土力学第四章 土的抗剪强度与地基承载力
- 格式:ppt
- 大小:7.05 MB
- 文档页数:118
土力学第四版课后习题答案土力学是土木工程专业的一门重要课程,它主要研究土壤的物理力学性质以及土体在外力作用下的变形和破坏规律。
而土力学第四版作为该领域的经典教材,对于学习者来说是一本不可或缺的参考书。
然而,课后习题一直以来都是学生们的难点,因此,本文将为大家提供一些土力学第四版课后习题的答案,希望能够帮助大家更好地掌握土力学的知识。
第一章:土的物理性质1. 什么是土的含水量?土的含水量是指单位质量土壤中所含水分的质量与干土质量之比。
2. 什么是土的相对密度?土的相对密度是指土的实际密度与最大干密度之比。
3. 土的颗粒密度和土的容重有何区别?土的颗粒密度是指土壤颗粒的质量与颗粒体积之比,而土的容重是指土壤的质量与土体体积之比。
第二章:应力与应变1. 什么是应力?应力是指单位面积上的力的作用,常用符号为σ。
2. 什么是应变?应变是指物体由于受到外力作用而发生的形变,常用符号为ε。
3. 土体的应力状态有哪些?土体的应力状态包括三种:一维应力状态、二维应力状态和三维应力状态。
第三章:土的压缩性与固结1. 什么是土的压缩性?土的压缩性是指土体在外力作用下发生体积变化的性质。
2. 什么是固结?固结是指土体在外力作用下体积逐渐减小的过程。
3. 什么是固结指数?固结指数是指土体固结过程中体积变化与初固结压力之比的对数。
第四章:土的剪切强度1. 什么是土的剪切强度?土的剪切强度是指土体在剪切破坏时所能抵抗的最大剪切应力。
2. 什么是塑性土的剪切强度?塑性土的剪切强度是指土体在塑性破坏时所能抵抗的最大剪切应力。
3. 什么是黏聚土的剪切强度?黏聚土的剪切强度是指土体在黏聚破坏时所能抵抗的最大剪切应力。
第五章:土的抗剪强度1. 什么是土的抗剪强度?土的抗剪强度是指土体在受到剪切力作用时所能抵抗的最大剪切应力。
2. 什么是无侧限抗剪强度?无侧限抗剪强度是指在三维应力状态下,土体所能抵抗的最大剪切应力。
3. 什么是有效抗剪强度?有效抗剪强度是指土体在考虑水分影响后所能抵抗的最大剪切应力。
第四章土的抗剪强度与地基承载力(1)复习思考题1.土的抗剪强度与其他建筑材料如钢材、混凝土的强度比较,有何特点?同一种土,当其矿物成分,颗粒级配及密度、含水率完全相同时,这种土的抗剪强度是否为一个定值?为什么?答:(1)钢材与混凝土等建筑材料的强度比较稳定,并可由人工加以定量控制。
各地区的各类工程可以根据需要选用材料。
而土的抗剪强度与之不同,为非标准定值,受很多因素影响。
不同地区、不同成因、不同类型土的抗剪强度往往有很大的差别。
即使同一种土,在不同的密度、含水率、剪切速率、仪器型式等不同的条件下,其抗剪强度的数值也不相等。
(2)当矿物成分,颗粒级配及密度、含水率完全相同时,土的抗剪强度不是定值,因为土的抗剪强度与剪切滑动面上的法向应力相关,随着法向应力的增大而提高。
2.试说明土的抗剪强度的来源。
无黏性土与黏性土有何区别?何谓咬合摩擦?咬合摩擦与滑动摩擦有什么不同?答:(1)无黏性土抗剪强度的来源为内摩擦力,而黏性土的抗剪强度来源包括内摩擦力与黏聚力两部分。
(2)咬合摩擦是指相邻颗粒对于相对移动的约束作用。
当土体内沿某一剪切面产生剪切破坏时,相互咬合着的颗粒必须从原来的位置被抬起,跨越相邻颗粒,或者在尖角处将颗粒剪断,然后才能移动,土越密,磨圆度越小,则咬合作用越强。
(3)咬合摩擦是指相邻颗粒对于相对移动的约束作用,而滑动摩擦存在于土粒表面之间,是在土体剪切过程中,剪切面上的土粒发生相对移动所产生的摩擦。
3.何谓莫尔—库仑强度理论?库仑公式的物理概念是什么?答:(1)以库仑定律表示莫尔破坏包线的理论称为莫尔—库仑破坏理论,即τf=f(σ)=σtanφ+c(2)库仑公式的物理概念:砂土的抗剪强度τf与作用在剪切面上的法向压力σ成正比,比例系数为内摩擦系数。
