第一章《有理数》综合测试卷.doc
- 格式:doc
- 大小:68.00 KB
- 文档页数:5
第一章有理数综合测试卷(时间100分钟,120分)一、填空题:(1-5题每空1分,6-18题每题2分,共38分)1、数轴上原点右边4厘米处的点表示的有理数是32,那么,数轴上原点左边10厘米处的点表示的有理数是________ 。
2、若三个有理数的乘积为负数,在这三个有理数中,有_____个负数。
3、一个数的相反数是它本身,这个数是_________;一个数的倒数是它本身,这个数是_________。
4、如果数轴上的点A 对应有理数为-2,那么与A 点相距3个单位长度的点所对应的有理数为____ __ _____。
5、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。
6、绝对值小于2008的所有整数的和 。
7、已知∣x ∣=8,∣y ∣=2,则(x + y )²= 。
8、已知∣a ∣=3,∣b ∣=2,且ab <0,则a ﹣b= 。
9、若2x −3与x=______。
10、如果|2x -y -2)²=0 成立时,则x ²+y ² = 。
11、(﹣1) +(﹣1) = (n 为正整数)。
12、计算:(1−2)×(2−3)×(3−4)×……×(100−101)= 。
13、如果|a|=3, |b|=5,且a>b ,那么a= ,b= 。
14、已知a 与b 互为相反数,b 与c 互为相反数,如果c=-6,那么a 的值是 。
15、如果n 是正整数,那么(−1) +(−1) = 。
16、若x 与2y 互为相反数,-y 与-3z 互为倒数,m 是任何正偶次幂都等于本身的数,求代数式2x+4y-3 y z+m ²的值 。
17、如果|a+b|+|a-2|=0,求|3a-2b|= 。
18、若a>0,b<0,且|a|>|b|,则a+b 0。
学校 班级 考号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆第一章《有理数》综合测试试卷一、 选择题(本题有10个小题,每小题3分,满分30分) 1. 零上13℃记做+13℃,零下2℃可记做()。
A.2B.-2C.2℃D.-2℃2. -5的相反数是()。
A.5B.-5C.15D.- 153. -3的绝对值是()。
A.3B.-3C.13D.- 134. 若有理数ɑ的值在-1与0之间,则ɑ的值可以是()。
A.-2B.1C.13D.- 135. 下列各式中,不.成立的是()。
A.|-5|=5 B.-|-5|=-5C.|-5|=|5|D.-|5|=56.A. ɑ>b>cB.c>ɑ>bC. ɑ>c>bD.c>b>ɑ7. -1×(-2)=()。
A.2B.-2C.-3D.18. -17 的倒数是()。
A.17B.- 17C.7 D-79. 数据26000用科学记数法表示为2.6×10n ,则n 的值是()。
A.2B.3C.4D.510. 钓鱼岛是中国的领土,富藏石油,据1982年探测估计石油含量约在747亿桶以上,74700000000桶用科学记数法表示为()桶。
A.7.47×1011 B.74.7×109 C.7.47×1010D.74.7×1010二、 填空题(本题有15个空,每空1分,满分15分)1.最小的正整数是 ;最大的负整数是 ;相反数是它本身的数是 ;绝对值最小的数是 ;倒数是它本身的数是 和 。
2.比较大小:-23 -58 (填”>”、”=”或”<”) 3.比-3小2的数是 。
4.如图,点A 表示数 ;点B 表示数 ;点C 表示数 。
七年级上册第一章《有理数》概括尝试题之阳早格格创做一.采用题(每小题3分,同24分)1.-2的好异数是( )A .2B .-2C .21D .21- 2.-π|的值是().A .0B .-πC .π-3.14D .+π3.一个数战它的倒数相等,则那个数是()A .1B .1-C .±1D .±1战04.如果a a -=||,下列创造的是()A .0>aB .0<aC .0≥aD .0≤a5.用四舍五进法按央供对于分别与近似值,其中过失的是()A .(透彻到)B .(透彻到百分位)C .(死存二个灵验数字)D .(透彻到)6.估计1011)2()2(-+-的值是()A .2-B .21)2(-C .0D .102-7.有理数a 、b 正在数轴上的对于应的位子如图所示: 则()A .a + b <0B .a + b >0C .a -b = 0D .a -b >08.下列各式中透彻的是()A .22)2(2-=B .33)3(3-=C .|2| 222-=-D .|3| 333=- 二.挖空(每题3分,同24分)9.正在数、 -4、、51-、 0、 90、334-、|24|--中,________是正数,_________没有是整数.10. +2与-2是一对于好异数,请给予它本量的意思:_________.11.35-的倒数的千万于值是___________.12.(2)--+4=;13.用科教记数法表示13 040 000,应记做_______________.14.若a 、b 互为好异数,c 、d 互为倒数,则(a + b)3 .(cd)4 =__________.15.大肠杆菌每过20分便由1个团结成2个,通过3小时后那种大肠杆菌由1个团结成__________个.16.正在数轴上与-3距离四个单位的面表示的数是__________.三.解问题(每题6分,同12分)17.()+()+()+()18.÷-|97|2)4(31)5132(-⨯--四.解问题(每题8分,同40分)19.把下列各数用“〉”号连交起去:51-,,51,5--,-(),515+-20.如图,先正在数轴上绘出表示的好异数的面B,再把面A 背左移动个单位,得到面C,供面B,C 表示的数,以及B,C 二面间的距离.21.供2-x22.某公司去年 1~3月仄衡每月盈益 1.5 万元,4~6 月仄衡每月赢利 2 万元,7~10 月仄衡每月赢利 1.7 万元,11~12 月仄衡每月盈益 2.3 万元,问:那个公司去年总的盈、盈情况怎么样?23.某食品厂从死产的袋拆食品中抽出样品20袋,检测每袋的品量是可切合尺度,超出或者缺累的部分分别用正、背数去表示,记录如下表:那批样品的仄衡品量比尺度品量多仍旧少?多或者少几克?若每袋尺度品量为450克,则抽样检测的总品量是几? 参照问案一.采用题1.A2.C3.C4.D5.C6.D7.A8.A二.挖空题9.、90;、8.0-、51-、334-.10.背前走2米记为+2米,背后走2米记为2-米.(问案没有唯一) 11.3512.613.1.304×10714.015.512(即29 = 512)16.-7战1三.解问题17.118.311-四.解问题19.-()〉51〉51-〉〉5--〉515+- 20.(图略),面B,C 表示的数分别是,1; B,C 二面间的距离是3.5.21.522.3×()+2×3+4×1.7+2×()(万元),由此可知那个公司去年盈利了万元.23.(1)多24克;(2)9024克.新课标第一网。
