高一年级寒假培优数学教材
- 格式:doc
- 大小:558.02 KB
- 文档页数:10
第1讲集合理清双基1、集合的有关概念(1)、集合的含义与表示:研究对象的全体称为集合。
对象为集合的元素。
通常用大写字母A 、B 、C 、D 表示。
元素与集合的关系∈与∉(2)、集合元素的特征(三要素):①确定性:②互异性:③无序性:【例】1.设R b a ∈,,集合},,0{},,1{b aba b a =+,则=-a b ________.(3)、集合的分类:①有限集②无限集③空集:∅(4)、集合的表示方法:①自然语言②列举法③描述法④venne 法【例】2.分析下列集合间的关系}1{2+==x y y A }1{2+==x y x B }1),{(2+==x y y x C }1{2+==x t t D 3.集合}{抛物线=A }{直线=B ,则B A 的元素个数下列说法正确的是()一个(B )二个(C )一个、二个或没有(D )以上都不正确变式:集合})0(),{(2≠++==a c bx ax y y x A })0(|),{(≠+==k b kx y y x B ,则B A 的元素个数为()说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
2.集合间的关系(1)子集:(2)相等关系:(3)真子集:说明:任何一个集合是它本身的子集空集是任何集合的子集,是任何非空集合的真子集。
【例】4.设⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,214,则M 与N 的关系正确的是()A.NM = B.NM ≠⊂ C.NM ≠⊃ D.以上都不对5.已知集合}.121|{},72|{-<<+=≤≤-=m x m x B x x A 。
若A B ⊆,则实数m 的取值范围是()A .43≤≤-m B .43<<-m C .42≤<m D .4≤m 3.集合的基本运算(1)交集(2)并集(3)补集全集【例】6.已知集合}1{2+==x y y M ,}9{2x y x N -==,则=N M ________4、集合运算中常用结论(1)等价关系B A A B A ⊆⇔= AB A B A ⊆⇔=【例】7.已知集合}{},1{a x x B x x A ≥=≤=,且R B A = ,则实数a 的取值范围为____(2)反演律(德摩根定律))()()(B C A C B A C U U U =)()()(B C A C B A C U U U =【例】8.设全集}5,4,3,2,1{=U ,集合S 与T 都是U 的子集,满足}2{=T S ,}4{)(=T S C U ,}5,1{)()(=T C S C U U 则有()A .TS ∈∈3,3B .TC S U ∈∈3,3C .TS C U ∈∈3,3D .TC S C U U ∈∈3,39.由)(+∈N n n 个元素组成的集合A 的子集个数:A 的子集有n2个,非空子集有)12(-n 个,真子集有)12(-n 个,非空真子集有)22(-n 个【考点分析】考点一集合的基本概念【例1】1.已知集合},,|),{(},5,4,3,2,1{A y x A y A x y x B A ∈+∈∈==则B 中所含元素的个数为()A .3B .6C .8D .102.集合A 是由形如()Z n Z m n m ∈∈+,3的数构成的,判断321-是不是集合A 中的元素.3.数集A 满足条件:若A a ∈,则)1(11≠∈-+a A a a .若A ∈31,求集合中的其他元素.4.已知},,2|{R k N x k x x P ∈∈<<=,若集合P 中恰有3个元素,则实数k 的取值范围是________.5.已知集合}023|{2=+-=x ax x A .(1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.►归纳提升解答集合的概念问题应关注两点(1)研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性。
中国奥赛网2019年冬令营课程设置一、合肥竞赛、自主招生、高考培优课程设置
数学竞赛提高班
物理竞赛提高班
化学竞赛提高班
生物竞赛提高班
自主招生班
高考培优理科提高班
高考培优理科冲刺班
高考培优文科冲刺班
电脑制作活动冲刺班
二、南京冬令营竞赛专题精讲+刷题班课程设置数学
物理
化学
三、上课时间、地点
(一)时间:元月27号报到,28日上课,2月2日结束;电脑营1号结束。
(二)地点:培优营:安徽大学老校区(黄山路校区);竞赛冲刺营:南京。
四、费用标准
(一)学科竞赛营、高考培优营学费1980元/每生;
