光通信及光孤子
- 格式:ppt
- 大小:309.50 KB
- 文档页数:12
光纤通信最新技术光纤通信最新技术对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标。
目前主要的光纤通信技术有以下几种:一:波分复用技术波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
WDM波分复用并不是一个新概念,在光纤通信出现伊始,人们就意识到可以利用光纤的巨大带宽进行波长复用传输,但是在20 世纪90 年代之前,该技术却一直没有重大突破,其主要原因在于TDM 的迅速发展,从155Mbit/s 到622Mbit/s,再到2.5Gbit/s 系统,TDM 速率一直以过几年就翻4 倍的速度提高。
人们在一种技术进行迅速的时候很少去关注另外的技术。
1995 年左右,WDM 系统的发展出现了转折,一个重要原因是当时人们在TDM10Gbit/s 技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上,WDM 系统才在全球范围内有了广泛的应用。
随着波分复用技术从长途网向城域网扩展,粗波分复用CWDM应运而生。
CWDM的波长间隔一般为20nm,以超大容量、短传输距离和低成本的优势,广泛应用于城域光传送网中。
目前为了进一步提高光通信系统的传输速率和容量,还提出了将波分复用和光时分复用OTDM相结合的方式。
把多个OTDM 信号进行波分复用。
从而大大提高传输容量。
只要WDM和OTDM两者适当的结合,就可以实现Tbit/s以上的传输,并且也应该是一种最佳的传输方式,因此它也成为未来高速、大容量光纤通信系统的发展方向。
实际上大多数超过3bit/s的传输实验都采用WDM和OTDM相结合的传输方式。
光通信和光模块一、光通信的概念及发展历程光通信是指利用光作为信息传输的媒介,将信息从一个地方传送到另一个地方。
它是一种高速、大容量、低损耗的通信方式,被广泛应用于互联网、电视、电话等领域。
光通信的发展历程可以分为以下几个阶段:1. 光纤出现阶段:20世纪60年代,人们开始研究光纤,但由于技术限制和成本问题,应用范围有限。
2. 光纤商业化阶段:20世纪70年代末期,随着技术的不断进步和成本的降低,光纤开始被商业化应用。
3. 光网络阶段:20世纪90年代初期,随着互联网的普及和需求不断增加,光网络逐渐成为主流。
4. 全光网络阶段:21世纪初期,全光网络开始普及,并逐渐取代了传统的电信网络。
二、光模块的概念及分类光模块是指将激光器、探测器、调制器等元件封装在一起形成的集成组件。
它是光通信系统中的重要组成部分,可以实现光信号的发送和接收。
根据不同的封装方式和功能,光模块可以分为以下几类:1. 激光器模块:将激光器封装在一起,用于发送光信号。
2. 探测器模块:将探测器封装在一起,用于接收光信号。
3. 光电转换模块:将激光器和探测器封装在一起,用于实现光电转换。
4. 调制器模块:将调制器封装在一起,用于调制发送的光信号。
三、常见的光模块及其应用1. SFP(Small Form-factor Pluggable)模块:是一种小型化、高速率、可插拔式的光纤收发器。
它广泛应用于数据中心、企业网络、存储网络等领域。
2. QSFP(Quad Small Form-factor Pluggable)模块:是一种四通道高速率、可插拔式的光纤收发器。
它主要应用于数据中心和高性能计算等领域。
3. CFP(C Form-factor Pluggable)模块:是一种大型化、高速率、可插拔式的光纤收发器。
它主要应用于光网络、数据中心等领域。
4. XFP(10 Gigabit Small Form-factor Pluggable)模块:是一种小型化、高速率、可插拔式的光纤收发器。
光纤通信技术总结一绪论1.1966年英籍华裔学者高琨和霍克哈姆发表了关于传输介质新概念的论文,指出了利用光纤进行信息传输的可能性和技术途径,奠定了现代光通信——光纤通信的基础。
2.光纤通信技术不断创新:光纤从多模发展到单模,工作波长从0.85?m发展到1.31?m,传输速率从几十Mb/s发展到几十Gb/s。
3.任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。
4.电缆通信和微波通信的载波是电波,光纤通信的载波是光波。