黏性土的抗剪强度τf比砂土的抗剪强度增加一项土的黏聚力。
即:①砂土:τf=σtanφ;②黏性土τf=σtanφ+c。
4.土的抗剪强度指标是如何确定的?说明直接剪切试验的原理,直剪试验简单方便,是否可应用于各类工程?答:(1)抗剪强度指标φ、c由专用的仪器进行测定。
绪论地基:受建筑物荷载影响的那一部分地层。
基础:建筑物在地面以下并将上部荷载传递至地基的结构。
持力层:直接支承基础的地层。
第一章地基岩土和地下水岩石:形成年代较长,颗粒间牢固联结,呈整体或具有节理裂隙的岩体。
土:是松散的沉积物,它是岩石经风化、剥蚀、搬运、沉积而成。
形成年代较短,又称第四纪沉积物。
岩石的成因类型:岩浆岩、沉积岩和变质岩。
岩浆岩:是由岩浆侵入地壳或喷出地表而形成的。
岩浆喷出地表后冷凝形成的称为喷出岩,在地表以下冷凝形成的称为侵入岩。
常见岩浆岩有:花岗岩、正长岩、玄武岩等。
沉积岩:是在地表条件下,由原岩经风化剥蚀作用而形成的岩石碎屑变质岩:组成地壳的岩石由于地壳运动和岩浆活动等的影响,使其在固态下发生矿物成分,结构构造的改变,从而形成新的岩石。
土的成因类型:残积土、坡积土、洪积土、冲积土。
残积土:原岩经风化作用而残留在原地的碎屑物。
坡积土:高处的岩石风化产物,由于受到雨雪水流的搬运,或由于重力的作用而沉积在较平缓的山坡上,这种沉积土称为坡积土。
洪积土:由暴雨或大量融雪骤然集聚而成的暂时性山洪急流,将大量的基岩风化产物剥蚀、搬运、堆积于山谷冲沟出口或山前倾斜平原而成。
冲积土:河流两岸的基岩及其上部覆盖的松散物质,被河流流水剥蚀后,经搬运、沉积于河流坡降平缓地带而形成的沉积土。
特点:具有明显的层理构造和分选现象。
土的组成:固体颗粒(固相)、水(液相)、气体(气相)。
土粒大小与哪些因素有关:与其颗粒形状、矿物成分、结构构造存在一定的关系。
土的粒径级配:土中土粒大小及其组成情况,通常以土中各个粒组的相对含量来表示,称为土的粒径级配。
土的粒径级配的测定方法:对于粒径大于0.075mm的粒组可用筛分法测定。
对于粒径小于0.075mm的颗粒则用比重计法或移液管法测定。
粒径级配曲线:如曲线较陡,则表示颗粒大小差不多,土粒较均匀,级配不良。
如曲线平缓,则表示粒径相差悬殊,土粒级配良好。
不均匀系数Cu:Cu=d60/d10 (其中d60为限制粒径,d10为有效粒径)Cu<5的土,看做级配不良,Cu>10的土看做级配良好。
土的抗剪强度指标及其工程应用土的抗剪强度是指土体抵抗内部剪切力的能力。
在土力学中,土的抗剪强度是一个重要的力学参数,用于描述土体在承受剪切力时的变形与破坏特性。
了解土的抗剪强度指标及其工程应用对于工程设计与土力学研究具有重要意义。
土的抗剪强度指标分为三种,即黏聚力(c)、内摩擦角(φ)和抗剪强度(τ)。
黏聚力是指土体结构内部粘聚的程度,通常由于颗粒之间的吸附力引起。
内摩擦角是指土体颗粒之间的摩擦阻力,是土的粒间摩擦特性的体现。
抗剪强度是指土体承受剪切力导致的抵抗能力。
土的抗剪强度指标在工程应用中具有广泛的应用,包括地基工程、岩土工程和水利工程等领域。
在地基工程中,抗剪强度用于评估地基的稳定性和承载力。
在岩土工程中,抗剪强度用于评估土体的稳定性和变形特性,设计防护结构。
在水利工程中,抗剪强度用于设计大坝、堤防和土体水坝等结构的稳定性。
抗剪强度指标的工程应用通常通过实验和计算的方式进行,其中比较常用的实验方法包括直剪试验、三轴压缩试验和静力触探等。
直剪试验是将土样分割成两部分,施加水平剪切力,测量摩擦力和剪切应力,推断抗剪强度指标。
三轴压缩试验是将土样置于三轴压缩仪中,施加垂直压力和水平剪切力,并测量抗剪强度指标。
