6波动光学(衍射、偏振)练习与答案
- 格式:doc
- 大小:232.50 KB
- 文档页数:4
06振动与波、波动光学练习题 一、选择题 1 一物体作简谐振动,振动方程为)4cos(πω+=t A y在4T t =(T 为周期)时刻,物体的加速度为 [ ]2222321)(,321)(,221)(,221)(ωωωωA D A C A B A A -- 2 两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为)cos(1αω+=t A y 。
当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为 [ ])cos()(),23cos()()2cos()(),2cos()(2222παωπαωπαωπαω++=-+=-+=++=t A y D t A y C t A y B t A y A 3一质点沿y 轴作简谐振动,振动方程为)SI (),32cos(1042παπ++⨯=-t y ,从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为[ ]s 61)(s,31)(s,21)(s,41)(s,81)(E D C B A 4 已知两个简谐振动曲线如图所示,1x 相位比2x 的相位 [ ]ππππ超前,落后,超前,落后)()(2)(2)(D C B A5题图 7题图5 一质点作简谐振动,周期为T 。
质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为 [ ],8)(6)(12)(4)(T D T C T B T A ,,, 6 在下面几种说法中,正确的说法是: [ ](A )波源不动时,波源的振动周期与波动的周期在数值上是不同的,(B )波源振动的速度与波速相同,(C) 在波传播方向上的任一质点的振动相位总是比波源的相位滞后,(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前。
7一平面简谐波,沿X 轴负方向传播,角频率为ω,波速为u 。
设4T t =时刻的波形如图所示,则该波的表达式为: [ ]])(cos[)(),(cos )(]21)(cos[)(),(cos )(πωωπωω++=+=+-=-=ux t A y D u x t A y G u x t A y B ux t A y A 8 当机械波在媒质中传播时,一媒质质元的最大变形量发生在 [ ](A)媒质质元离开其平衡位置最大位移处,(B )媒质质元离开其平衡位置)2/2(A 处,(C )媒质质元在其平衡位置处,(D )媒质质元离开其平衡位置A/2处(A 是振动振幅)。
波动光学试题及答案1. 光波的波长为600nm,其频率是多少?答案:根据光速公式c = λν,其中c为光速(约为3×10^8m/s),λ为波长(600×10^-9 m),可得ν = c/λ = (3×10^8m/s) / (600×10^-9 m) = 5×10^14 Hz。
2. 一束光在折射率为1.5的介质中传播,其在真空中的速度是多少?答案:在折射率为1.5的介质中,光的速度v = c/n,其中c为真空中的光速(3×10^8 m/s),n为折射率。
因此,v = (3×10^8 m/s) / 1.5 = 2×10^8 m/s。
3. 光的偏振现象说明了什么?答案:光的偏振现象说明光是一种横波,即光波的振动方向与传播方向垂直。
4. 何为布儒斯特角?答案:布儒斯特角是指当光从一种介质(如空气)入射到另一种介质(如玻璃)时,反射光完全偏振时的入射角。
5. 干涉现象产生的条件是什么?答案:干涉现象产生的条件是两束光波的频率相同、相位差恒定且具有相同的振动方向。
6. 描述杨氏双缝干涉实验的基本原理。
答案:杨氏双缝干涉实验的基本原理是利用两个相干光源(如激光)通过两个相邻的狭缝产生两束相干光波,这两束光波在屏幕上相互叠加,形成明暗相间的干涉条纹。
7. 光的衍射现象说明了什么?答案:光的衍射现象说明光在遇到障碍物或通过狭缝时,其传播方向会发生改变,形成明暗相间的衍射图样。
8. 单缝衍射的中央亮条纹宽度与哪些因素有关?答案:单缝衍射的中央亮条纹宽度与光的波长、缝宽以及观察距离有关。
9. 光的色散现象是如何产生的?答案:光的色散现象是由于不同波长的光在介质中传播速度不同,导致折射率不同,从而在介质界面处发生不同程度的折射。
10. 描述光的全反射现象。
答案:光的全反射现象是指当光从光密介质(折射率较大)向光疏介质(折射率较小)传播时,如果入射角大于临界角,则光线不会折射,而是全部反射回光密介质中。
11、波动光学光的衍射一、选择题(共15题)1.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ.(D) 3 λ.[]2.一束波长为λ的平行单色光垂直入射到一单Array缝AB上,装置如图.在屏幕D上形成衍射图样,如果P是中央亮纹一侧第一个暗纹所在的位置,则BC的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 .(D) 2λ.[]3.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]4.在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[]5.在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的(A) 3 / 4倍. (B) 2 / 3倍.(C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ ] 6.λ在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度a 稍梢变宽,同时使单缝沿y 轴正方向作微小平移(透镜屏幕位置不动),则屏幕C 上的中央衍射条纹将(A) 变窄,同时向上移; (B) 变窄,同时向下移;(C) 变窄,不移动;(D) 变宽,同时向上移;(E) 变宽,不移. [ ] 7.