第一章有理数全章综合测试新修改一、选择题:1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是()A.-12B.2 C.一2 D.123.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a <b C.ab>0 D.ab>0 4.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是()A.收入200元与支出20元B.上升l0米和下降7米C.超过0.05mm与不足0.03m D.增大2岁与减少2升7.下列说法正确的是()A.-a一定是负数;B.a定是正数;C.a一定不是负数;D.-a一定是负数8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零10.若0<m<1,m、m2、1m的大小关系是()A.m<m2<1m B.m2<m<1mC.1m<m<m2D.1m<m2<m11.4604608取近似值,保留三个有效数字,结果是()A.4.60 ×106B.4600000 C.4.61 ×106D.4.605 ×10612.下列各项判断正确的是()A.a+b一定大于a-b B.若-ab<0,则a、b异号C.若a3=b3,则a=b D.若a2=b2,则a=b 13.下列运算正确的是()A.-22÷(一2)2=l B.3123⎛⎫- ⎪⎝⎭=-8127C.-5÷13×35=-25 D.314×(-3.25)-634×3.25=-32.5.14.若a=-2×32,b=(-2×3)2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c >a>b15.若x=2,y=3,则x y+的值为()A.5 B.-5 C.5或1 D.以上都不对二、填空题1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是____。
人教版七年级数学上册第一章《有理数》综合测试卷(含答案)一、选择题(共11小题;共55分)1. 5的倒数是( )A. 5B. 15C. −5 D. −152. 如图所示,体育课上,小丽的铅球成绩为6.4m,她投出的铅球落在( )A. 区域①B. 区域②C. 区域③D. 区域④3. 一个数的平方一定是( )A. 正数B. 负数C. 非正数D. 非负数4. 在数轴上,原点及原点右边的点表示( )A. 正数B. 整数C. 非负数D. 有理数5. 去年11月份我市某一天的最高气温是10∘C,最低气温是−1∘C,那么这一天的最高气温比最低气温高( )A. −9∘CB. −11∘CC. 9∘CD. 11∘C6. 绝对值小于3的整数有( )A. 2个B. 3个C. 5个D. 6个7. −3的相反数是( )A. −3B. 13C. −13D. 38. 下列说法:①−14是相反数;②−a一定是负数;③互为相反数的两个数的符号必相反;④0.5与2互为相反数;⑤任何一个有理数都有相反数.其中正确的有( )A. 1个B. 2个C. 3个D. 4个9. 某仓库有粮500吨,某天上午运出30吨,下午又运进20吨,则仓库现有粮( )A. 490吨B. 510吨C. 450吨D. 550吨10. 若数轴上点A,B表示的数分别为8和−15,则点A,B之间的距离可以表示为( )A. 8+(−15)B. 8−(−15)C. (−8)+15D. (−8)−1511. 如果两个有理数的积为零,即ab=0,那么下列说法中必定正确的是( )A. a一定是零B. b一定是零C. a和b一定都是零D. a和b中至少有一个是零二、填空题(共5小题;共25分)12. 如果∣−x∣=412,那么x=.13. −423的绝对值是,相反数是,倒数是.14. 比较大小:−2−312.(填“<”或“>”)15. 计算:−2×3=,(−2)÷(−4)=,(−4)2=.16. 若有理数a的倒数等于它本身,则a2020=.三、解答题(共5小题;共70分)17. 若a、b互为相反数,c、d互为倒数,m是最大的负整数,求a+b−cd−m的值.18. 计算:(1)45×12÷13;(2)1516÷32−14;(3)2.5×(25−13)+2.1;(4)215÷(1.1−34)+15×35.19. 如图所示,在数轴上有三个点A,B,C,请回答下列问题.(1)将点B向左移动3个单位长度后,三个点所表示的数谁最小?是多少?(2)将点A向右移动4个单位长度后,三个点所表示的数谁最小?是多少?(3)将点C向左移动6个单位长度后,点B与点C表示的数谁大?(4)要使三个点表示相同的数,如何移动其中两点?有几种移法?20. 观察下列各式的规律:①1×3−22=3−4=−1;②2×4−32=8−9=−1;③3×5−42=15−16=−1.请按以上规律写了出第4个算式,用含有字母的式子表示第n个算式为,并证明21. 某检修小组乘汽车自A地出发,检修南北走向的供电线路.南记为正,北记为负.一天所走路程(单位:千米)为:+10,−3,+4,−2,−8,+16,−2,+12,+8,−5.问:(1)最后他们是否回到A地?若没有,则在A地的什么方向?距离A地多远?(2)若每千米耗油0.08升,则今天共耗油多少升?参考答案1. B【解析】根据倒数的概念.答案B . 2. D3. D4. C5. D6. C 【解析】绝对值小于 3 的整数有 ±1,±2,0,一共 5 个.7. D 【解析】−3 的相反数是 3.8. A9. A10. B11. D12. ±41213. 423,423,−31414. >【解析】因为 ∣−2∣<∣∣−312∣∣,所以 −2>−312.故答案为:>.15. −6,12,16【解析】−2×3=−6;(−2)÷(−4)=12;(−4)2=16.16. 1【解析】由题意,得 a =1 或 a =−1.当 a =1 时,a 2020=1;当 a =−1 时,a 2020=1.综上所述,a 2020=1.17. 根据题意得: a +b =0 , cd =1 , m =−1 ,则原式 =0−1+1=0 .18. (1) 115.(2) 38.(3) 2415.(4)263525.19. (1)从数轴上可以看出,将点B向左移动3个单位长度后,至−5处,此时点B表示的数为−5,因为点A表示的数为−4,点C表示的数为3,所以点B表示的数最小,是−5.(2)从数轴上可以看出,将点A向右移动4个单位长度后,至0处,此时点A表示的数为0,因为点B表示的数为−2,点C表示的数为3,所以点B表示的数最小,是−2.