第四章 摩擦磨损试验及测试技术
- 格式:ppt
- 大小:2.33 MB
- 文档页数:30
摩擦磨损实验报告一、引言摩擦磨损实验是工程领域中常见的一种实验方法,通过模拟材料或器件表面的微观接触,研究摩擦过程中的磨损特性和机理。
本实验报告旨在对摩擦磨损实验的目的、原理、实验装置和结果进行全面、详细、完整且深入地探讨。
二、目的本实验的目的是通过设计和进行摩擦磨损实验,探究不同材料在不同工况下的磨损特性及其机理,为工程设计和材料选择提供理论依据。
三、原理摩擦磨损实验的原理基于摩擦学和材料科学的知识。
在实验中,通过施加一定的载荷和运动速度,使两个试样或试样与摩擦片之间发生摩擦接触。
在摩擦接触过程中,表面微观起伏、化学反应和热效应等因素共同作用,导致材料表面的磨损和形貌变化。
摩擦磨损实验可分为干摩擦和润滑摩擦两种情况。
在干摩擦实验中,试样之间没有润滑剂的存在,摩擦过程可能引起大量的磨粒生成和表面热量积累,导致试样表面的磨损。
而润滑摩擦实验则通过添加润滑剂,减少试样间的摩擦热和磨损程度。
四、实验装置进行摩擦磨损实验需要一套实验装置,包括:1.摩擦磨损试验机:用于施加载荷和控制运动速度,一般具有高精度和可控性能。
2.试样和摩擦片:选择不同材料的试样和摩擦片,根据实验需求确定形状、尺寸和表面处理方式。
3.测量仪器:包括摩擦力传感器、位移传感器、温度传感器等,用于实时监测试样的摩擦力、位移和温度等参数。
4.润滑剂:用于润滑摩擦接触表面,减少磨损程度和摩擦热。
五、实验过程本次实验的具体过程如下:1.准备试样和摩擦片:根据实验要求选择不同材料的试样和摩擦片,进行尺寸加工和表面处理。
2.调节实验参数:根据实验设计,设置载荷大小、运动速度和实验时间等参数。
3.安装试样和摩擦片:将试样和摩擦片固定在实验装置上,确保摩擦接触表面平整、清洁。
4.启动实验:运行实验装置,开始施加载荷和控制运动速度,记录实验过程中的数据和现象。
5.停止实验:根据实验时间或实验目标要求,停止实验运行,取下试样和摩擦片进行观察和分析。
6.数据处理:根据实验结果,进行数据处理和曲线拟合,得到摩擦力、位移和温度等参数的变化趋势。
摩擦磨损测试方法摩擦磨损测试是指对材料在摩擦过程中的磨损性能进行评价和测试的方法。
通过摩擦磨损测试,可以了解材料的耐磨性能,为材料的选择和设计提供依据。
本文将介绍几种常见的摩擦磨损测试方法。
1. 磨损试验机法磨损试验机是一种用于模拟材料在实际工作条件下受到的摩擦磨损的设备。
常见的磨损试验机有球盘摩擦试验机、滚筒式摩擦试验机等。
在磨损试验机上进行测试时,将待测试材料与磨损试样接触,并施加一定的载荷和摩擦力,通过测量试样的磨损量来评估材料的耐磨性能。
2. 微观磨损测试法微观磨损测试法主要通过显微镜观察材料的磨损情况来评估其耐磨性能。
常用的微观磨损测试方法有扫描电子显微镜(SEM)观察法、显微硬度计观察法等。
这些方法可以观察到材料表面的微观磨损形貌,从而判断材料的抗磨损性能。
3. 滑动磨损测试法滑动磨损测试法是将待测试材料与磨损试样相对滑动,通过测量试样的磨损量来评估材料的耐磨性能。
常见的滑动磨损测试方法有平板摩擦试验法、圆盘摩擦试验法等。
在滑动磨损测试中,可以调整试样的载荷、速度和试样间的压力等参数,以模拟不同工况下的摩擦磨损情况。