(二)电脑制作营学费3980元/每生;
(三)南京竞赛冲刺营:2380元/每生;
(四)食宿费用:合肥:80元/每生每天(伙食、住宿各40元);南京:160元/天(住宿酒店100元,伙食60元)。
(五)食宿标准:住宿校内招待所、留学生公寓,每间4人;学生食堂统一用餐。
南京酒店上课,住宿标间,酒店桌餐。
【新教材】2019统编人教版高中数学A版必修第二册教学计划高一下学期数学教师教育教学工作计划(含教学进度表培优补差等)XX高级中学高一数学组XXX2019统编人教版高中数学A版必修第二册教学计划高一数学是高中数学的重要组成部分,通过本学期的教学,要使学生学会适应日常生活,参加生产和进一步学习所必须的基础知识与基本技能,进一步培养运算能力、思维能力和空间观念:能够运用所学的知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质及初步的辩证唯物主义的观点。
一、学情分析:根据分班考试的情况来分析学生的数学成绩并不理想,总体的水平一般,尖子生少、低分的学生较多,而且学习欠缺勤奋,学习的自觉性不高。
高一年级学生往往沿用初中的学习方法,死记硬背,这样既没读懂弄透,又使其自学能力和实际应用能力得不到很好的训练,要重视对学生的读法指导。
高一年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。
学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。
高一年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。
学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。
学生是否掌握良好的记忆方法与其学业成绩的好坏相关,高一学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应高一教学的新要求,要重视对学生进行记法指导。
学生大多存在学习粗心,作业马虎,对数学学习缺乏兴趣和信心的整体弱点,学习习惯差。
在知识结构上:学生在小学已学过的概率的运算,相应的较为简单的应用题,对图形、图形的面积、体积,数据的收集与整理上有了初步的认识,无论是代数的知识,图形的知识都有待于进一步系统化、理论化,这就是高中的内容,本学期将要学习有关统计与概率的认识,对图形的进一步认识;在数学的思维上:学生正处于形象思维向逻辑抽象思维的转变期,这期间,结合教学,让学生适当思考部分有利于思维的题目,无疑是对学生终身有用的;另一方面关注一题多解,多题一解,从不同的角度看问题,培养学生数学思维的活跃性和敏感性。
高一年段数学培优教材第二讲 二次函数一、 基础知识: 1. 二次函数的解析式(1)一般式:2()(0)f x ax bx c a =++≠(2)顶点式:2()()f x a x h k =-+,顶点为(,)h k (3)两根式:12()()()f x a x x x x =-- (4)三点式:132312321313221231213()()()()()()()()()()()()()()()()x x x x x x x x x x x x f x f x f x f x x x x x x x x x x x x x ------=++------2.二次函数的图像和性质(1)2()(0)f x ax bx c a =++≠的图像是一条抛物线,顶点坐标是24(,)24b ac b a a--,对称轴方程为2bx a=-,开口与a 有关。
(2)单调性:当0a >时,()f x 在(,]2b a -∞-上为减函数,在[,)2ba-+∞上为增函数;0a <时相反。
(3)奇偶性:当0b =时,()f x 为偶函数;若()()f a x f a x +=-对x R ∈恒成立,则x a =为()f x 的对称轴。
(4)最值:当x R ∈时,()f x 的最值为244ac b a -,当[,],[,]2b x m n m n a ∈-∈时,()f x 的最值可从(),(),()2b f m f n f a -中选取;当[,],[,]2bx m n m n a∈-∉时,()f x 的最值可从(),()f m f n 中选取。
常依轴与区间[,]m n 的位置分类讨论。
3.三个二次之间的关联及根的分布理论:二次方程2()0(0)f x ax bx c a =++=≠的区间根问题,一般情况需要从三个方面考虑:判别式、区间端点函数值的符号;对称轴与区间端点的关系。
二、 综合应用:例1:已知二次函数()f x 的图像经过三点(1,6),(1,0),(2.5,0)A B C --,求()f x 的解析式。