一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现? (A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ] 8.在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b .(C) a=2b . (D) a=3 b . [ ]λ9.测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射. [ ] 10.波长λ=550 nm(1nm=10−9m)的单色光垂直入射于光栅常数d =2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2. (B) 3. (C) 4. (D) 5. [ ] 11.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少. (B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多. (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变. (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.[ ] 12.某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是(A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12...... [ ] 13.当单色平行光垂直入射时,观察单缝的夫琅禾费衍射图样.设0I 表示中央极大(主极大)的光强,1θ表示中央亮条纹的半角宽度.若只是把单缝的宽度增大为原来的3倍,其他条件不变,则(A) 0I 增大为原来的9倍,1sin θ减小为原来的 31.(B) 0I 增大为原来的3倍,1sin θ减小为原来的 31.(C) 0I 增大为原来的3倍,1sin θ增大为原来的3倍.(D) 0I 不变,1sin θ减小为原来的 31. [ ]14.波长为0.168 nm (1 nm = 10-9 m)的X 射线以掠射角θ 射向某晶体表面时,在反射方向出现第一级极大,已知晶体的晶格常数为0.168 nm ,则θ 角为(A) 30°. (B) 45°.(C) 60°. (D) 90°. [ ] 15.X 射线射到晶体上,对于间距为d 的平行点阵平面,能产生衍射主极大的最大波长为 (A) d / 4. (B) d / 2.(C) d . (D) 2d . [ ]二、填空题(共15题)1.在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =___________________________. 2.如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为___________.3.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a =2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个. 4.将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于_________. 5.波长为 600 nm 的单色平行光,垂直入射到缝宽为a=0.60 mm 的单缝上,缝后有一焦距f '=60 cm 的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为_______,两个第三级暗纹之间的距离为______.(1 nm =10﹣9 m) 6.a λ在单缝夫琅禾费衍射示意图中,所画出的各Array条正入射光线间距相等,那末光线1与2在幕上P点上相遇时的相位差为______ P点应为_____ 点.7.测量未知单缝宽度a的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D处测出衍射花样的中央亮纹宽度为l(实验上应保证D≈103a,或D为几米),则由单缝衍射的原理可标出a 与λ,D,l的关系为a =_ ___.8.波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为___________.9.一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为________.10.若光栅的光栅常数d、缝宽a和入射光波长λ都保持不变,而使其缝数N增加,则光栅光谱的同级光谱线将变得___________.11.用平行的白光垂直入射在平面透射光栅上时,波长为λ1=440 nm的第3级光谱线将与波长为λ2=______nm的第2级光谱线重叠.(1 nm =10 –9 m)12.一双缝衍射系统,缝宽为a,两缝中心间距为d.若双缝干涉的第±4,±8,±12,±16,…级主极大由于衍射的影响而消失(即缺级),则d/ a的最大值为____ ____________.13.汽车两盏前灯相距l,与观察者相距S= 10 km.夜间人眼瞳孔直径d= 5.0 mm.人眼敏感波长为λ = 550 nm (1 nm = 10-9 m),若只考虑人眼的圆孔衍射,则人眼可分辨出汽车两前灯的最小间距l = _________m.14.在通常亮度下,人眼瞳孔直径约为3 mm.对波长为550 nm的绿光,最小分辨角约为_______rad.(1 nm = 10-9 m)15.X射线入射到晶格常数为d的晶体中,可能发生布喇格衍射的最大波长为____________.三、计算题(共6题)1. (6分)在单缝的夫琅禾费衍射中,缝宽a =0.100 mm ,平行光垂直入射在单缝上,波长λ=500 nm ,会聚透镜的焦距f =1.00 m .