静力触探是利用静力触探仪,通过测量推进杆推进土层的阻力,了解土的抗剪强度指标。
除了实验方法,工程应用中还可采用计算方法,如极限平衡法、有限元法和模型试验分析等。
极限平衡法是通过平衡土体内外力的大小,获得土的抗剪强度指标。
有限元法是利用数值模拟和计算得到土体在不同应力状态下的变形、破坏和稳定性,从而确定抗剪强度指标。
模型试验分析是通过实验模型,在受到剪切力的作用下观察土体的变形特性和抗剪强度指标。
总之,土的抗剪强度指标及其工程应用对于工程设计与土力学研究具有重要意义。
通过实验和计算方法,我们可以获得土的抗剪强度指标,用于评估土体的稳定性、变形特性和承载力等工程问题。
在实际工程中,合理应用抗剪强度指标可有效地保证工程结构的安全性和可靠性。
土力学》知识点总结第一章土的物理性质思考题1.土是如何形成的?与其他材料最大的区别是什么?答:土是地壳岩石经过强烈风化后形成的一种集合体,由各种矿物颗粒组成。
与其他材料不同的是,建筑材料的品种或型号可以由设计人员指定,而土则是以天然土层作为地基,因此设计人员必须以当地土壤作为设计对象。
由于土是自然历史的产物,其性质不均匀且复杂多变,应力-应变关系非线性且不唯一,变形在卸荷后一般不能完全恢复,强度也是变化的,对扰动特别敏感。
2.土由哪几部分组成?答:自然界的土体由固相(固体颗粒)、液相(土中水)和气相(土中气体)组成,通常称为三相分散体系。
3.什么是土粒的颗粒级配?如何从级配曲线的陡缓判断土的工程性质?答:土粒的颗粒级配是指天然土体中包含大小不同的颗粒,通常用土中各个粒组的相对含量来表示。
根据级配曲线的坡度和曲率,可以判断土的级配情况。
如果曲线平缓,表示土粒大小差异较大,即级配良好;如果曲线较陡,则表示颗粒粒径相差不大,粒径较均匀,即级配不良。
级配良好的土,较粗颗粒间的孔隙被较细的颗粒所填充,因此土的密实度较好。
4.什么是土的结构?土的结构有哪些类型?答:土的结构是指土在成土过程中形成的土粒的空间排列和联结形式,与土的颗粒大小、形状、矿物成分和沉积条件有关。
一般可归纳为单粒结构、蜂窝结构和絮状结构三种基本类型。
5.土的物理性质指标有哪些?哪些是直接测定的?如何测定?答:土的物理性质指标包括土的密度、土粒相对密度、土的含水量、土的干密度、土的饱和密度、土的有效密度、土的孔隙比和孔隙率等。
土的密度(通过环刀法测定)、土粒相对密度(通过比重瓶法测定)和土的含水量(通过烘干法测定)是直接测定的物理性质指标。
6.土的物理状态指标有哪些?答:对于无粘性土,土的物理状态指的是土的密实程度,对于粘性土则是指土的软硬程度,也称为粘性土的稠度。
描述砂土密实状态的指标有孔隙比和相对密度,描述粘性土的稠度状态的指标有液限、塑限、塑性指数和液性指数等。
《土力学与地基基础》习题解答学习项目1 土中应力计算任务1.1 土中自重应力的计算学习评价(1)土中自重应力计算的假定是什么?【答】计算土中自重应力时,假定土体为半无限体,即土体的表面尺寸和深度都是无限大,土体自重应力作用下的地基为均质的线性变形的半无限体,即任何一个竖直平面均可视为半无限体对称面。
这样,在任意竖直平面上,土的自重都不会产生剪应力,只有正应力存在。
因此,在均匀土体中,土中某点的自重应力将只与该点的深度有关。
(2)地基中自重应力的分布有什么特点?【答】自重应力在等重度的土中随深度呈直线分布,自重应力分布线的斜率是土的重度;自重应力在不同重度的成层土中呈折线分布,折点在土层分界线和地下水位线处;自重应力随深度的增加而增大。
(3)图1-7所示为某地基剖面图各土层的重度及地下水位,计算土中的自重应力并绘制自重应力分布图。