安徽省示范高中培优联盟2023年冬季联赛(高一)数学(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页.全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.4.考试结束,务必将试题卷和答题卡一并上交.第Ⅰ卷(选择题共60分)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合()(){}23270xA x x =--=∣,{}0ln 1B x x =∈Z∣ ,则A B = ()A.{}2B.{}3 C.{}2,3 D.{}1,2,32.若命题:0x ∃>,2210x mx -+ 是真命题,则实数m 的取值范围是()A.[)1,+∞B.[)2,+∞C.)⎡+∞⎣D.[)3,+∞3.已知函数()2y f x =的定义域为3,22⎡⎤-⎢⎥⎣⎦,则函数()()1ln 2f x y x -=+的定义域为()A.70,4⎡⎤⎢⎥⎣⎦B.[)(]3,11,4---C.(]2,4- D.()(]2,11,4--- 4.若:3p a >,q :关于x 的方程210x ax ++=有两个不相等的实数根,则p 是q 成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知定义域为R 的函数()f x 和()g x ,函数()f x 图象关于原点对称,函数()g x 满足()()0g x g x --=,若()()321xf xg x x +=+-,则()1f 与()2g -的大小关系为()A.()()12f g >-B.()()12f g <-C.()()12f g =- D.不确定6.已知1a >,1b >,log 10lg a b =,lg lg 2a b + ,则a b +=()A.2B.5C.10D.207.已知函数()f x 定义域为D ,若对于12,x x D ∀∈,当12x x ≠时,都有()()()()22121221120x x f x f x x f x x f x ⎡⎤+--<⎣⎦成立,则称函数()f x 是“共建”函数,则下列四个函数中是“共建”函数的是()A.()()42x xf x x =+ B.()()12log 21f x x x =-C.()2f x x x =+,()0,x ∈+∞ D.()2f x x =,()0,x ∈+∞8.函数()8149431923x x x x xf x --+⋅+⋅+=+⋅的最小值是()A. B.3C.83 D.103二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.若实数x ,y 满足12x y -<<<,则下列说法中正确的是()A.11x<- B.24x y -<+<C.10x y -<-< D.30x y -<-<10.若点(),8a 在幂函数()()1bf x a x =-的图象上,则以下关于函数()g x =是()A.()g x 的定义域是[]1,2B.()g x 的值域是[]1,1-C.()g x 是增函数D.()()50g x g x -+=11.若函数()f x 的零点与()4ln 2xg x x =+-的零点之差的绝对值不超过12,则()f x 可以是()A.()41f x x =- B.()32f x x x =+-C.()33xxf x -=- D.()()2log 32f x x =-12.定义在R 上的函数()f x ,当0x >时,()22f x x =-,当0x 时,()12x f x +=,若关于x 函数()()21y f x mf x =++在定义域内有四个零点,则实数m 的取值可以是()A.265-B.5- C.103-D.52-第Ⅱ卷(非选择题共90分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.三、填空题(本题共4小题,每小题5分,共20分.)13.已知函数()2f x x =()f x 的值域为________.14.已知函数()()log a f x x b =+的图象不经过第二、四象限,请写出满足条件的一组(),a b 的值________.15.设点()1,0A ,()0,1B ,点C 是函数1112y x x x ⎛⎫=+⎪⎝⎭图象上一点,则ABC △面积的最小值为________.16.若函数()()()232f x x x mx n =+++对于x ∀∈R 都有()()20f x f x -+=,则2m n +=________.