求中央亮纹旁的第一个亮纹的宽度∆x . (1 nm =10–9 m)2. (5分)如图所示,设波长为λ的平面波沿与单缝平面法线成θ角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角ϕ.3. (5分)一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求: (1) 光栅常数a +b(2) 波长λ24. (10分)波长λ=600nm(1nm=10﹣9m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1) 光栅常数(a + b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a + b )和a 之后,求在衍射角-π21<ϕ<π21范围内可能观察到的全部主极大的级次.5.(10分)以波长为λ = 500 nm (1 nm = 10-9 m)的单色平行光斜入射在光栅常数为d = 2.10 μm 、缝宽为a = 0.700 μm 的光栅上,入射角为i = 30.0°,求能看到哪几级光谱线.6. (5分)设汽车前灯光波长按λ = 550 nm (1 nm = 10-9 m)计算,两车灯的距离d = 1.22 m ,在夜间人眼的瞳孔直径为D = 5 mm ,试根据瑞利判据计算人眼刚能分辨上述两只车灯时,人与汽车的距离L .11、波动光学 光的衍射 答案一、选择题(共15题) 1-5:D 、B 、B 、A 、D 、 6-10:C 、B 、B 、D 、B 、 11-15:D 、D 、A 、A 、D 二、填空题(共15题)1、答案:30°2、答案:π3、答案:24、答案:λ / sin θ5、答案:1.2 mm ;3.6 mm6、答案:2π 暗7、答案:2λD / l8、答案:d sin ϕ =k λ ( k =0,±1,±2,···) 9、答案:0,±1,±3,........ 10、答案:更窄更亮 11、答案:660nm 12、答案:413、答案:1.34m14、答案:2.24×10-4 rad 15、答案:2d三、计算题(共6题)1、解:单缝衍射第1个暗纹条件和位置坐标x 1为:a sin θ1 = λa f f f x /sin tg 111λθθ≈≈= (∵θ1很小) 2分单缝衍射第2个暗纹条件和位置坐标x 2为: a sin θ2 = 2λa f f f x /2sin tg 222λθθ≈≈= (∵θ2很小) 2分 单缝衍射中央亮纹旁第一个亮纹的宽度 ()a a f x x x //2121λλ-≈-=∆= f λ / a=1.00×5.00×10-7 / (1.00×10-4) m=5.00 mm 2分2、解:1、2两光线的光程差,在如图情况下为ϕθδsin sin a a BD CA -=-= 2分由单缝衍射极小值条件a (sin θ-sin ϕ ) = ± k λ k = 1,2,…… 2分 (未排除k = 0 的扣1分)得 ϕ = sin —1( ± k λ / a+sin θ ) k = 1,2,……(k ≠ 0) 1分3、解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+ b acm 1036.330sin 341-⨯==+λb a 3分 (2) ()2430sin λ=+ b a()4204/30sin 2=+= b a λnm 2分4、解:(1) 由光栅衍射主极大公式得a +b =ϕλsin k =2.4×10-4 cm 3分(2) 若第三级不缺级,则由光栅公式得()λϕ3sin ='+b a由于第三级缺级,则对应于最小可能的a ,ϕ'方向应是单缝衍射第一级暗纹:两式比较,得 λϕ='sin aa = (a +b )/3=0.8×10-4 cm 3分(3)()λϕk b a =+sin ,(主极大) λϕk a '=sin ,(单缝衍射极小) (k '=1,2,3,......)L θ2 θ1 Cx 2 x 1 ∆x f因此 k =3,6,9,........缺级. 2分又因为k max =(a +b ) / λ=4, 所以实际呈现k=0,±1,±2级明纹.(k=±4 在π / 2处看不到.) 2分5、解:(1) 斜入射时的光栅方程λθk i d d =-sin sin ,k = 0,±1,±2,… 2分规定i 从光栅G 的法线n -n 起,逆时针方向为正;θ 从光栅G 的法线n -n 起,逆时针方向为正.(2) 对应于i = 30°,设θ = 90°, k = k max1,则有λ1max 30sin 90sin k d d =︒-︒ )30sin 90)(sin /(1max ︒-︒=d d k λ= 2.10取整 k max1 = 2. 2分 (3) 对应于i = 30°,设θ = -90°, k = k max2, 则有 λ2max 30sin )90sin(k d d =︒-︒-]30sin )90)[sin(/(2max ︒-︒-=d d k λ = - 6.30取整 k max1 = -6. 2分 (4) 但因 d / a = 3,所以,第-6,-3,… 级谱线缺级. 2分 (5) 综上所述,能看到以下各级光谱线: -5,-4,-2,-1,0,1,2,共7条光谱线. 2分6、解:人眼最小分辨角为 θr = 1.22 λ /D 2分汽车两前灯对人眼的张角 L d /≈'θ1分 人眼刚能分辨两灯时,θθ'=r ,或 d / L =1.22 λ /D∴ ==)22.1/(λDd L 9.09 km 2分d 屏 光栅 透镜11、波动光学光的衍射一、选择题(共15题)1.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ.(D) 3 λ.[]2.一束波长为λ的平行单色光垂直入射到一单Array缝AB上,装置如图.在屏幕D上形成衍射图样,如果P是中央亮纹一侧第一个暗纹所在的位置,则BC的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 .