(3)从数轴上可以看出,将点C向左移动6个单位长度后,至−3处,此时点C表示的数为−3,因为点B表示的数为−2,所以点B表示的数大.(4)把点A向右移动2个单位长度,点C向左移动5个单位长度;或把点B、点C分别向左移动2个单位长度、7个单位长度;或把点A、点B分别向右移动7个单位长度、5个单位长度,都可以使三个点表示的数相同,因此共有三种移法.20. 4×6−52=24−25=−1;n(n+2)−(n+1)2=−1.证明如下:左边=n(n+2)−(n+1)2=n2+2n−n2−2n−1=−1,右边=−1.∴左边=右边21. (1)(+10)+(−3)+(+4)+(−2)+(−8)+(+16)+(−2)+(+12)+(+8)+(−5) =10−3+4−2−8+16−2+12+8−5=10+4+16+12+8−3−2−8−2−5=50−20=30.所以没有回到A地,在A地南方30千米处.(2)∣+10∣+∣−3∣+∣+4∣+∣−2∣+∣−8∣+∣+16∣+∣−2∣+∣+12∣+∣+8∣+∣−5∣=10+3+4+2+8+16+2+12+8+5=70(千米).70×0.08=5.6升.所以今天共耗油5.6升.。
第一章有理数全章综合测试一、选择题:1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是()A.-12B.2 C.一2 D.123.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a <b C.ab>0 D.ab>04.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是()A.收入200元与支出20元B.上升l0米和下降7米C.超过0.05mm与不足0.03m D.增大2岁与减少2升7.下列说法正确的是()A.-a一定是负数;B.a定是正数;C.a一定不是负数;D.-a一定是负数8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零10.若0<m<1,m、m2、1m的大小关系是()A.m<m2<1mB.m2<m<1mC.1m<m<m2D.1m<m2<m11.4604608取近似值,保留三个有效数字,结果是()A.4.60 ×106B.4600000 C.4.61 ×106D.4.605 ×106 12.下列各项判断正确的是()A.a+b一定大于a-b B.若-ab<0,则a、b异号C.若a3=b3,则a=b D.若a2=b2,则a=b13.下列运算正确的是()A.-22÷(一2)2=l B.3123⎛⎫- ⎪⎝⎭=-8127C.-5÷13×35=-25 D.314×(-3.25)-634×3.25=-32.5.14.若a=-2×32,b=(-2×3)2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c>a>b15.若x=2,y=3,则x y+的值为()A.5 B.-5 C.5或1 D.以上都不对二、填空题1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是____。
人教版七年级数学上册第一章《有理数》综合测试卷(含答案)一、单选题(每小题5 分,共50 分)1 .如果某商场盈利3 万元,记作万元,那么亏损万元,应记作( )A .-1.8B .万元C .万元D .+1.82 .|-2|的倒数是( )A .2B .-2C .D .3 .在实数,0,,3.1415926 ,,4.21 ,3π中,有理数的个数为( )A .3B .4C .5D .64 .有下列四个算式①;②;③;④. 其中,正确的有( ) .A .0 个B .1 个C .2 个D .3 个5 .长江是我国第一大河,它的全长约为6300 千米,6300 这个数用科学记数法表示为( ).A .3x1B .C .63xd03D .6.3x10*6 .如图,已知数轴上两点表示的数分别是,则计算正确的是( )A .b-aB .C .a+D .7 .下面的说法中,正确的个数是( )①0 是整数;②是负分数;不是正数;自然数一定是非负数;负数一定是负有理数.A .1 个B .2 个C .3 个D .4 个8 .下列说法错误的是( )A .数轴上表示的点与表示的点的距离是2B .数轴上原点表示的数是0C .所有的有理数都可以用数轴上的点表示出来D .最大的负整数是-19 .如图,数轴上有,,,四个整数点(即各点均表示整数),且2AB=8C=3CD .若,两点所表示的数分别是和6,则线段的中点所表示的数是( ) .A .2B .3C .5D .610 .一个机器人从数轴原点出发,沿数轴正方向,以每前进3 步后退2 步的程序运动.设该机器人每秒钟前进或后退1 步,并且每步的距离是1 个单位长,表示第n 秒时机器人在数轴上的位置所对应的数.给出下列结论:①1;②;③;④,⑤,其中正确的结论有( )A .1 个B .2 个C .3 个D .4 个二、填空题(每空4 分,共20 分)11 .计算:=12 .计算(−1.5)3 ×(− )2−1 ×0.62= .13 .的相反数是.14 .若,则.15 .、在数轴上得位置如图所示,化简: .________三、解答题(16 题6 分, 17 题8 分, 18 题8 分, 19 题8 分)16 .计算.(1)(2)-10+8+(-23-(-4)x-3(3)17 .已知,两点在数轴上表示的数分别是和12,现,两点分别以1 个单位/ 秒,3 个单位秒的速度向左运动,比早1 秒出发,问出发后几秒原点恰好在两点正中间?18 .如果有理数满足,试求的值.19 .探索规律:(1)计算并观察下列每组算式:,,;(2)已知25×25=625,那么24×26=──;(3)请用代数式把你从以上的过程中发现的规律表示出来.∴t=2,1 .B2 .D3 .D4 .C5 .C6 .C7 .C8 .A9 .A 10 .C 11 .9 . 12 .-2.1 13 .14 .1 15 .-3a+ 16 .(1)(2)-20 (3)参考答案(1)解:原式(2)原式(3)原式17 .B 出发后 2 秒原点恰好在两点正中间.解:设 B 出发 t 秒时原点在它们的正中间, 由题意得 ,∴-(-3-1-t)=12-3t , ...答:B 出发2t 秒时原点在它们的正中间.18.解:∵|ab-3|+|1-b|=0,∴ab-3=0 ,1-b=0,解得a=3 ,b=1,∴===== .19 .(1),,;(2)624;(3)n2=(n+1)(n﹣1)+1解:(1),,;(2)已知25×25=625,那么24×26=624;(3)根据题意得:n2=(n+1)(n﹣1)+1 .【点睛】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.。