4. 模拟实际工况测试法模拟实际工况测试法是将待测试材料置于模拟实际工况的环境中,通过观察材料在实际工况下的磨损情况来评估其耐磨性能。
常见的模拟实际工况测试方法有湿磨损测试法、高温磨损测试法等。
这些方法能够更真实地模拟材料在实际使用中受到的摩擦磨损,对于评估材料的实际耐磨性能具有重要意义。
5. 材料表面改性测试法材料表面改性测试法是通过对材料表面进行改性处理,以提高材料的抗磨损性能。
常见的表面改性方法有涂层处理、表面渗碳处理等。
通过对改性前后材料的摩擦磨损性能进行测试,可以评估改性方法的有效性,并指导材料的改进和设计。
摩擦磨损测试方法多种多样,每种方法都有其独特的优势和适用范围。
在进行摩擦磨损测试时,应根据具体的材料和应用场景选择合适的测试方法,以确保测试结果的准确性和可靠性。
摩擦磨损特性的材料测试与分析引言:摩擦和磨损是我们生活中经常遇到的现象,无论是机械设备的运转还是日常用品的使用,都离不开这两个概念。
然而,摩擦和磨损对材料的表面质量和寿命有着重要影响。
为了有效地控制和减少摩擦磨损,我们需要对材料的摩擦磨损特性进行测试和分析。
第一部分:摩擦测试方法摩擦测试是评价材料摩擦性能的重要手段之一。
目前常用的摩擦测试方法包括横滑摩擦测试、滚动摩擦测试和旋转摩擦测试等。
横滑摩擦测试通过在材料表面施加垂直负载并施加相对运动,在不同的负载和速度条件下测量摩擦系数。
滚动摩擦测试则通过在滚轮和材料表面之间施加负载和旋转运动,测量滚动摩擦系数和磨损体积。
旋转摩擦测试是通过将试样固定在转盘上,并施加负载和旋转运动,测量摩擦系数和磨损特性。
第二部分:磨损测试方法除了摩擦性能的测试,磨损性能的测试也是十分重要的。
磨损测试可以分为干磨和润滑磨损测试。
在干磨试验中,常用的测试方法有质量损失法、尺寸损失法和表面形貌法。
质量损失法通过测量试样经过摩擦磨损后的质量变化,来评价其耐磨性能。
尺寸损失法则通过测量试样在磨损过程中的尺寸变化,来评估其磨损性能。
表面形貌法则通过扫描电子显微镜等设备,分析磨损后试样表面形貌的变化,来研究磨损机理和特性。
第三部分:摩擦磨损分析通过摩擦和磨损测试得到的数据,我们可以进行一系列分析以了解材料的摩擦磨损特性。
首先,摩擦系数的测试结果可以帮助我们选择合适的润滑方式和控制摩擦力。
其次,磨损量的测试结果可以评估材料的耐磨性能,从而选择更合适的材料。
此外,通过分析磨损试样的表面形貌,我们可以了解磨损机理,以便进行改进设计和优化。
结论:摩擦磨损是材料性能评估的重要指标之一,通过摩擦和磨损测试可以有效地评估材料的摩擦磨损特性。
根据测试结果进行分析和研究,有助于选择合适的材料和润滑方式,延长设备的使用寿命,提高材料的表面质量。
在今后的实验和工程实践中,摩擦磨损测试和分析的研究将会持续发展,为材料科学和工程技术的进步做出更大贡献。
摩擦磨损实验报告摩擦磨损实验报告引言:摩擦磨损是我们日常生活中经常遇到的现象。
无论是机械设备的运行,还是人类活动的进行,都离不开摩擦磨损的存在。
为了更好地了解摩擦磨损的机理和特性,我们进行了一系列的实验研究。
本实验报告旨在总结实验过程、结果以及对摩擦磨损的认识。