γ = 18.5 kN/m 黏土γ = 18 kN/m γ = 20 kN/m sat 细砂γ = 19 kN/m sat 黏土(按透水考虑)γ = 195 kN/m sat 砂砾2m 1m 1m 3m 2m 地下水位33333图1-7 某地基剖面图各土层的重度及地下水位【解】 第二层为细砂,地下水位以上的细砂不受浮力作用,而地下水位以下的受到浮力作用,其有效重度为333w sat 1m /kN 19.10kN/m 81.9kN/m 20=-=-='γγγ 第三层黏土按透水考虑,故认为黏土层受到水的浮力作用,其有效重度为333w sat 2m /kN 19.9kN/m 81.9kN/m 19=-=-='γγγ 第四层为砂砾,受到浮力作用,其有效重度为333w sat 3m /kN 69.9kN/m 81.9kN/m 5.19=-=-='γγγ 土中各点的自重应力计算如下:a 点:00c ===z z z γσ,b 点:,m 2=z kPa 37m 2kN/m 5.183c =⨯==z z γσc 点:,m 3=z kPa 55m 1kN/m 18kPa 3731c =⨯+==∑=n i i i z h γσd 点:,m 4=z kPa19.65m 1kN/m 19.10kPa 5531c =⨯+==∑=n i i i z h γσe 点:,m 7=z kPa76.92m 3kN/m 19.9kPa 19.6531c =⨯+==∑=n i i i z h γσf 点:,m 9=z kPa14.112m 2kN/m 69.9kPa 76.9231c =⨯+==∑=n i i i z h γσ该土层的自重应力分布如下图所示。
《土力学与地基基础》教案第一章:土的性质与分类1.1 教学目标了解土的组成、物理性质、力学性质及其影响因素。
掌握土的分类方法及其工程意义。
1.2 教学内容土的组成与结构土的物理性质(密度、含水率、粒径分布等)土的力学性质(抗剪强度、压缩性、渗透性等)土的分类(按照粒径、塑性、有机质含量等)1.3 教学方法采用讲授法介绍土的性质与分类的基本概念。
利用图像、案例等方式展示土的组成与结构。
通过实验或现场考察,让学生亲手操作,加深对土的物理性质与力学性质的理解。
1.4 教学活动引入话题:土地与建筑物的基础关系。
讲授土的组成与结构,配合图像与案例。
学生实验:土的密度、含水率、粒径分布等测试。
小组讨论:土的分类方法及其在工程中的应用。
第二章:土的力学性质2.1 教学目标理解土的力学性质及其在土力学分析中的重要性。
学会应用土的抗剪强度、压缩性和渗透性等力学性质进行工程计算。
2.2 教学内容土的抗剪强度(抗剪断强度、抗剪摩尔圆)土的压缩性(压缩系数、压缩模量)土的渗透性(渗透系数、达西定律)2.3 教学方法采用讲解和案例分析相结合的方式,让学生理解土的力学性质。
利用实验数据,讲解土的抗剪强度、压缩性和渗透性的测定方法。
2.4 教学活动复习土的分类,引入土的力学性质的重要性。
讲解土的抗剪强度、压缩性和渗透性的基本概念。
学生实验:土的抗剪强度、压缩性和渗透性的测定。
案例分析:应用土的力学性质进行实际工程问题的计算。
第三章:土压力与支撑力3.1 教学目标理解土压力和支撑力的概念及其在工程中的应用。
学会计算静止土压力、主动土压力和被动土压力。
3.2 教学内容土压力(静止土压力、主动土压力、被动土压力)支撑力(挡土墙、地下墙、支护结构)3.3 教学方法采用讲授法,结合实例讲解土压力和支撑力的概念。
利用公式和计算实例,让学生掌握土压力和支撑力的计算方法。
3.4 教学活动引入土压力和支撑力的概念,讲解其在工程中的应用。
讲解静止土压力、主动土压力和被动土压力的计算方法。
土力学第四章抗剪强度土力学第四章抗剪强度一、引言土力学是研究土体力学性质及其应力、应变关系的学科,而抗剪强度是土力学中的重要概念之一。
本文将探讨土力学第四章中与抗剪强度相关的内容,包括抗剪强度的定义、影响因素以及在工程实践中的应用。