人教版七年级数学上册第一章《有理数》综合测试卷一.选择题(共12小题,满分36分,每小题3分)1.2021的相反数是( )A.﹣2021B.2021C.D.﹣2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为( )A.44×108B.4.4×109C.4.4×108D.4.4×10103.下列各数:﹣,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有( )个.A.1B.2C.3D.44.近似数35.04万精确到( )A.百位B.百分位C.万位D.个位5.在下列气温的变化中,能够反映温度上升5℃的是( )A.气温由﹣5℃到5℃B.气温由﹣1℃到﹣6℃C.气温由5℃到0℃D.气温由﹣2℃到3℃6.下列说法正确的是( )A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为有理数7.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是( )A.B.C.D.8.绝对值大于2小于5的正整数有( )个.A.2B.3C.4D.59.用分配律计算()×,去括号后正确的是( )A.﹣B.﹣C.﹣D.﹣10.计算(﹣2)200+(﹣2)201的结果是( )A.﹣2B.﹣2200C.1D.220011.在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A .a +b >0B .a +b <0C .ab >0D .|a |>|b |12.若a 2=25,|b |=3,则a +b 所有可能的值为( )A .8B .8或2C .8或﹣2D .±8或±2二.填空题(共8小题,满分32分,每小题4分)13.有理数中,最大的负整数是 .14.比较大小:﹣2 ﹣3.(填“<”或“>”)15.若m 与﹣2互为相反数,则m 的值为 .16.1.95≈ (精确到十分位);≈ (精确到万位).17.数轴上表示数﹣5和表示﹣14的两点之间的距离是 .18.填空:|﹣1+|+|﹣+|+|﹣+|+…+|﹣+|= .19.规定图形表示运算a ﹣b ﹣c ,图形表示运算x ﹣z ﹣y +w .则+= .20.若a 、b 为整数,且|a ﹣2|+(b +3)2020=1,则b a = .三.解答题(共7小题,满分52分)21.(8分)把下列各数填在相应的大括号内:﹣35,0.1,,0,,1,4.01001000…,22,﹣0.3,,π.正 数:{ …};整 数:{ …};负{ …};非负整数:{ …}.22.(6分)计算:(1)8+(﹣6)+5+(﹣8). (2)0.47﹣4﹣(﹣1.53)﹣1.23.(8分)计算:(1)(﹣+﹣)×36 (2)(﹣3)2×(﹣)+4+22×24.(8分)把下列各数在数轴上表示出来,再按从小到大的顺序用“<”连接起来:﹣3,0,+3.5,25.(6分)王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?26.(8分)已知|a|=8,|b|=2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.27.(8分)请你研究以下分析过程,并尝试完成下列问题.13=1213+23=9=32=(1+2)213+23+33=36=62=(1+2+3)213+23+33+43=100=102=(1+2+3+4)2(1)13+23+33+ (103)(2)13+23+33+ (203)(3)13+23+33+…+n3= (4)计算:113+123+133+…+203的值.答案一.选择题(共12小题,满分36分,每小题3分)1.解:2021的相反数是:﹣2021.故选:A.2.解:4 400 000 000=4.4×109,故选:B.3.解:下列各数:﹣,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有:﹣,﹣0.7,﹣7.3,共3个,故选:C.4.解:∵35.04万末尾数字4表示4百,∴近似数35.04万精确到百位.故选:A.5.解:A.气温由﹣5℃到5℃,上升了5﹣(﹣5)=10(℃),不符合题意;B.气温由﹣1℃到﹣6℃,上升了﹣6﹣(﹣1)=﹣5(℃),不符合题意;C.气温由5℃到0℃,上升了0﹣5=﹣5(℃),不符合题意;D.气温由﹣2℃到3℃,上升了3﹣(﹣2)=5(℃),符合题意;故选:D.6.解:非负数包括零和正数,A错误;正整数指大于0的整数,B错误;没有最小的整数,C错误;整数和分数统称为有理数,这是概念,D正确.故选:D.7.解:已知a+b+c=0,A.由数轴可知,a>0>b>c,当|a|=|b|+|c|时,满足条件.B.由数轴可知,a>b>0>c,当|c|=|a|+|b|时,满足条件.C.由数轴可知,a>c>0>b,当|b|=|a|+|c|时,满足条件.D.由数轴可知,a>0>b>c,且|a|<|b|+|c|时,所以不可能满足条件.故选:D.8.解:绝对值大于2小于5的正整数有3,4,共2个,故选:A.9.解:()×=,故选:D.10.解:(﹣2)201=(﹣2)×(﹣2)200,所以(﹣2)200+(﹣2)201=(﹣2)200+(﹣2)×(﹣2)200=﹣(﹣2)200=﹣2200.故选:B.11.解:由数轴可知,a为正数,b为负数,且|a|<|b|,∴a+b应该是负数,即a+b<0,又∵a>0,b<0,ab<0,故答案A、C、D错误.故选:B.12.解:∵a2=25,|b|=3,∴a=±5,b=±3,a=5,b=3时,a+b=5+3=8,a=5,b=﹣3时,a+b=5+(﹣3)=2,a=﹣5,b=3时,a+b=﹣5+3=﹣2,a=﹣5,b=﹣3时,a+b=﹣5+(﹣3)=﹣8,综上所述,a+b所有可能的值为±8或±2.故选:D.二.填空题(共8小题,满分32分,每小题4分)13.解:有理数中,最大的负整数是﹣1,故﹣1.14.解:∵|﹣2|<|﹣3|,∴﹣2>.故>.15.解:∵﹣2的相反数是2,∴m=2.故2.16.解:1.95≈2.0(精确到十分位);≈58万(精确到万位),故2.0;58万.17.解:|﹣5﹣(﹣14)|=9.18.解:原式=1﹣+﹣+﹣+…+﹣=1﹣=,故19.解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故﹣820.