22TTx V V V V l V d w d w U dV dV z dV Ez dVdx dxd w d w E z dydzdx EJ dx dx dxσεσεσ==-===⎰⎰⎰⎰⎰⎰⎰⎰线性余应变能222*220111111()2222l x x V V V My M y M U dV dV dzdydx dx J E E EJJ σε===⋅=⎰⎰⎰⎰⎰⎰(c )纯剪矩形板 应变能{}{}t b a G dV G dV dV U V V VT⋅⋅⋅⋅=⋅=⋅==⎰⎰⎰22212121γγγτεσ 余应变能Gtfq t b a G dV G dV U V V 222*21212121=⋅⋅⋅==⋅=⎰⎰ττγτ3-2 求图3-2所示桁架的应变能及应变余能,应力—应变之间的关系式为 (a ) E σε= (b )σ=解:取节点2进行受力分析,如图3-2a 所示。
根据平衡条件,有132131122113cos 45cos 45sin 45sin 4522N N P N N P N N ︒︒︒︒⎧+=⎨=+⎩⇒== (1)311313N Nf f σσ== (2)(a ) E σε=时311313N N Ef Ef εε==(3) 0VU AdV fl d εσε==⎰⎰ (4) 0VU BdV fl d σεσ*==⎰⎰ (5)联立(1)、(2)、(3)、(4),得到桁架的应变能为()()2222121231131322P P P P N N l l U f f f f ⎤+-⎫=+=+⎥⎪⎢⎥⎝⎭⎣⎦联立(1)、(2)、(3)、(5),得到桁架的余应变能为()()222212123113132224P P P P N N l l U E f f E f f *⎡⎤+-⎛⎫=+=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦(b ) σε=223113222213N N E f E f εε== (6)联立(1)、(2)、(4)、(6),得到桁架的应变能为()()331221222133P P P P l U E f f ⎡⎤+-=+⎢⎥⎢⎥⎣⎦联立(1)、(2)、(5)、(6),得到桁架的应变能为()()331221222136P P P P l U E f f *⎡⎤+-=+⎢⎥⎢⎥⎣⎦3-3 一种假想的材料遵循如下二维的应力—应变规律()()222x x y y y x xy xy EE εσμσεσμσγτ=-=-= 其中E 、G 和μ是材料常数。
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M k M p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a 10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m 3m 3m14、求图示刚架B 端的竖向位移。
ql15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI =常数。
l/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
E I = 常数。
qll l/219、求图示结构A、B两截面的相对转角,EI=常数。
l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。
ll21、求图示结构B点的竖向位移,EI = 常数。
第三章静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰 C 左侧截面的转角时,其虚拟状态应取:M =1A. B.C;CM =1M =1C. D.C;C5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p、 M k图,用图乘法求位移的结果为:( 1 y1 2 y2 ) / (EI )。
1M p*2*P = 1M =1A BA Cy2BM k y1( a )(b)7、图 a、 b 两种状态中,粱的转角与竖向位移间的关系为:= 。
8、图示桁架各杆 E A 相同,结点 A 和结点 B 的竖向位移均为零。
PAP aBBaa9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰 A 两侧截面的相对转角 A ,EI =常数。
qAl l l /211、求图示静定梁 D 端的竖向位移DV。
EI = 常数,a = 2m 。
10kN/mDa a a12、求图示结构 E 点的竖向位移。
EI=常数。
qEl l /3 2 l /3l /313、图示结构,EI= 常数, M 90kN m, P = 30kN 。
求 D 点的竖向位移。
MPA CBD3m 3m 3m14、求图示刚架 B 端的竖向位移。
q2EI BEI l/2Al15、求图示刚架结点 C 的转角和水平位移,EI = 常数。
qBCl/2Al16、求图示刚架中D点的竖向位移。
EI =常数。
Pl/2Dl l17、求图示刚架横梁中D点的竖向位移。
EI =常数。
qDaa a18、求图示刚架中 D 点的竖向位移。
E I = 常数。
qDll l/ 2 l/ 219、求图示结构A、B两截面的相对转角,EI =常数。
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.M =15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M k M p7、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q l l l /211、求图示静定梁D 端的竖向位移∆DV 。
EI = 常数,a = 2m 。
a a a 10kN/m12、求图示结构E 点的竖向位移。
EI = 常数。
l l l /3/3q13、图示结构,EI=常数,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m 3m 3m14、求图示刚架B 端的竖向位移。
ql15、求图示刚架结点C 的转角和水平位移,EI = 常数。
16、求图示刚架中D点的竖向位移。
EI=常数。
l/217、求图示刚架横梁中D点的竖向位移。