二、抗剪强度的定义抗剪强度是指土体抵抗剪切力的能力。
在土力学中,土体通常是以颗粒状存在,受力时会发生内部颗粒之间的相对位移,导致剪切变形。
抗剪强度是土体抵抗这种剪切变形的能力的一种表征。
三、影响抗剪强度的因素1. 土体类型:不同类型的土体具有不同的抗剪强度。
粘土的抗剪强度相对较高,而砂土的抗剪强度相对较低。
2. 湿度:湿度对土体的抗剪强度有着显著的影响。
在一定范围内,湿度的增加会使土体的抗剪强度增加。
3. 应力状态:土体在不同应力状态下的抗剪强度也会有所不同。
例如,在三轴压缩试验中,土体在不同的主应力差下会表现出不同的抗剪强度。
4. 颗粒形状和排列方式:土体中颗粒的形状和排列方式对抗剪强度有着重要影响。
颗粒形状不规则或排列紧密的土体具有较高的抗剪强度。
四、抗剪强度的实验测定方法为了准确测定土体的抗剪强度,工程实践中通常使用一系列实验方法。
常用的方法包括直剪试验、三轴剪切试验和动三轴剪切试验等。
这些实验方法可以通过施加不同的剪切应力来测定土体的抗剪强度。
五、抗剪强度在工程实践中的应用抗剪强度是土力学中一个非常重要的参数,广泛应用于各种工程实践中。
在土壤基础工程中,准确测定和分析土体的抗剪强度可以帮助工程师评估土体的稳定性,并设计合理的基础结构。
此外,在土木工程中,抗剪强度也被用来评估土体的抗冲刷能力和抗滑移能力。
六、结论土力学第四章中的抗剪强度是研究土体力学性质时的重要内容。
本文从抗剪强度的定义、影响因素、实验测定方法以及在工程实践中的应用等方面进行了论述。
通过深入研究和理解抗剪强度这一概念,可以更好地应用于土壤力学和土木工程实践中,提高工程设计的可靠性和安全性。
参考文献:1. 毛振泉,王曙明,李敏. 工程土力学基础. 北京: 中国建筑工业出版社,2013.2. 刘福赉, 张猛, 刘允斌. 土力学与岩土工程高级课程. 西安: 西安建筑科技大学出版社,2014.。
第一章:土的物理性质及工程分类(一)单项选择题1、一种土的容重γ、饱和容重sat γ、浮容重γ'和干容重d γ的大小顺序为。
A .sat γ>γ'>d γ>γB .γ>γ'>d γ>sat γC .sat γ>γ>d γ>γ'D .sat γ> d γ>γ>γ'2、土的三个基本物理指标为土的容重、土的含水量及 。
A .孔隙比B .饱和度C .土粒比D .孔隙度3、有一完全饱和土样切满环刀内,称得总重量为克,经105°C 烘干至恒温为克,已知环刀质量为克,土的相对密度为,其天然孔隙比为 。
A. B. C. D.4、某砂土试样的天然密度为3m t ,含水量为20%,土粒相对密度为,最大干密度为3m t ,最小干密度为3m t ,其相对密实度及密实程度为。
A.28.0=r D 松散状态B.35.0=r D 中密状态C.25.0=r D 松散状态D.68.0=r D 密实状态5、标准贯入试验时,使用的穿心锤重与穿心锤落距分别是 。
A. 锤重Kg 10,落距cm 50B. 锤重Kg 5.63,落距cm 76C .锤重Kg 5.63,落距cm 50 D. 锤重Kg 10,落距cm 766、一般土中的粘粒含量越高,土的分散程度也越大,土中亲水矿物含量增加。
则 也相应增加。
A .液限1ωB .塑限p ωC .液性指数1I D. 塑性指数p I7、土的三个基本物理指标为土的容重、土的含水量及 。
A .孔隙比B .饱和度C .土粒比D .孔隙度8、对饱和土的固结过程中的物理性质指标进行定性分析,液性指数减小,孔隙比 ,含水量 ,饱和度 ,土变 。
A .增大B .减小C .不变D .软E 。
硬9、 由某土的粒径级配曲线获得5.1260=d 、03.010=d ,则该土的不均匀系数为 。
A . B. C. 3104.2-⨯ D.10、对无粘性土的工程性质影响最大的因素是 。