实验目的:本次实验的目的是通过模拟不同工况下的摩擦磨损现象,研究不同材料的摩擦磨损特性,并探讨其影响因素。
实验方法:我们选取了两种常见的材料:金属和塑料。
首先,我们准备了两组试样,一组是金属试样,另一组是塑料试样。
然后,我们使用摩擦试验机对试样进行摩擦磨损实验。
实验中,我们控制了不同的载荷、速度和摩擦时间等参数,并测量了试样的质量变化、表面形貌以及磨损量等数据。
实验结果:通过实验,我们得到了一系列数据。
首先,我们观察到金属试样在高载荷下磨损量较大,而塑料试样在低载荷下磨损量较大。
这说明了不同材料在不同工况下的磨损特性存在差异。
其次,我们发现在相同工况下,摩擦速度对磨损量的影响较大。
随着摩擦速度的增加,磨损量也逐渐增加。
最后,我们观察到试样表面出现了不同形状的磨损痕迹,如划痕、磨粒等。
这些痕迹的形成与试样材料的特性以及摩擦过程中的摩擦力、温度等因素密切相关。
讨论与分析:通过对实验结果的分析,我们可以得出以下结论:1. 不同材料的摩擦磨损特性存在差异。
金属试样在高载荷下容易发生磨损,而塑料试样在低载荷下容易发生磨损。
这是由于金属材料的硬度较高,抗磨性较好,而塑料材料的硬度较低,抗磨性较差所致。
2. 摩擦速度对磨损量有明显影响。
摩擦速度越高,磨损量越大。
这是因为摩擦速度的增加会导致试样表面的摩擦热量增加,从而加剧了磨损现象。
3. 磨损痕迹的形成与多种因素有关。
试样材料的硬度、表面粗糙度以及摩擦过程中的温度、湿度等因素都会对磨损痕迹的形成产生影响。
结论:通过本次摩擦磨损实验,我们对摩擦磨损的机理和特性有了更深入的了解。
不同材料的摩擦磨损特性存在差异,摩擦速度对磨损量有明显影响,而磨损痕迹的形成与多种因素密切相关。
摩擦磨损实验实验报告汪骏飞(机自92 学号09011041)一、实验目的1. 摩擦系数和磨损量的测量2. 了解和熟悉表面粗糙度测量仪、电子分析天平、多功能摩擦磨损试验机等实验仪器的基本原理与实验步骤二、实验仪器1. 表面粗糙度测量仪2. 光学显微镜3. 电子分析天平4. 多功能摩擦磨损试验机三、实验内容1. 摩擦系数的读取2. 磨损量的测量3. 磨损前后的表面形貌的显微观察,辨别磨损形式四、实验步骤1. 用丙酮在超声波中清洗钢球和圆盘,然后用脱脂棉球擦拭;最后热风吹干待用2. 将一个清洁钢球安装在球夹具中,并固定于摩擦试验机3. 测试试样的表面粗糙度4. 用双面胶把圆盘固定于摩擦试验机5. 在实验载荷和速度下,开动电动机驱动主轴旋转6. 试验时间达到给定时间时,关掉电动机,卸去载荷取出试样,并清洗试样7. 用光学显微镜测量球上的磨斑直径,显微镜观察圆盘的磨痕宽度和深度,取平均值8. 清理现场9. 撰写实验报告五、实验参数试样:直径9.5mm的钢球;直径30mm,高度5mm的高速工具钢涂层圆盘实验条件:载荷5n或10n;速度0.05m/s;时间:20min;润滑方式:干摩擦实验内容:1. 摩擦系数的读取:(1)静摩擦系数静摩擦系数随着时间慢慢减小,一开始为最大cof=0.004 半径:radius = 8.999mm 速度:velocity = 0 m/s 力: set force = -10 n (2)动摩擦系数的读取:半径:radius = 8.999mm 速度:velocity = 53.05 力:set force = -10n 对12000行数据进行数学计算,发现cof在0.28附近,不妨取cof=0.28 3.