5.直接调制是用电信号直接调制半导体激光器或发光二极管的驱动电流,是输出光随电信号变化而实现的,这种方案技术简单、成本较低、容易实现,但调制速率受激光器的频率特性所限制。
外调制是把激光的产生和调制分开,用独立的调制器调制激光器的输出光而实现的,这种调制的优点是调制速率高,缺点是技术复杂,成本较高。
6.目前,使用光纤通信系统普遍采用直接调制——直接检测方式,光接收机最重要的特性参数是灵敏度。
7.光纤通信系统包括电信号处理部分和光信号传输部分。
光信号传输部分主要由基本光纤传输系统组成,包括光发射机、光纤传输线路和光接收机三个部分。
光纤通信系统可以传输数字信号,也可以传输模拟信号。
二光纤和光缆1、光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。
纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。
包层为光的传输提供反射面和光隔离,并起一点的机械保护作用。
2、光纤类型:突变型多模光纤、渐变性多模光纤、单模光纤等等 3、损耗限制系统的传输距离,色散则限制系统的传输带宽。
色散是在光纤中传输的光信号,由于不同成分的光的传播时间不同而产生的一种物理效应。
色散一般包括模式色散、材料色散和波导色散。
模式色散:是由于不同模式的传播时间不同而产生的,它取决于光纤的折射率分布,并和光纤材料折射率的波长特性有关。
材料色散:是由于光纤的折射率随波长而变化,以及模式内部不同波长成分的光,其传播时间不同而产生的。
一﹑光纤通信中应用的新技术1.1光弧子通信1844年,苏格兰海军工程师约翰·斯科特·亚瑟对船在河道中运动而形成水的波峰进行观察,发现当船突然停止时,原来在船前被推起的水波依然维护原来的形状、幅度和速度向前运动,经过相当长的时间才消失。
这就是著名的孤立波现象。
孤立波是一种特殊形态的波,它仅有一个波峰,波长为无限,在很长的传输距离内可保持波形不变。
人们从孤立波现象得到启发,引出了孤子的概念,而以光纤为传输媒介,将信息调制到孤子上进行通信的系统则称作光孤子传输系统。
光脉冲在光纤中传播,当光强密度足够大时会引起光脉冲变窄,脉冲宽度不到1个Ps,这是非线性光学中的一种现象,称为光孤子现象。
若使用光孤子进行通信可使光纤的带宽增加10~100倍,使通信距离与速度大幅度地提高。
于常规的线性光纤通信系统而言,限制其传输容量和距离的主要因素是光纤的损耗和色散。
随着光纤制作工艺的提高,光纤的损耗已接近理论极限,因此光纤色散便成为实现超大容量光纤通信亟待解决的问题。
光纤的色散,使得光脉冲中不同波长的光传播速度不一致,结果导致光脉冲展宽,限制了传输容量和传输距离。
由光纤的非线性所产生的光孤子可抵消光纤色散的作用。
因此,利用光孤子进行通信可以很好地解决这个问题。
光纤的群速度色散和光纤的非线性,二者共同作用使得孤子在光纤中能够稳定存在。
当工作波长大于1.3¨m时,光纤呈现负的群速度色散,即脉冲中的高频分量传播速度快,低频分量传播速度慢。
在强输入光场的作用下,光纤中会产生较强的非线性克尔效应,即光纤的折射率与光场强度成正比,进而使得脉冲相位正比于光场强度,即自相位调制,这造成脉冲前沿频率低,后沿频率高,因此脉冲后沿比脉冲前沿运动得快,引起脉冲压缩效应。
当这种压缩效应与色散单独作用引起的脉冲展宽效应平衡时即产生了束缚光脉冲——光孤子,它可以传播得很远而不改变形状与速度。
光孤子通信的关键技术是产生皮秒数量级的光孤子和工作在微波频率的检测器。
光孤子自从1973年被Has egawa和Tapp ert提出以后,引起了人们广泛研究。
空间光孤子是光束在传播过程中由非线性效应平衡衍射效应的结果,空间光孤子一直是非线性光学研究前沿。
光孤子在全光网络,光通信以及光逻辑器件方面有着非常重要的应用,在Snyde r和Mit chell开创性地提出强非局域下空间光孤子模型后,有关强非局域非线性介质中的孤子研究在近几年一直是热点。
Guo等在理论上提出和论证了在强非局域下孤子传输会出现大相移现象,为逻辑门和光开关的实现提供了一个强有力的理论指导。
但是Snyd er模型为简化的理想模型,在真实的物理系统中,光束的传输将变得更加复杂,而且理论和数值模拟表明,高阶孤子不能够稳定传输。