解:∵|a﹣2|≥0,(b+3)2020≥0,而a、b为整数,∴|a﹣2|=1,(b+3)2020=0或|a﹣2|=0,(b+3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.三.解答题(共7小题,满分52分)21.解:正数:{0.1,1,4.01001000…,22,,π,…};整数:{﹣35,0,1,22,,…};负{,,﹣0.3,…};非负整数:{0,1,22,,…}.故0.1,1,4.01001000…,22,,π;﹣35,0,1,22,;,,﹣0.3;0,1,22,.22.解:(1)原式=8+(﹣8)+(﹣6)+5=0+(﹣1)=﹣1;(2)原式=0.47+1.53﹣(4+1)=2﹣6=﹣4.23.解:(1)原式=﹣6+27﹣15=6;(2)原式=9××(﹣)+4+4×(﹣)=﹣﹣+4=﹣.24.解:如图所示:数轴上的点表示的数右边的总比左边的大,得<0.5<+3.5.25.解:(1)(+6)+(﹣3)+(+10)+(﹣8)+(+12)+(﹣7)+(﹣10),=6﹣3+10﹣8+12﹣7﹣10,=28﹣28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3×(|+6|+|﹣3|+|+10|+|﹣8|+|+12|+|﹣7|+|﹣10|),=3×(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).26.解:(1)∵|a|=8,|b|=2,且a,b同号,∴a=8,b=2;a=﹣8,b=﹣2,则a+b=10或﹣10;(2)∵|a|=8,|b|=2,且a,b异号,∴a=8,b=﹣2;a=﹣8,b=2,则a+b=6或﹣6.27.解:(1)13+23+33+…+103=3025;(2)13+23+33+…+203=44100;(3)13+23+33+…+n3=;(4)113+123+133+…+203=41075.故(1)3025;(2)44100;(3);(4)41075。
人教版数学七年级上册第一章 有理数 综合测试卷(时间90分钟,满分120分)题号 一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分) 1. 在-3,-1,0,1这四个数中,最小的数是( ) A .-3 B .-1 C .0 D .12.-12019的相反数是( )A .2016B .-2016 C.12019 D .-120193.将161000用科学记数法表示为( )A .0.161×106B .1.61×105C .16.1×104D .161×1034.有理数a ,b 在数轴上的对应点如图所示,则下列式子中正确的是( ) ①b <0<a ;②|b|<|a|;③ab >0;④a -b >a +b. A .①② B .①④ C .②③ D .③④5.小明做了以下4道计算题:①(-1)2018=2018;②0-(-1)=1;③-12+13=-16;④12÷(-12)=-1.请你帮他检查一下,他一共做对了( ) A .1题 B .2题 C .3题 D. 4题6.如图,数轴上有M ,N ,P ,Q 四个点,其中点P 所表示的数为a ,则数-3a 所对应的点可能是( ) A .M B .NC .PD .Q7.已知a ,b 是异号的两个有理数,且|a +b|=|a|-b ,用数轴上的点来表示a ,b ,下列正确的是( )8.定义新运算:对任意有理数a ,b ,都有a ⊕b =1a +1b ,例如:2⊕3=12+13=56,那么4⊕(-3)的值是( )A .-712B .-112C.112D.7129.已知ab >0,则|a|a +|b|b +|ab|ab 的值是( )A .-1或3B .1或3C .1或-3D .-1或-310.计算-1+(-1)2+(-1)3+(-1)4+…+(-1)2 019的值,结果正确的是( ) A .1 B .-1 C .0 D .-1或0第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在有理数中,最小的正整数是_____ __,最大的负整数是______,绝对值最小的数是__ __. 12.在0,-2,1,12这四个数中,最大数与最小数的和是__ __.13.已知(a -2)2+(b +3)2+|c -5|=0,则a -2b +c 2=____________.14.有理数a ,b 在数轴上的位置如图所示.比较a ,-a ,0,b ,-b 的大小是____________.15.设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的值,则a +b +c =__ __.16.一个质点P 从距原点1个单位长度的点A 处向原点方向跳动,第一次跳动到OA 的中点A 1处,第二次从点A 1跳动到OA 1的中点A 2处,第三次从点A 2跳动到OA 2的中点A 3处, …如此不断跳动下去,则第五次跳动后,该质点到原点O 的距离为__ __.17.若x ,y 互为相反数,a ,b 互为倒数,且m 的绝对值是1,则x +y +3ab -m 的值是_________.18.在一次综合与实践课上,小明和小颖正在设计一种新的运算程序,规定两种新的运算“·”和“○”:a·b=a2+b2;a○b =2ab,如(2·3)(2○3)=(22+32)(2×2×3)=156,则[2·(-1)][2○(-1)]=__ __.三.解答题(共9小题,66分)19. (6分)已知|a|=1,|b|=4,且a+b<0,求a+b的值.20. (6分) 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车路程依先后次序记录如下(单位:km):+9,-3,-5,+4,-8,+6,-3,-6,-4,+7.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营运额是多少元?21. (6分)小明在网上销售苹果,原计划每天卖100斤,但实际每天的销量与计划销量相比有出入,如表是某周的销售情况(超额记为正,不足记为负.单位:斤):星期一二三四五六日与计划量的差值+4 -3 -5 +14 -8 +21 -6(1)根据表中的数据可知前三天共卖出__ __斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售__ __斤;(3)本周实际销售总量达到了计划销量没有?(4)若每斤按5元出售,每斤苹果的运费为1元,那么小明本周一共收入多少元?22. (6分)仔细观察下列三组数 第一组:1,4,9,16,25,… 第二组:1,8,27,64,125,…第三组:-2,-8,-18,-32,-50,… (1)这组数各是按什么规律排列的?