四、解答题(本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.)17.(10分)某品牌汽车制造厂引进了一条小型家用汽车装配流水线,本年度第一季度统计数据如下表月份1月2月3月小型汽车数量x (辆)306080创造的收益y (元)480060004800(1)根据上表数据,从下列三个函数模型中:①y ax b =+,②2y ax bx c =++,③xy a b =+选取一个恰当的函数模型描述这条流水线生产的小型汽车数量x (辆)与创造的收益y (元)之间的关系,并写出这个函数关系式;(2)利用上述你选取的函数关系式计算,若这家工厂希望在一周内利用这条流水线创收6020元以上,那么它在一周内大约应生产多少辆小型汽车?18.(12分)(1)已知0b a >>,求证11a ab b+>+;(2)利用(1111111112462n ⎛⎫⎛⎫⎛⎫⎛⎫<---⨯⨯-< ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (*n ∈N 且2n ).19.(12分)我们知道存储温度x (单位:℃)会影响着鲜牛奶的保鲜时间T (单位:h ),温度越高,保鲜时间越短.已知x 与T 之间的函数关系式为()e mx n T x +=(e 为自然对数的底数),某款鲜牛奶在5℃的保鲜时间为180h ,在25℃的保鲜时间为45h .(参考数据:2 1.41≈)(1)求此款鲜牛奶在0℃的保鲜时间约为几小时(结果保留到整数);(2)若想要保证此款鲜牛奶的保鲜时间不少于90h ,那么对存储温度有怎样的要求?20.(12分)定义在R 上的函数()f x ,满足()0f x >,对于任意的,x y ∈R 都有()()ln ln f xy y f x =成立,并且0m ∃>,使得()12f m =.(1)判断函数()f x 的单调性,并证明;(2)若[]2,1x ∀∈--,不等式()212x f a f x ⎛⎫+- ⎪⎝⎭恒成立,求实数a 的取值范围.21.(12分)已知函数()223,0;2ln ,0.x x x f x x x ⎧+-=⎨-+>⎩ (1)请在网格纸中画出()f x 的简图,并写出函数的单调区间(无需证明);(2)定义函数()()2241,20;12,0 2.2f x x x xg x x x ⎧--+-⎪=⎨-<⎪⎩ 在定义域内的0x ,若满足()00g x x =,则称0x 为函数()g x 的一阶不动点,简称不动点;若满足()()00g g x x =,则称0x 为函数()g x 的二阶不动点,简称稳定点.①求函数()g x 的不动点;②求函数()g x 的稳定点.22.(12分)已知函数()log a f x x =,其中1a >.(1)若存在12x x <,使得()()12f x f x =,求122x x +的最小值;(2)令()()x g x f x f a ⎛⎫= ⎪⎝⎭,若关于x 的方程()g x m =有两个根1x 和2x ,求当221x a x >时,实数m 的取值范围.2023冬季联赛高一数学参考答案123456789101112ACDAADBDBDBCDABDAB一、选择题(本大题共8个题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【答案】A{}2,3A =,{}1e B x Z x =∈≤≤∣,所以{}2A B = ,故选A.2.【答案】C2Δ8004m m ⎧=-≥⎪⎨>⎪⎩,即)m ⎡∈+∞⎣,故选C.3.【答案】D ∵3,22x ⎡⎤∈-⎢⎥⎣⎦,∴[]23,4x ∈-,∴3142021x x x -≤-≤⎧⎨+>+≠⎩且,即3421x x x -≤≤⎧⎨>-≠-⎩且,故选D.4.【答案】A 由2Δ40a =->解得2a >或2a <-,故p 是q 成立的充分不必要条件,选A.5.【答案】A因为()()0f x f x +-=,()()0g x g x --=,()()321xf xg x x +=+-,故()()321xf xg x x --+-=--,即()()321xf xg x x --+=--,所以()32222x x x f x --+=,()2222x x g x -+-=,计算可得()714f =,()928g -=,故选A.6.【答案】D∵log 10lg a b =,∴lg10lg lg b a=,即lg lg 1a b ⋅=,由基本不等式可知lg lg 2a b +≥=,又因为lg lg 2a b +≤,所以lg lg 2a b +=,即满足基本不等式取等条件lg lg 1a b ==,即10a b ==,故选D.7.