(D) 2λ.[]3.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]4.在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[]5.在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的(A) 3 / 4倍. (B) 2 / 3倍.(C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ ] 6.λ在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度a 稍梢变宽,同时使单缝沿y 轴正方向作微小平移(透镜屏幕位置不动),则屏幕C 上的中央衍射条纹将(A) 变窄,同时向上移; (B) 变窄,同时向下移;(C) 变窄,不移动;(D) 变宽,同时向上移;(E) 变宽,不移. [ ] 7.一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现? (A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ] 8.在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b .(C) a=2b . (D) a=3 b . [ ]λ9.测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射. [ ] 10.波长λ=550 nm(1nm=10−9m)的单色光垂直入射于光栅常数d =2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2. (B) 3. (C) 4. (D) 5. [ ] 11.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少. (B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多. (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变. (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.[ ] 12.某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是(A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12...... [ ] 13.当单色平行光垂直入射时,观察单缝的夫琅禾费衍射图样.设0I 表示中央极大(主极大)的光强,1θ表示中央亮条纹的半角宽度.若只是把单缝的宽度增大为原来的3倍,其他条件不变,则(A) 0I 增大为原来的9倍,1sin θ减小为原来的 31.(B) 0I 增大为原来的3倍,1sin θ减小为原来的 31.(C) 0I 增大为原来的3倍,1sin θ增大为原来的3倍.(D) 0I 不变,1sin θ减小为原来的 31. [ ]14.波长为0.168 nm (1 nm = 10-9 m)的X 射线以掠射角θ 射向某晶体表面时,在反射方向出现第一级极大,已知晶体的晶格常数为0.168 nm ,则θ 角为(A) 30°. (B) 45°.(C) 60°. (D) 90°. [ ] 15.X 射线射到晶体上,对于间距为d 的平行点阵平面,能产生衍射主极大的最大波长为 (A) d / 4. (B) d / 2.(C) d . (D) 2d . [ ]二、填空题(共15题)1.在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =___________________________. 2.如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为___________.3.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a =2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个. 4.将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于_________. 5.波长为 600 nm 的单色平行光,垂直入射到缝宽为a=0.60 mm 的单缝上,缝后有一焦距f '=60 cm 的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为_______,两个第三级暗纹之间的距离为______.(1 nm =10﹣9 m) 6.a λ在单缝夫琅禾费衍射示意图中,所画出的各Array条正入射光线间距相等,那末光线1与2在幕上P点上相遇时的相位差为______ P点应为_____ 点.7.测量未知单缝宽度a的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D处测出衍射花样的中央亮纹宽度为l(实验上应保证D≈103a,或D为几米),则由单缝衍射的原理可标出a 与λ,D,l的关系为a =_ ___.8.波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为___________.9.一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为________.10.若光栅的光栅常数d、缝宽a和入射光波长λ都保持不变,而使其缝数N增加,则光栅光谱的同级光谱线将变得___________.11.用平行的白光垂直入射在平面透射光栅上时,波长为λ1=440 nm的第3级光谱线将与波长为λ2=______nm的第2级光谱线重叠.