(2)第二组数的第100个数是第一组数的第100个数的多少倍? (3)取每组数的第20个数计算这三个数的和.23. (6分)请你先认真阅读材料: 计算(-130)÷(23-110+16-25).解:原式的倒数是(23-110+16-25)÷(-130)=(23-110+16-25)×(-30) =23×(-30)-110×(-30)+16×(-30)-25×(-30) =-20-(-3)+(-5)-(-12) =-20+3-5+12 =-10. 故原式等于-110.再根据你对所提供材料的理解,选择合适的方法计算:(-142)÷(16-314+23-27).24. (8分)计算:(1)-4×8×(-2.5)×0.1×(-1.25)×10;(2)(12+56-712)×(-36);(3)(-3)2-(112)3×29-6÷|-23|3;25. (8分)已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b -1)2=0.现将点A ,B 之间的距离记作|AB|,定义|AB|=|a -b|. (1)|AB|=__ __;(2)设点P 在数轴上对应的数是x ,当|PA|-|PB|=2时,求x 的值.26. (10分)计算(1)(-2)2×(-1)3-3×[-1-(-2)];(2)-32×(-13)2+(34-16+38)×(-24);(3)(-32+3)×[(-1)2020-(1-0.5×13)].27. (10分)阅读下面的材料,再解决后面的问题: 因为:11×3=12(1-13),13×5=12(13-15),15×7=12(15-17)…… 所以:11×3+13×5+15×7+…+199×101=12(1-13+13-15+15-17+…+199-1101)=12(1-1101)=50101. 求:11×3+13×5+15×7+…+12017×2019.参考答案:1-5ACBBC 6-10ACBAB11. 1,-1,012. -113. 3314. b<a<0<-a<b15. 016. 1 2514. 4或218. -2019. 解:因为|a|=1,|b|=4,所以a=±1,b=±4,因为a+b<0,所以a=1,b=-4,或a=-1,b=-4,所以a+b=-3或-520. 解:(1)9-3-5+4-8+6-3-6-4+7=-3,将最后一名乘客送到目的地,出租车离鼓楼出发点3千米,在鼓楼西边(2)(9+3+5+4+8+6+3+6+4+7)×2.4=132(元),故司机一下午的营运额是132元21. 解:(1)根据题意,得300+4-3-5=296(2)根据题意,得121-92=29(3)+4-3-5+14-8+21-6=17>0,故本周实际销量达到了计划销量(4)(17+100×7)×(5-1)=717×4=2 868(元).答:小明本周一共收入2 868元22. 解:(1)第一组按12,22,32,42,排列,第二组按13,23,33,43,排列,第三组按12×(-2),22×(-2),32×(-2)排列(2)1003÷1002=100(3)202+203+202×(-2)=400+8 000+(-800) =7 60023. 解:原式的倒数是: (16-314+23-27)÷(-142) =(16-314+23-27)×(-42) =-(16×42-314×42+23×42-27×42)=-(7-9+28-12) =-14. 故原式=-11424. 解:(1)原式=-(4×2.5)×(8×1.25)×(0.1×10) =-100(1)原式=12×(-36)+56×(-36)-712×(-36)=-18-30+21 =-27(4)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2). (3)原式=9-278×29-6×278=9-34-814=9-21 =-12(4)原式=-8+(-3)×[16+2]-9÷(-2) =-8-54+92=-571225. 解:(1)5(2)当点P 在点A 左侧时,|PA|-|PB|=-(|PB|-|PA|)=-|AB|=-5≠2; 当点P 在点B 右侧时,|PA|-|PB|=|AB|=5≠2;当点P 在A ,B 之间时,|PA|=|x -(-4)|=x +4,|PB|=|x -1|=1-x , 因为|PA|-|PB|=2,所以x +4-(1-x)=2,解得x =-12,即x 的值为-1226. 解:(1)原式=4×(-1)-3×(-1+2) =-4-3×1 =-4-3 =-7(2)原式=-9×19-34×24+16×24-38×24=-1-18+4-9 =-24(3)原式=(-9+3)×[1-(1-16)]=-6×16=-127. 解:11×3+13×5+15×7+…+12017×2019.=12(1-13+13-15+15-17+…+12017-12019) =12(1-12019) =10092019。
第一章《有理数》测试题一、填空题(每小题4分,共20分):1.下列各式-12,323,0,(-4)2,-|-5|,-(+3.2),422,0.815的计算结果,是整数的有________________,是分数的有_________________,是正数的有_________________,是负数的有___________________;2.a 的相反数仍是a ,则a =______;3.a 的绝对值仍是-a ,则a 为______;4.绝对值不大于2的整数有_______;5.700000用科学记数法表示是_ __,近似数9.105×104精确到_ _位,有___有效数字.二、判断正误(每小题3分,共21分):1.0是非负整数………………………………………………………………………( )2.若a >b ,则|a |>|b |……………………………………………………………( )3.23=32………………………………………………………………………………( )4.-73=(-7)×(-7)×(-7)……………………………………………( )5.若a 是有理数,则a 2>0…………………………………………………………( )6. 若a 是整数时,必有a n≥0(n 是非0自然数) …………………………………………( )7. 大于-1且小于0的有理数的立方一定大于原数……………… …………( )三、选择题(每小题4分,共24分):1.平方得4的数的是…………………………………………………………………( )(A )2 (B )-2 (C )2或-2 (D )不存在2.下列说法错误的是…………………………………………………………………( )(A )数轴的三要素是原点,正方向、单位长度(B )数轴上的每一个点都表示一个有理数(C )数轴上右边的点总比左边的点所表示的数大(D )表示负数的点位于原点左侧3.