【答案】B根据题意,()()()1221120x x x f x x f x ⎡⎤--<⎣⎦,即()()()121212120f x f x x x x x x x ⎡⎤--<⎢⎥⎣⎦,设()()f x g x x=,即()()()1212120x x x x g x g x ⎡⎤--<⎣⎦,选项B 中,()()12log 21g x x =-在定义域上是单调递减函数,满足“共建”函数的定义,故选B.8.【答案】D设3x t =,则()224222222414121222t t t t t f t t t t t t t t t⎛⎫+++++ ⎪⎝⎭===+++++,因为2221133t t t t t +=++≥,所以()110333f t ≥+=,选D.二、选择题:本大题共4个题,每小题5分,共20分.每小题有多项符合题目要求,全部选对得5分,部分选对得2分,有选错得0分.9.【答案】BD 当1x =时,111x=>-,故A 错误;因为12x y -<<<,根据同向可加性易知24x y -<+<,故B 正确;因为12x y -<<<,所以12x -<<,21y -<-<,则30x y -<-<,故C 错误,D 正确,故选BD.10.【答案】BCD因为()()1bf x a x =-为幂函数,所以11a -=,则2a =,由点()2,8在()bf x x =的图象上得3b =,故()g x =.由3020x x -≥⎧⎨-≥⎩解得23x ≤≤,故A 错误;易知函数()g x =单调递增,故C 正确;当23x ≤≤时,求得值域为[]1,1-,故B 正确;由()g x =()5g x -=()()50g x g x -+=,故选BCD11.【答案】ABD计算可得A ,B ,C ,D 选项中的零点分别为14,1,0,1,根据二分法以及零点存在性定理可求出()14220g =-=>,1112ln 2ln 0222g ⎛⎫=+-=< ⎪⎝⎭,)333ln 221ln0444g ⎛⎫=-=+> ⎪⎝⎭所以()g x 的零点所在区间为13,24⎛⎫⎪⎝⎭,故选ABD.12.【答案】AB 令()t f x =,则21y t mt =++,由题意原函数有4个零点,结合函数()t f x =图象可知函数21y t mt =++有两个不同零点1t 和2t ,不妨设12t t <,且12t t m +=-,121t t =,分析函数()t f x =的图象可知,24t ≥,则12221174m t t t t -=+=+≥,解得174m ≤-,故选AB.三、填空题:本题共4小题,每小题5分,共20分13.15,8⎡⎫+∞⎪⎢⎣⎭14.()2,112-16.14-13.【答案】15,8⎡⎫+∞⎪⎢⎣⎭令t =,则0t ≥,21x t =+,()()2211521248y f x t t t ⎛⎫==+-=-+ ⎪⎝⎭,易得值域为15,8⎡⎫+∞⎪⎢⎣⎭.14.【答案】()2,1只要满足1a >,1b =即可15.12-,如图所示,1111111222222ABC ACO BCO ABO S S S S x x x x x ⎛⎫⎛⎫=+-=++-=+- ⎪ ⎪⎝⎭⎝⎭△△△△,因为112x ≤≤,所以12xx +≥=,当且仅当2x =时取等号,此时ABC △12.(另解:利用点到直线距离公式亦可解决)16.【答案】14-,因为对于R x ∀∈都有()()20f x f x -+=,所以函数()f x 的对称中心为()1,0,又因为()30f -=,所以()50f =,故()()()()()()22315321210f x x x x x x x =+--=+-+,即2241014m n +=-+=-.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(10分)【答案】(1)选取②2y ax bx c =++,由题表可知,随着x 的增大,y 的值先增大后减小,而函数y ax b =+及x y a b =+均为单调函数,故不符合题意,所以选取②2y ax bx c=++2分将()30,4800,()60,6000,()80,4800三点分别代入函数解析式2y ax bx c =++,可得二次函数对称轴为3080552x +==,故可将函数解析式设为2(55)y a x h =-+,即得到2256000254800a h a h ⎧+=⎨+=⎩,解出26050a h =-⎧⎨=⎩,∴2222(55)60502220y x x x ax bx c =--+=-+=++,∴2a =-,220b =,0c =;5分(2)设在一周内大约应生产x 辆小型汽车,根据题意,可得222206020x x -+>,即2222060200x x -+->,即211030100x x -+<,6分因为2Δ11043010600=-⨯=>,所以方程211028000x x -+=有两个实数根155x =,255x =,由二次函数21103010y x x =-+的图象可知不等式的解为5555x <<+.8分因为x 只能取整数值,所以当这条流水线在一周内生产的小型汽车数量5358x ≤≤之间时,这家工厂能够获得6020元以上的收益.10分18.