EI =常数。
18、求图示刚架中D 点的竖向位移。
E I = 常数 。
ql l/219、求图示结构A、B两截面的相对转角,EI =常数。
l/23l/320、求图示结构A 、B 两点的相对水平位移,E I = 常数。
l l21、求图示结构B 点的竖向位移,EI =常数。
l l22、图示结构充满水后,求A 、B 两点的相对水平位移。
第三章静定结构的内力与变形3-1判断如图所各桁架的零力杆并计算各杆内力。
P(a)(a)解:(1)272210=×−×+=f 故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆2-3,杆2-4,杆4-5,杆5-6。
对于结点1:N 1-2PN 1-33001P N =×−2121PN 221=−0233121=+×−−N N PN 331−=−对于结点3:N 3-43N 3-1PN N 31343−==−−对于结点4:N 4-64N 4-3PN N 33464−==−−对于结点2:N 2-52N 2-1PN N 21252==−−对于结点5:N 5-75N 5-2PN N 22575==−−杆件1-21-32-32-42-53-45-45-65-74-6内力P2P3−0P2P3−0P2P3−(b)(b)解:(1)082313=×−+=f 故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆1-2,杆2-3,杆2-4,杆5-4,杆6-4,杆6-7,杆6-8,杆1-5。
对于结点5:P5N 5-8PN −=−85对于结点8:N 7-88N 5-8Fθ5528785=+×−−N N PN 55287=−对于结点7:N 7-47N 7-8PN 55247=−对于结点4:N 3-44N 7-4PN N 5524743==−−对于结点3:N 1-33N 3-4PN N 5524331==−−杆件1-31-21-52-32-43-44-54-65-86-76-87-84-7内力P5520P5520P −0P 552P552(c)(c)解:(1)026228=×−×+=f 故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆1-2,杆2-3,杆2-4,杆4-3,杆4-6。
对于结点1:N 1-61N 1-3Pθ5561=+×−P N PN 561−=−05526131=×+−−N N PN 231=−对于结点3:3N 3-1N 3-5PN N 21353==−−杆件1-21-31-62-32-43-43-54-6内力P2P 5−0P20(e)(d )解:(1)02112316=×−×+=f 故该结构为无多余约束的几何不变结构。
结构力学(王焕定第三版)教材习题答案全解第三章习题答案3-1 (a) 答:由图(a)、(b)可知结构对称(水平反力为零)荷载对称,因此内力对称。
所以可只对一半进行积分然后乘以 2 来得到位移。
如图示F P R(1−cos θ)M P = θ∈[0,π/2];M=R sin θθ∈[0,π/2]2 代入位移计算公式可得M P M 1 π2 M P M 2 π2 F P R(1−cos θ)∆Bx = ∑∫ EI d s = 2⋅EI ∫0 EI R dθ= EI ∫0 2 R sin θR dθ=F P R3 =(→)2EI3-1 (b) 答:如图(a)、(b)可建立如下荷载及单位弯矩方程pR ∆Bx =∑∫ MEIM d s =∫0π2 MEI P M R dθ= qEI 4 ∫0π2 (1−2cosθ+cos 2 θ)R dθqR 4 ⎡ θ 1 ⎡3π ⎡ qR 4= EI ×⎡θ−2sinθ+ 2 + 4sin2θ⎡⎡0 =⎡⎡ 4 − 2⎡⎡ 2EI (→)2 ⎡3-2 答:作M P 图和单位力弯矩图如下图: 由此可得内力方程代入位移公式积分可得2 2 P 0s i n ( ) d (c o s ) (c o s )q M R q R M R θθ α α θ θ − == − = − ∫AqRBα θ( a θ( b )根据题意 EI (x ) = EI (l + x )2l 代入位移公式并积分(查积分表)可得M P M l2 q 0x 4∆Bx =∑∫ EI d x =∫0 6EI (l + x ) d x7 q 0l 4 ql 4= (ln 2− )× =(→)12 3EI EI3-3 答:分别作出荷载引起的轴力和单位力引起的轴力如下图所示:由此可得 C 点的竖向为移为:1 lM 图 x3 0 p x q M M xl= = xP M 图2 0 6q lABl q 05 83 8F NP F N1 F NP F N1 ∆Cy =∑∫EA d s=∑ EA l =6 5kN× ×6 m+2× kN× ×5 m+125 kN× ×5 m+75 kN× ×6 m)= 8 8EA=×10−4 m当求CD 和CE 杆之间的夹角改变使:施加如图所示单位广义力并求作出F N2 图,则F∆=∑∫ F NP EA F N2 ds=∑ NP EA F N2 l2× kN×(−×5 m+(− kN)××6 m =EA=−×10−4 rad ( 夹角减小)3-4 (a)答:先作出M p和M 如右图所示。
3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a) 4P F a2P F a 2P F aM4PF Q34P F 2P F(b) 42020M Q10/326/3410A B C a a a a a F P a D E F F P 2m 6m 2m 4m 2m A B C D 10kN 2kN/m (c) 21018018040M1560704040Q(d) 7.5514482.524MQ3m 2m2m AB C E F15kN 3m 3m 4m 20kN/m D 3m 2m 2m 2m2m 2m 2m ABC D E FG H 6kN ·m 4kN ·m 4kN 2m 3-3 试作图示刚架的内力图。
试作图示刚架的内力图。
(a) 242018616MQ1820(b) 3030301101010QM 2104kN ·m 3m 3m 2kN A CBD 6m 10kN 40kN ·m ABC D(c) 664275MQ(d) 444444/32MQN2kN/m 6kN 6m 4kN AB CD2kN 6m 2kN 4kN ·m ACB D E(e) 44814``(f) 2222200.815MQN4m ABC4m D4kN A B C2m 3m 4m 2kN/m 3-4试找出下列各弯矩图形的错误之处,并加以改正。