磨损量的测算:(1)小钢球磨损直径d=830.27+838.622=834.45um 已知球半径r=9.5mm求线磨损量:h=r? r2?(2=18.36mm 2d磨损体积v=πh2 r?3 =5.02×10?3mm3 h磨损系数:取硅薄膜的维氏硬度为1400hv 由archard磨损公式vh5.02×10?3×1400k===5.85×10?2 由以上数据分析知,钢球与硅薄膜之间的磨损属于严重磨损(2)圆盘圆盘的磨损量图:上图的圆环宽度为0.15176mm,求出磨损体积为0.53132mm 3.磨损前后表面形貌的观察:小钢球: 3 对于圆盘:对两个图像的分析发现,两者均为磨料磨损。
实验四 摩擦学基础实验(1学时)一.实验目的1.通过实验了解不同材料配副摩擦系数的变化及磨损量的不同。
2.掌握摩擦学实验的基本方法及有关仪器设备的使用方法。
二.实验原理 1.概述摩擦表面上的物质,由于表面相对运动而不断损失的现象称磨损。
在一般正常工作状态下,磨损可分三个阶段:(1).跑合(磨合)阶段:轻微的磨损,跑合是为正常运行创造条件。
(2).稳定磨损阶段:磨损更轻微,磨损率低而稳定。
(3).剧烈磨损阶段:磨损速度急剧增长,零件精度丧失,发生噪音和振动,摩擦温度迅速升高,说明零件即将失效。
(如图4.1)机件磨损是无法避免的。
但是如何缩短跑合期、延长稳定磨损阶段和推迟剧烈磨损的到来,是研究者致力的方向。
伯韦尔(Burwell)根据磨损机理的不同,把粘着磨损,磨粒磨损、腐蚀磨损和表面疲劳磨损列为磨损的主要类型,而把表面侵蚀,冲蚀等列为次要类型。
这些不同类型的磨损,可以单独发生,相继发生或同时发生(称为复合磨损形式)。
2磨损的检测与评定研究磨损要通过各种摩擦磨损试验设备,检测摩擦过程中的摩擦系数及磨损量(或磨损率)。
摩擦过程中从表面上脱落下来的材料(磨屑),记录了磨损的发展历程,反映了磨损机理,描述了表面磨损的程度。
发生磨损后的表面,同样有着磨损机理、磨损严重程度及其发展过程的记载。
因此研究磨屑和磨损后表面磨损量跑合稳定磨损阶段剧烈图4.1 磨损三个阶段的示意图摩擦行程(时间)上的信息是研究磨损的重要一环。
2.1摩擦磨损试验机磨损试验的目的在于研究各种因素对摩擦磨损的影响,从而合理地选择配对材料,采用有效措施降低摩擦、磨损,正确设计摩擦副的结构尺寸及冷却设施等等。
摩擦磨损试验大体上可分为实验室试验,模拟试验或台架试验,以及使用试验或全尺寸试验三个层次,各层次试验设备的要求各不相同。
(1)实验室评价设备实验室设备主要用于摩擦磨损的基础研究,研究工作参数(载荷、速度等)对摩擦磨损的影响。
可以得到单一参量变化与摩擦磨损过程之间的关系。
摩擦磨损试验标准摩擦磨损试验是评价材料表面摩擦性能和耐磨性能的重要手段,其标准化具有重要意义。
本文将介绍摩擦磨损试验的标准,以及其在材料科学领域中的应用。
首先,摩擦磨损试验标准主要包括试验方法、试验条件、试验设备、试样制备等内容。
在试验方法方面,常见的包括滑动摩擦试验、球-盘摩擦试验、磨损试验等,每种方法都有相应的标准规范,以确保试验的准确性和可比性。