(12分)【答案】(1)证明:因为0b a >>,所以()1011a a b a b b b b +--=>++,于是11a ab b+>+.4分(2135212462n n -<⨯⨯⨯<(*n N ∈且2n ≥)由(1)式可知,2221221221n n nn n n --<<-+,故21352113521124221112462246223521224n n n n n n n n ---⎛⎫⎛⎫⎛⎫⨯⨯⨯>⨯⨯⨯⨯⨯⨯=⨯= ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭ (*n N ∈且2n ≥)2135211352124621246224623572121n n n n n n n --⎛⎫⎛⎫⎛⎫⨯⨯⨯<⨯⨯⨯⨯⨯⨯= ⎪ ⎪⎪++⎝⎭⎝⎭⎝⎭ (*n N ∈且2n ≥)135212462n n -<⨯⨯⨯<(*n N ∈且2n ≥),原式得证.12分19.(12分)【答案】(1)根据题意,将()5,180,()25,45分别代入()emx nT x +=得525e 180e45m n m n ++⎧=⎨=⎩,2分所以20451e1804m==,所以5e 2m =,0m <,当0x =时,()5180e 180 1.41253.8e 2n m T x ====≈⨯=,此款鲜牛奶在0℃的保鲜时间为254小时.6分(2)根据题意,即要求()e 90mx nT x +=≥,由(1)可知101e 2m =,所以101551e e e 180902m m n m n ++⋅=⋅=,故15ee mx nm n ++≥,即15e e mx m ≥,即15mx m ≥,因为0m <,所以15x ≤,所以想要保证此款鲜牛奶的保鲜时间不少于90h ,存储温度要低于15℃12分20.(12分)【答案】(1)函数()f x 单调递减.,证明如下:由()()ln ln f xy y f x =得,()()[]yf xy f x =,则12,R x x ∀∈,当12x x <时()()()()()()121122a babf x f x f ma f mb f m f m ⎛⎫⎛⎫⎡⎤⎡⎤-=-==- ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭-4分因为12x x <,所以ma mb <,则a b <,故()()1211022a bf x f x ⎛⎫⎛⎫-=-> ⎪ ⎪⎝⎭⎝⎭所以函数()f x 单调递减.6分(2)不等式()212x f a f x ⎛⎫+-≥ ⎪⎝⎭可等价变形为()212x f a f x⎛⎫+≥ ⎪-⎝⎭,因为()()[]yf xy f x =,所以()()()12221f x f x f x -⎡⎤=-=⎣⎦-,则不等式可变为()22x f a f x ⎛⎫+≥ ⎪⎝⎭8分由(1)知,函数()f x 在定义域内单调递减,故22xa x +≤,[]2,1x ∈--恒成立,则2min2x a x ⎛⎫≤-⎪⎝⎭,解得32a ≤11分因此实数a 的取值范围是3,2⎛⎤-∞ ⎥⎝⎦.12分21.(12分)【答案】(1)()f x 的单增区间为[]1,0-,()0,+∞,()f x 的单减区间为(],1-∞-5分(2)易知()222,2012,022x x g x x x ---≤≤⎧⎪=⎨-<≤⎪⎩①当020x -≤≤时,()0022g x x =--,令()00g x x =得0022x x --=,解得023x =-;当002x <≤时,()200122g x x =-,令()00g x x =得200122x x -=,解得01x =综上所述:函数()g x 的不动点为23-.8分②当021x -≤<-时,()0022g x x =--,且()002g x <≤,则()()()()2200000122222242g g x g x x x x =--=---=+令()()00g g x x =得,200024x x x +=,解得032x =-或00x =(舍)当010x -≤≤时,()0022g x x =--,且()020g x -≤≤,则()()()()000022222242g g x g x x x =--=----=+令()()00g g x x =得0042x x +=,解得023x =-10分当002x <≤时,()200122g x x =-,且()020g x -≤<,则()()2220000112222222g g x g x x x ⎛⎫⎛⎫=-=---=-+ ⎪ ⎪⎝⎭⎝⎭令()()00g g x x =得2002x x -+=,解得01x =或02x =-(舍)综上所述:函数()g x 的稳定点有3个,分别是32-,23-和1.12分22.