在不同非局域程度下,不同非线性介质中的光孤子的传输性质以及孤子间的相互作用的研究已取得了很大的成果定义孤子(Solito n)又称孤立波,是一种特殊形式的超短脉冲,或者说是一种在传播过程中形状、幅度和速度都维持不变的脉冲状行波。
有人把孤子定义为:孤子与其他同类孤立波相遇后,能维持其幅度、形状和速度不变。
孤子这个名词首先是在物理的流体力学中提出来的。
1834年,美国科学家约翰·斯科特·罗素观察到这样一个现象:在一条窄河道中,迅速拉一条船前进,在船突然停下时,在船头形成的一个孤立的水波迅速离开船头,以每小时14~15km的速度前进,而波的形状不变,前进了2~3km才消失。
他称这个波为孤立波。
其后,1895年,卡维特等人对此进行了进一步研究,人们对孤子有了更清楚的认识,并先后发现了声孤子、电孤子和光孤子等现象。
从物理学的观点来看,孤子是物质非线性效应的一种特殊产物。
电子科技大学光电信息学院课程论文课程名称新技术专题任课教师于军胜吴志明周晓军刘永学期2012—2013(2)学生姓名骆骏学号20100510600232013年6 月25日光孤子通信技术摘要:介绍了光孤子的产生、光孤子通信的基本原理及其关键技术,展望了光孤子通信的前景。
关键词: 孤子;光孤子通信; 光纤; 掺饵光纤放大器; 前景1.引言我们正处在信息时代,人类所产生的信息每几个月就要翻一番,大量信息的传输正在逐渐耗尽现有的带宽。
光纤通信系统因其信道容量大、传输速率高、传输距离不受限而倍受青睐。
光孤子由于能保持形状无畸变地沿光纤传输,所以成为光纤通信的理想载波脉冲,可望用于未来超长距离大容量的传输系统中,因此光孤子通信系统被认为是第5代光纤通信系统,是21世纪最有发展前途的通信方式。
2.光孤子的产生2.1光孤子的发现发现孤子现象源于1834年,英国海军工程师Scott Russell注意到,在一条窄河道中,迅速拉一条船前进,当船突然停下来时,就会在船头形成一个孤立的水波迅速离开船头,并以14~15 km/h的速度前进,而波的形状、幅度维持不变,前进了2~3 km才消失,这就是著名的孤立波现象。
孤立波是一种特殊形态的波,仅有一个波峰,可以在很长的传输距离内保持波形不变。
但直到1964年,人们才从孤立波现象中得到启发,引入了“孤子”概念。
所谓孤子,是指像粒子那样的孤立的波包,能始终保持波形和速度不变,具有在互相碰撞后,仍能保持各自的形状和速度的特性。
当这种现象出现在光波中时就称为光孤子。
2.2光孤子形成原理1973年,Hasegawa和Tappert首次从理论上推断,无损光纤中能形成光孤子。
他们认为,当光脉冲在光纤中传播时,光纤的色散使得光脉冲中不同波长的光传播速度不一致,结果导致光脉冲展宽,限制了传输容量和传输距离。
但当光纤的入纤功率足够大时,光纤中会产生非线性现象,它使传输中的光脉冲前沿群速度变大,后沿群速度变小,其结果是使脉冲缩窄。
光孤子传输原理及应用于光通信系统光通信作为一种高速、大容量、低损耗的通信方式,已成为当今通信领域的重要研究和应用方向。
为了进一步提高光通信系统的传输速率和容量,光孤子传输技术应运而生。
本文将介绍光孤子传输的原理及其在光通信系统中的应用。
一、光孤子传输原理光孤子是指一种具有自包络和自调制特性的光信号,其形态稳定且能够长距离传输而不发生形状变化。
光孤子传输是利用非线性效应和色散的互相抵消来实现的。
具体来说,光孤子传输通过与光纤中的色散和非线性效应相互作用来保持波形,从而抵消色散造成的信号失真。
在光孤子传输中,非线性效应主要包括自相位调制和光纤中的拉曼散射。
自相位调制是指光波在光纤中传输时,由于非线性光学效应而引起的相位调制。
而拉曼散射是指光波在光纤中发生的一种非线性散射现象,它可以在光纤中引入非线性光学效应,从而影响光信号的传输。
光孤子传输的关键是通过调整非线性效应和色散效应之间的相互作用,使其互相抵消,从而实现信号的长距离传输。
通过合理设计光纤结构和光子器件,可以减小信号的失真和衰减,提高传输距离和传输容量。
二、光孤子传输在光通信系统中的应用光孤子传输技术具有许多优点,使其成为光通信系统中的热门技术之一。
以下是光孤子传输在光通信系统中的几个重要应用。
1. 高速光传输:光孤子传输技术可以实现高速率的光信号传输。
由于光孤子的波形稳定性和自修正能力,可以使光信号在长距离传输时几乎不发生衰减和失真,从而实现高速率的数据传输。
这使得光孤子传输技术在宽带通信和数据中心互联中具有广阔的应用前景。
2. 光纤通道改善:光孤子传输技术可以在光纤通道中实现信号的长距离传输。