试验条件包括载荷、速度、温度、湿度等因素,这些条件的选择需符合实际使用环境,并应在标准中明确规定。
试验设备的选择和标定也是摩擦磨损试验标准的重要内容,不同的试验方法需要相应的设备支持,设备的准确性和稳定性对试验结果具有重要影响。
试样制备也是摩擦磨损试验标准中的关键环节,试样的制备质量直接影响试验结果的准确性,因此在标准中也会对试样的制备要求进行详细规定。
其次,摩擦磨损试验标准在材料科学领域中具有广泛的应用。
在材料研发阶段,通过摩擦磨损试验可以评价材料的摩擦性能和耐磨性能,为材料的选择和优化提供重要依据。
在材料工程领域,摩擦磨损试验标准也被用于评价材料的耐磨性能,指导材料的选用和设计。
在材料质量监控和产品质量检测中,摩擦磨损试验标准也被广泛应用,用于检验产品的摩擦性能和耐磨性能是否符合要求。
此外,摩擦磨损试验标准还在材料教学和科研领域中得到广泛应用,为学生和科研人员提供了重要的实验手段和研究依据。
综上所述,摩擦磨损试验标准对于评价材料的摩擦性能和耐磨性能具有重要意义,在材料科学领域中具有广泛的应用。
标准化的摩擦磨损试验可以保证试验结果的准确性和可比性,为材料研发、工程设计、质量监控和科研教学提供了重要依据。
因此,加强摩擦磨损试验标准化工作,推动标准的制定和实施,对于促进材料科学领域的发展具有重要意义。
摩擦磨损试验
摩擦磨损试验是一种常见的物理实验,旨在测试材料的耐磨和强度,可以帮助
我们判断材料在实际使用中经受压力的能力。
摩擦磨损试验由循环摩擦磨损法进行,一般使用耐磨材料。
该试验仪需要在一定的温度下,或者说在某一种可控的环境下进行。
循环摩擦磨损法的实验步骤首先是放置好实验仪器,仿真被测材料的表面和硬度,并把控制环境,以确保完全相同的温度和湿度控制。
接着,根据需要,可以设置耐磨件,一般使用耐磨材料,然后在一定的载荷下,定义相关规范,确定明确的磨损量和时间,这个周期可以重复多次,实验结果每个时间点都会被记录下来。
并对比数据,测量材料的耐磨性能。
摩擦磨损试验实验的成果,有助于判断材料的实际使用效果,结合实验结果,
可以分析出耐磨性能概要、耐磨性能极限和耐磨性能趋势,即材料耐磨性能状态。
有助于选择需要耐磨性能的材料,企业可以根据材料的耐磨性能及生产成本,综合考虑选择适合当前产品的材料。
摩擦磨损试验使用方便、效率高,是实验室试验技术中的经典而重要的一种,
被应用于各种材料耐磨性测试中,为材料的强度和耐磨性度测试、产品的强度检验和新材料的开发研究提供一种重要依据。
摩擦磨损实验报告摩擦磨损是机械工程领域中非常重要的研究领域之一。
在工程实践中,物体之间的摩擦磨损现象经常发生,如机械零件在运动过程中的摩擦、轮胎与路面之间的摩擦等。
对摩擦磨损现象的深入研究和分析,可以为制造高品质的机械零件、提高机械传动效率、延长机械零件使用寿命提供基础和方向。
本实验采用球-盘式摩擦磨损试验机,对铜球和铜盘之间的摩擦磨损现象进行了研究。
通过测量铜球的质量变化和盘的重量损失,以及摩擦系数的变化,分析了摩擦磨损现象的特点和规律。
实验步骤1. 准备工作首先将球-盘摩擦试验机接通电源,打开加热器使得试验台的温度达到室温以上。
然后清洁试验台表面,将试验盘和铜球分别放置在试验台面上。
2. 实验操作打开摩擦试验机上的手动阀门,加入适量的机油到试验盘上,使其充分润滑。