(12分)【答案】(1)因为()log a f x x =为单调函数,所以当12x x <时,()()12f x f x ≠,则当()()12f x f x =时,有()()12f x f x =-,即12log log 0a a x x +=,解得121x x =,则2分1211122x x x x +=+≥当且仅当12x =时,取等号,故122x x +的最小值为.5分(2)由题意,()()()log log log log 1a a a a x x g x f x f x x x a a ⎛⎫==⋅=- ⎪⎝⎭令log a t x =,则R t ∈,11log a t x =,22log a t x =,若221x a x >,则221log log a a x a x >,即21log log 2a a x x ->,即212t t ->7分由1t 和2t 为方程()1t t m -=,即方程20t t m --=的两根得Δ140m =+>,解得14m >-,且121t t +=,12t t m =-9分因为212t t ->,所以()1112t t -->,解得112t <-,所以()22121111111124m t t t t t t t ⎛⎫=-=--=-=-- ⎪⎝⎭,。
三、函数思想方法的应用
【要点】
1.函数的思想,是指运用运动变化的观点,分析和研究数量关系,通过建立或构造函数关系式,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决的思想方法.
2.方程的思想,是指根据数学问题中变量间的特殊关系,有意识地构造方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.
3.函数和方程是密切相关的,可以互相转化。
比如研究函数y=f(x)与y=g(x)的图象的交点问题,就是研究方程f(x)=g(x)的实数解的问题;解方程f(x)=0,就是求函数y=f(x)的零点.
4.函数应用题的解题步骤简述如下:
(1)审题:阅读理解文字表达的题意,分清条件和结论;
(2)建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型,;
(3)求模:求解数学模型,得到数学结论;
(4)作答:对结果进行验证或评估,作出解释或回答。
解应用题可归结为“过三关”:一是事理关,即读懂题意,需要一定的阅读理解能力;二是文理关,即把文字语言转化为数学的符号语言;三是数理关,即构建相应的数学模型,构建之后还需要扎实的基础知识和较强的数理能力。
【例题】
1.方程x 2=2x 的解的个数为( )
A .0
B .1
C .2
D .3 2.已知
155=-a c b ,(a 、b 、c ∈R ),则有( ) A .ac b 42> B .ac b 42≥ C .ac b 42< D .ac b 42≤
3.已知关于x 的方程 2x -(2 m -8)x +2m -16 = 0的两个实根 1x 、2x 满足 1x <2
3<2x ,则实数m 的取值范围_______________.
4.关于x 的方程|x 2-4x +3|-a =0有三个不相等的实数根,则实数a 的值是______.
5.若不等式x 4x 2--≥
3
4x+11-a 的解集为{x|-4≤x≤-2},求实数a 的值.
6.已知直线y=3-x 和坐标轴交于A 、B 两点,若抛物线y=-x 2+mx-1和线段AB 有两个不同的交点,求实数m 的范围.
7.设不等式2x -1>m (x 2-1)对满足|m|≤2的一切实数m 的取值都成立.求x 的取值范围.
8.设f (x )=lg 3
421a x x ++,如果当x ∈(-∞,1]时f (x )有意义,求实数a 的取值范围.
9.若方程lg (-x 2+3x -m )=lg (3-x )在x ∈(0,3)内有唯一解,求实数m 的取值范围.
10.已知函数f (x )=log m 3
3+-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明;
(2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.。