下列运算结果属于负数的是………………………………………………………( )(A )-(1-98×7) (B )(1-9)8-17(C )-(1-98)×7 (D )1-(9×7)(-8)4.一个数的奇次幂是负数,那么这个数是…………………………………………( )(A )正数 (B )负数 (C )非正数 (D )非负数5.若ab =|ab |,必有………………………………………………………………( )(A )ab 不小于0 (B )a ,b 符号不同 (C )ab >0 (D )a <0 ,b <0 6.-133,-0.2,-0.22三个数之间的大小关系是……………………………( ) (A )-133>-0.2>-0.22 (B )-133<-0.2<-0.22 (C )-133>-0.22>-0.2 (D )-0.2>-0.22>-133 四、计算(每小题7分,共28分)1.(-85)×(-4)2-0.25×(-5)×(-4)3; 2.-24÷(-232)×2+521×(-61)-0.25;3.4.0)4121(212)2.0(12⨯⎥⎦⎤⎢⎣⎡+--÷-; 4.(1876597-+-)×(-18)+1.95×6-1.45×0.4.五、(本题7分)当321-=a ,322-=b 时,求代数式3(a +b )2-6ab 的值.参考答案一、答案:1、-12,0,(-4)2,-|-5|,422; 323,-(+3.2),0.815; 323(-4)2,422,0.815; -12,-|-5|,-(+3.2).2、答案:0.解析:应从正数、负数和0 三个方面逐一考虑再作判断.结果应为a =03、答案:负数或0.解析:应从正数、负数和0 三个方面逐一考虑再作判断.结果应为负数.4、答案:0,±1,±2.解析:不大于2的整数包括2,不小于-2的整数包括-2,所以不应丢掉±2.5、答案:7×105;十;4个.解析:700000=7×100000=7×105;9.105×104=9.105×1000=91050,所以是精确到十位;最后的0前的数字5直到左面第一个不是0的数字9,共有4个数字,所以有4个有效数字.二、1、答案:√解析:0既是非负数,也是整数.2、答案:×解析:不仅考虑正数,也要考虑负数和0 .当a =0,b <0 时,或a <0且b <0时, |a |>|b |都不成立.3、答案:×解析:23=2×2×2=8,32=3×3=9,所以23≠324、答案:×解析:-73不能理解为-7×3.5、答案:×解析:不能忘记0.当a=0时,a2 ≯0.6、答案:×解析:注意,当a<0时,a的奇次方是负数,如(-3)3 =-27<0.7、答案:√解析:大于-1且小于0的有理数的绝对值都是小于1的正数,它们的乘积的绝对值变小;又,大于-1且小于0的有理数的立方一定是负数,所以大于-1且小于0的有理数的立方一定大于原数.三、1、答案:C.解析:平方得4的数不仅是2,也不仅是-2,所以答2或-2才完整.2、答案:B.解析:虽然每一个有理数都可以用数轴上唯一的一个点来表示,但是数轴上的每一个点不都表示一个有理数.3、答案:B.解析:负数的相反数是正数,所以(A)和(C)是正数;“减去负数等于加上它的相反数(正数)”所以(D)也是正数;只有(B):(1-9)8-17 =-8×8-17 =-64-17 =-81.可知只有(B)正确.4、答案:B.解析:正数的奇次幂是正数,0的奇次幂是0,所以(A)、(C)(D)都不正确.5、答案:A.解析:(B)显然不正确;(C)和(D)虽然都能使ab=|ab|成立,但ab=|ab|成立时,(C)和(D)未必成立,所以(C)和(D)都不成立.6、答案:D.解析:比较各绝对值的大小.由于133-≈0.23,所以有133->22.0->2.0-,则有-0.2>-0.22>-133. 四、1、答案:-90. 解析:注意运算顺序,且0.25 =41. (-85)×(-4)2-0.25×(-5)×(-4)3=(-85)×16-0.25×(-5)×(-64) =(-5)×2-(-16)×(-5)=-10-80=-90.应注意,计算-10-80 时应看作-10 与-80 的和.2、答案:1065. 解析:注意-24=-2×2×2×2 =-16,再统一为分数计算:-24÷(-232)×2+521×(-61)-0.25 =-16÷(-38)×2+211×(-61)-41 =-16×(-83)×2+(-1211)-123 = 12+(-1214) = 12-67 =665. 3、答案:50.解析:注意统一为真分数再按括号规定的顺序计算: 4.0)4121(212)2.0(12⨯⎥⎦⎤⎢⎣⎡+--÷-= 52)491(25)51(12⨯⎥⎦⎤⎢⎣⎡+--÷- = 52452525⨯⎥⎦⎤⎢⎣⎡-÷ = ⎥⎦⎤⎢⎣⎡-÷21125 = 2125÷ = 25×2= 50.注意分配律的运用.4、答案:17.12.解析:注意分配律的运用,可以避免通分. (1876597-+-)×(-18)+1.95×6-1.45×0.4 = 14-15+7+11.7-0.58= 6+11.12= 17.12. 五、答案:389. 解析:3(a +b )2-6ab = 36)322321(2---(-1)322)(32- = 3(-313)2-6)38)(35(--= 3×9169-380= 389.。
《有理数》综合测试卷(人教版)(时间100分钟,120分)
一、填空题:(1-5题每空1分,6-18题每题2分,共38分)
1、数轴上原点右边4厘米处的点表示的有理数是32,那么,数轴上原点左边10厘米处的点表示的有理数是________ 。
2、若三个有理数的乘积为负数,在这三个有理数中,有_____个负数。
3、一个数的相反数是它本身,这个数是_________;一个数的倒数是它本身,这个数是_________。
4、如果数轴上的点A 对应有理数为-2,那么与A 点相距3个单位长度的点所对应的有理数为____ __ _____。
5、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。
6、绝对值小于2008的所有整数的和 。
7、已知∣x ∣=8,∣y ∣=2,则(x + y )²= 。
8、已知∣a ∣=3,∣b ∣=2,且ab <0,则a ﹣b= 。
9、若2x −3与x=______。
10、如果|2x -y -2)²=0 成立时,则x ²+y ² = 。
11、(﹣1) +(﹣1) = (n 为正整数)。
12、计算:(1−2)×(2−3)×(3−4)×……×(100−101)= 。
13、如果|a|=3, |b|=5,且a>b ,那么a= ,b= 。
14、已知a 与b 互为相反数,b 与c 互为相反数,如果c=-6,那么a 的值是 。
15、如果n 是正整数,那么(−1) +(−1) = 。