然后将铜球放置在试验盘上,用扳手将附加的螺钉旋紧,使其固定在试验盘上。
接下来,打开摩擦试验机的电源,设定实验参数,如载荷大小、试验时间、旋转速率等,开始实验。
在实验过程中,通过计算器统计铜球经历的摩擦圈数,并及时记录实验数据。
3. 实验结束当实验时间达到设定时间后,关闭摩擦试验机的电源,停止试验。
然后将试验盘取下,用精密天平称量铜盘的重量,并计算铜盘的净重。
用精密天平称量铜球的质量,计算其在实验过程中的损失。
实验结果1. 铜球的磨损片断分析通过对摩擦试验机中铜球表面进行显微镜观察,可以看到铜球表面出现了明显的磨损痕迹,表现出不规则的形状和明显的划痕。
磨损片断的呈现表明了实验中铜球表面的摩擦磨损现象相当明显,在实验中出现了明显的摩擦现象。
2. 摩擦系数变化通过对球-盘式摩擦试验机的摩擦系数进行实时记录和卡片绘制,可以看到随着试验时间的延长,铜球与试验盘之间的摩擦系数逐渐变化,并表现出明显的上升趋势。
这说明,在实验中球-盘间的摩擦现象随时间的增加而加剧了。
通过测量实验过程中铜球质量的变化,可以看到铜球在实验过程中出现明显的损失。
在实验60min后,铜球的质量变化量达到了0.35g,这表明摩擦磨损现象相当明显,在实验过程中出现了明显的损耗现象。
摩擦磨损测试及考核评价方式一、磨损1.1磨损定义磨损是指摩擦副相对运动时,表面物质不断损失或产生残余变形的现象。
表面物质运动主要包括机械运动、化学作用和热作用:(1)机械作用使摩擦表面发生物质损失及摩擦表面的物理变形;(2)化学作用使摩擦表面发生性状改变;热作用是摩擦表面发生形状改变。
典型的磨损曲线通常由三部分组成,如图1.1所示。
磨损量图1.1 磨损曲线示意图磨合阶段:磨损量随时间的增加而增加。
发生在初始运动阶段,由于表面存在粗糙度,微凸体接触面积小,接触应力大,磨损速度较快。
稳定磨损阶段:摩擦表面磨合后达到稳定状态磨损率保持不变。
稳定磨损阶段标志磨损条件保持相对稳定,是零件整个寿命范围内的工作过程。
剧烈磨损阶段:工作条件恶化,磨损量急剧增大。
该阶段内零件精度降低、间隙增大,温度升高,产生冲击、振动和噪声,最终导致零部件完全失效。
1.2磨损种类按磨损的破坏机理,通常把磨损分为粘着磨损、磨料磨损、疲劳磨损、腐蚀磨损和微动磨损五种。
(1)粘着磨损当摩擦副相对滑动时, 由于粘着效应所形成结点发生剪切断裂,被剪切的材料或脱落成磨屑,或由一个表面迁移到另一个表面,此类磨损称为粘着磨损。
粘着磨损再细分还有轻微磨损、涂抹、擦伤、划伤和咬死五种。
图1.1 粘着磨损机理(2)磨料磨损外来的硬料介质进入摩擦副,或摩擦副一个表面比另一个表面硬,在较硬表面上存在的微凸体,在摩擦过程中对较软表面犁沟或拉槽,引起表面材料的脱落,这种现象叫做磨料磨损。
磨料磨损是一种最常见的磨损,按照磨损机理还可细分为微观切削、挤压剥落和疲劳破坏三小类。
图1.2 二体/三体磨粒磨损机理(3)化学磨损化学磨损是在摩擦促进作用下,摩擦副的一方或双方与中间物质或环境介质中的某些成分发生化学或电化学作用,造成表面材料损失的过程。
分为氧化磨损与特殊介质腐蚀磨损两类。
图1.3 化学磨损机理(4)疲劳磨损摩擦接触表面在交变接触压应力作用下,材料表面因疲劳损伤而引起表面脱落的现象。