由于光孤子波形的自维持特性,可以抵消色散效应对信号的影响,从而显著改善光纤通道的传输性能。
这对于光通信系统中长距离传输和网络扩容具有重要意义。
3. 高容量光传输:光孤子传输技术具有较大的光信号容量。
通过合理设计传输系统结构和使用适当的光纤材料,可以实现光孤子传输信号的高容量传输。
光孤子原理与技术徐 登学号:050769摘要:光纤通信问世以来,一直向着两个目标不断发展。
一是延长中继距离,二是提高传输速率。
光纤的吸收和散射导致光信号衰减,光纤的色散使光脉冲发生畸变,导致误码率增高,限制通信距离。
低损耗光纤的研制、掺铒光纤放大器(EDFA )的应用似乎已经解决了中继距离的问题。
那么如何解决光纤传输问题呢?密集波分复用(DWDM )技术已成功地应用于光通信系统,极大地增加了光纤中可传输信息的容量。
随着波分复用信道数的增加,光纤中功率密度也大幅增加。
单通道速率的提高,光纤的非线性效应成为限制系统性能的主要因素。
这时,非线性效应的限制的解决成为关键问题。
光孤子的传输能解决上述问题。
本文主要论述了光孤子形成的基本理论,光孤子现象就是利用随光强而变化的自相位调制特性来补偿光纤中的群速度色散,从而使光脉冲波形在传输过程中维持不变,这样的脉冲就成为光孤子。
关键词:光孤子;GVD ;SPM ;1 光孤子形成原理1.1 非线性薛定谔方程NLSE光在非线性介质中的传播是用非线性薛定谔方程描述的,其推导出发点是麦克斯维波动方程:22020E D t μ∂∇-=∂ 1-1 光纤纤芯的折射率可写为: 202()()n n i n E ωχω=++ 1-2其中电场可表示为00(,)(,)(,)exp[()]E r t A z t F x y i t z ωβ=-- 1-3F (x ,y )为光电场在截面上的分布函数,并满足下式:222()0t k F β∇+-= 1-4A(z ,t)能直接描述光波沿光轴方向的传播特性,故其成为主要研究对象。
将1-2~1-4带入1-1中,然后经过代换简化,可得非线性薛定谔方程(NLSE ):22221122A A i i A A A z Tαβγ∂∂=-+-∂∂ 1-5 其中,α表示衰减系数,β2代表群速度色散,20effn cA ωγ=为非线性系数,等式中的Aeff 指纤芯的有效面积。
第1章概述1-1、什么是光纤通信?参考答案:光纤通信(Fiber-optic communication)是以光作为信息载体,以光纤作为传输媒介的通信方式,其先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。
光经过调变后便能携带资讯。
光纤通信利用了全反射原理,即当光的注入角满足一定的条件时,光便能在光纤内形成全反射,从而达到长距离传输的目的。
1-2、光纤通信技术有哪些特点?参考答案:(1)无串音干扰,保密性好。
(2)频带极宽,通信容量大。
(3)抗电磁干扰能力强。
(4)损耗低,中继距离长。
(5)光纤径细、重量轻、柔软、易于铺设。
除以上特点之外,还有光纤的原材料资源丰富,成本低;温度稳定性好、寿命长等特点。
1-3、光纤通信系统由哪几部分组成?简述各部分作用。
参考答案:光纤通信系统最基本由光发送机、光接收机、光纤线路、中继器以及无源器件组成。
其中光发送机负责将信号转变成适合于在光纤上传输的光信号,光纤线路负责传输信号,而光接收机负责接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。
(1)光发送机:由光源、驱动器和调制器组成,实现电/光转换的光端机。
其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。
(2)光接收机:由光检测器和光放大器组成,实现光/电转换的光端机。
其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端机去。
(3)光纤线路:其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。
(4)中继器:由光检测器、光源和判决再生电路组成。
它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲进行整形。
(5)无源器件:包括光纤连接器、耦合器等,完成光纤间的连接、光纤与光端机的连接及耦合。