(a) F P(b) (c) F P(d) M(e) (f) F PF P3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
B C EFDA28ql M2221()222116121618c B C BC C qql M l x x qx xM M M M ql ql x ql x l=-+===\=\=\= 中FD()2ql x -lBC EFxDAql lx3-6 试作图示刚架的弯矩和剪力图。
静定结构计算习题
3—1 试做图示静定梁的M 、F Q 图。
解:首先分析几何组成:AB 为基本部分,EC 为附属部分。
画出层叠图,如图(b )所示。
按先属附后基本的原则计算各支反力(c)图。
之後,逐段作出梁的弯矩图和剪力图。
36.67KN
15KN •m 20KN
M 图(单位:KN/m )
13.3
23.3
13.33
F Q 图(单位:KN )
3—3 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力
F AX =48kN (→) M A =60 KN •m (右侧受拉) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图
(5)校核: 内力图作出后应进行校核。
(略)
3—7 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力
F AX =20kN (←) F AY =38kN(↑) F BY =62kN(↑) (2)逐杆绘M 图
B
C
M 图(单位:KN/m ) F Q 图(单位:KN )
30
30
F AX F N
图(单位:
60
)
20
)
(3)绘F Q 图 (4)绘N 图
(5)校核: 内力图作出后应进行校核。
(略)
3—9 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力
F AX =0.75qL (←) F AY =-0.25qL( ) F BY =0.25qL(↑) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图
(5)校核: 内力图作出后应进行校核。
(略)
3—11试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。
解:(1)计算支反力
F BX =40KN (←) F AY =30KN (↑) F BY =50kN(↑) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图
(5)校核: 内力图作出后应进行校核。
(略)
C
(a )
q
BY 2
3—17 试求图示抛物线三铰拱的支座反力,并求截面D 和E 的内力。
解:1、由已知设抛物线方程为y=ax 2
+bx+c
坐标系如图(a )所示,有图可以看出, x=0 y=0;x=10 y=4;x=20 y=0 可以求得
B
C
D
E
100K
5m
5m
5m
5m
20KN/m
4m
Y
X
(a)
40KN
m
y y m x x y x x y D D D 34.0'554252'542512===+
-=+-=20KN/m
A B
C
D
E
F
4m
2m
2m
2m 80
80
120
120
80
M 图(单位:KN/m )
30
50
40
40
F Q 图(单位:KN )
40
50
F N 图(单位:KN )
2、计算支反力
首先,考虑三铰拱的整体平衡。
由 ∑MB=0 及∑MA=0 得F AY =F BY =100KN 由 ∑X=0 可得 H AX =H BX =F H
取左半拱为隔离体,由∑MC=0 H AX =H BX =F H =125KN 3、
4、求D 、E 点的内力
3—18 试用节点法计算图示桁架中各杆的内力。
解:(1)首先由桁架的整体平衡条件求出支反力。
(2)截取各结点解算杆件内力。
m
y y m
x E E E 34.0'15=-==928
.0cos 371.0sin ==D D ϕϕ928
.0cos 371.0sin =-=E E ϕϕKN 1000=左QD F KN 00=右QD F KN
500E -=Q F KN
5005100M 0D =⨯=KN
3755.25101010015100M 0
E
=⨯⨯-⨯-⨯=KN y F M D H D 1253125-500*M 0D =⨯=-=KN F F F D H D QD QD 4.46sin cos 0=-=ϕϕ左左KN y F M E H E 03125-375*M 0
E =⨯=-=KN
F F F D H D QD QD
4.46sin cos 0-=-=ϕϕ右右KN F F F D H D QD D 1.153cos sin 0N =+=ϕϕ左左116cos sin 0N =+=D H D QD D F F F ϕϕ右右KN F F F E H Q Q 0sin cos E 0E E =-=ϕϕKN
F F F H E Q 6.134cos sin E 0E NE =+=ϕϕ
F N78=
F N81=-5
F N12N81
F X17
分析桁架的几何组成:此桁架为简单桁架,由基本三角形345按二元体规则依次装入新结点构成。
由最后装入的结点8开始计算。
(或由8结点开始)
然后依次取结点7、2、6、3计算。
到结点5时,只有一个未知力F N54,最后到结点4时,轴力均已求出,故以此二结点的平衡条件进行校核。
3—19 试用截面法求3—18中杆23、62、67的内力。
解:支反力已求出。
作截面Ⅰ-Ⅰ,取左部分为隔离体。
由06=∑M 得
031545.22432=⨯+⨯-⨯-N F 得 F N32=-11.25KN
同理由02=∑M 得 得 F N67=3.75KN
把F N62 沿力的作用线平移到2点,并分解为水平力F X62和竖向力F Y62 由0=∑X F 0=∑Y F 得F X62=7.5KN F Y62=10KN
F 4X F 5X 5kN 5kN 5kN
F 4X F 5X
Y62。