16、若x 与2y 互为相反数,-y 与-3z 互为倒数,m 是任何正偶次幂都等于本身的数,求代数式2x+4y-3 y z+m ²的值 。
17、如果|a+b|+|a-2|=0,求|3a-2b|= 。
18、若a>0,b<0,且|a|>|b|,则a+b 0。
若a>0,b<0,且|a|<|b|,则a+b 0。
2n 2n+1 2n-1 2n+1
二、选择题:(每题每题3分,共42分)
1、若m 是有理数,则|m|+m 的值是( )。
A.不可能是正数
B.一定是正数
C.不可能是负数
D.可能是正数,也可能是负数
2、如果-xyz>0,且x 与z 异号,则y ( )。
A 、>0
B 、=0
C 、0<
3、如果a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,
那么
²—cd 的值(
)
、3 C 、4 D 、不能确定
4、若其中至少有一个正数的5个有理数的积是负数,那么这五个因数中,正数的个数( )
A 、1
B 、2或4
C 、5
D 、1和3
5、下列说法正确的是 ( )
A 、有最小的正数,
B 、有最小的自然数;
C 、有最大的有理数;
D 、无最大的负整
6、绝对值大于2且小于5的所有整数的和是 ( )
A 、7
B 、—7
C 、0
D 、5
7、设a 为有理数,则下式的值一定为正数的是( )。
A 、a ²
B 、|a|
C 、a+1
D 、a ²+1
8、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,
则代数式m ²−cd+ 的值为( )
A.-3 C.-5 D.3或-5
9、已知:a 、b 、c 在数轴上位置如图1,O 为原点,则下列正确的是( )
A 、abc>0
B 、|a|>|c|
C 、|a|>|b|
D 、c ab
<0
10、若a ﹥0﹥b ﹥c ,a+ b +c=1,,,
则M 、N 、P 之间的大小关系是( )
A 、M ﹥N ﹥P
B 、N ﹥P ﹥M
C 、P ﹥M ﹥N
D 、M ﹥P ﹥N
11、、3498500精确到万位的近似数应写作 ( )。
A 、
3490000
B 、3500000
C 、3.5 ×10
D 、3.50×10
12、已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离
为1的数,那么p -²+1的值是( )。
A 、3 B 、2 C 、1 D 13 的倒数与a 等于 ( ) 。
A 、3/2
B 、-3/2
C 、3
D 、9
14、 如果a+b=c ,且a 、b 都大于c ,那么a 、b 一定是( ) A .同为负数 B .一个正数一个负数 C .同为正数 D .一个负数一个是零。
三、计算题:(1-4题每题4分,5-7题每题5分,8题9分,共40分)
1、若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.
2、若ab ≠0,求
3、计算:-1+2-3+4-5+6-…-99+100.
4、( +(=
5、已知,如图,A 、B 分别为数轴上的两点,A 点对应的数为-20,B 点对应的数为100.
(1)请写出AB 中点M 对应的数;(1分)
-20 100
(2)现有一只电子蚂蚁P 从B 点出发,以6单位/秒的速度向左运动,同时另一只电子 蚂蚁Q 恰好从A 点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道C 点对应的数是多少吗?(2分)
(3)若当电子蚂蚁P 从B 点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,你知道D 点对应的数是多少吗? (2分)
6 6 2000
6、已知在纸面上有一数轴(如图)
-3 -2 -1 0 1 2 3
(1)若1表示的点与-1表示的点重合,则-2表示的点与数表示的点重合;(1分)
(2)若-1表示的点与3表示的点重合,回答以下问题:
①5表示的点与数表示的点重合;(1分)
②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?(3分)
7、为体现社会对教师的尊重,教师节这一天上午,出租车司机小红在南北向的公路上免费接送老师。
如果规定向北为正,向南为负,出租车的行程如下(单位:千米):+5,-4,+3,―7,―2,+3,―8,+7。
(1)最后一名老师送到目的地时,小红距出车地点的距离是多少?在出车地点的什么方向?(2分)
(2)若汽车耗油量为0.2升/千米,这天下午汽车共耗油多少升?(3分)
8、在“十·一”黄金周期间,黄山风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):
(1)请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?
(5分)
(2) 若9月30日的游客人数为1万人,求这7天的游客总人数是多少万人?(4分)
参考答案:
一、填空题:
1、-80
2、2
3、0 +1
4、-5和1
5、−1 地下第2层 地面上第10层
6、0
7、36 100
8、+5
9、0 10、13 11、0 12、−1
13、+3 -5(当a=3时,b=-5,当a=-3时,b=-5) 14、-6 15、− 2
16、0 -1 17、10 18、> <
二、选择题:
1、C (当m>0时,|m|+m=m+m=2m>0; 当m=0时,|m|+m=0+0=0; 当m<0时,|m|+m=-m+m=0.所以选C.)
2、A
3、B
4、B
5、B
6、 C
7、D
8、B 9、A 10、D 11、D 12、B 13、C 14、A
三、计算题:
1、(答案:由|a +b|=a +b 知a +b ≥0,根据这一条件,得a=4,b=2,所以a -b=2;a=4,b=-2,所以a -b=6.)
2、(答案:2 0 0 -2 要进行讨论)
3、原式=(-1+2)+(-3+4)+(-5+6)+…+(-99+100)
=1+1+1+…+1 =50
4、
5、(1)40
(2)28 提示:100-(-20)=120 120÷(4+6)=12秒
100-12×6=28
(3)-260提示:100-(-20)=120 120÷(6-4)=60秒
-4×60-(-20)=-260
6、(1)2(原点是对折点)
(2)1)-3 2)A 、-3.5 B 、5.5(1是对折点)
7、(1)3千米,在出车地点的南方(5-4+3―7―2+3―8+7=―3)
(2)0.2×(5+4+3+7+2+3+8+7)=7.8(升)
8、(1)3日人数最多 1日人数最少 相差1.9万人
(2) 23.9万人。