(1 nm =10 –9 m)12.一双缝衍射系统,缝宽为a,两缝中心间距为d.若双缝干涉的第±4,±8,±12,±16,…级主极大由于衍射的影响而消失(即缺级),则d/ a的最大值为____ ____________.13.汽车两盏前灯相距l,与观察者相距S= 10 km.夜间人眼瞳孔直径d= 5.0 mm.人眼敏感波长为λ = 550 nm (1 nm = 10-9 m),若只考虑人眼的圆孔衍射,则人眼可分辨出汽车两前灯的最小间距l = _________m.14.在通常亮度下,人眼瞳孔直径约为3 mm.对波长为550 nm的绿光,最小分辨角约为_______rad.(1 nm = 10-9 m)15.X射线入射到晶格常数为d的晶体中,可能发生布喇格衍射的最大波长为____________.三、计算题(共6题)1. (6分)在单缝的夫琅禾费衍射中,缝宽a =0.100 mm ,平行光垂直入射在单缝上,波长λ=500 nm ,会聚透镜的焦距f =1.00 m .求中央亮纹旁的第一个亮纹的宽度∆x . (1 nm =10–9 m)2. (5分)如图所示,设波长为λ的平面波沿与单缝平面法线成θ角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角ϕ.3. (5分)一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求: (1) 光栅常数a +b(2) 波长λ24. (10分)波长λ=600nm(1nm=10﹣9m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1) 光栅常数(a + b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a + b )和a 之后,求在衍射角-π21<ϕ<π21范围内可能观察到的全部主极大的级次.5.(10分)以波长为λ = 500 nm (1 nm = 10-9 m)的单色平行光斜入射在光栅常数为d = 2.10 μm 、缝宽为a = 0.700 μm 的光栅上,入射角为i = 30.0°,求能看到哪几级光谱线.6. (5分)设汽车前灯光波长按λ = 550 nm (1 nm = 10-9 m)计算,两车灯的距离d = 1.22 m ,在夜间人眼的瞳孔直径为D = 5 mm ,试根据瑞利判据计算人眼刚能分辨上述两只车灯时,人与汽车的距离L .11、波动光学 光的衍射 答案一、选择题(共15题) 1-5:D 、B 、B 、A 、D 、 6-10:C 、B 、B 、D 、B 、 11-15:D 、D 、A 、A 、D 二、填空题(共15题)1、答案:30°2、答案:π3、答案:24、答案:λ / sin θ5、答案:1.2 mm ;3.6 mm6、答案:2π 暗7、答案:2λD / l8、答案:d sin ϕ =k λ ( k =0,±1,±2,···) 9、答案:0,±1,±3,........ 10、答案:更窄更亮 11、答案:660nm 12、答案:413、答案:1.34m14、答案:2.24×10-4 rad 15、答案:2d三、计算题(共6题)1、解:单缝衍射第1个暗纹条件和位置坐标x 1为:a sin θ1 = λa f f f x /sin tg 111λθθ≈≈= (∵θ1很小) 2分单缝衍射第2个暗纹条件和位置坐标x 2为: a sin θ2 = 2λa f f f x /2sin tg 222λθθ≈≈= (∵θ2很小) 2分 单缝衍射中央亮纹旁第一个亮纹的宽度 ()a a f x x x //2121λλ-≈-=∆= f λ / a=1.00×5.00×10-7 / (1.00×10-4) m=5.00 mm 2分2、解:1、2两光线的光程差,在如图情况下为ϕθδsin sin a a BD CA -=-= 2分由单缝衍射极小值条件a (sin θ-sin ϕ ) = ± k λ k = 1,2,…… 2分 (未排除k = 0 的扣1分)得 ϕ = sin —1( ± k λ / a+sin θ ) k = 1,2,……(k ≠ 0) 1分3、解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+ b acm 1036.330sin 341-⨯==+λb a 3分 (2) ()2430sin λ=+ b a()4204/30sin 2=+= b a λnm 2分4、解:(1) 由光栅衍射主极大公式得a +b =ϕλsin k =2.4×10-4 cm 3分(2) 若第三级不缺级,则由光栅公式得()λϕ3sin ='+b a由于第三级缺级,则对应于最小可能的a ,ϕ'方向应是单缝衍射第一级暗纹:两式比较,得 λϕ='sin aa = (a +b )/3=0.8×10-4 cm 3分(3)()λϕk b a =+sin ,(主极大) λϕk a '=sin ,(单缝衍射极小) (k '=1,2,3,......)L θ2 θ1 Cx 2 x 1 ∆x f因此 k =3,6,9,........缺级. 2分又因为k max =(a +b ) / λ=4, 所以实际呈现k=0,±1,±2级明纹.(k=±4 在π / 2处看不到.) 2分5、解:(1) 斜入射时的光栅方程λθk i d d =-sin sin ,k = 0,±1,±2,… 2分规定i 从光栅G 的法线n -n 起,逆时针方向为正;θ 从光栅G 的法线n -n 起,逆时针方向为正.(2) 对应于i = 30°,设θ = 90°, k = k max1,则有λ1max 30sin 90sin k d d =︒-︒ )30sin 90)(sin /(1max ︒-︒=d d k λ= 2.10取整 k max1 = 2. 2分 (3) 对应于i = 30°,设θ = -90°, k = k max2, 则有 λ2max 30sin )90sin(k d d =︒-︒-]30sin )90)[sin(/(2max ︒-︒-=d d k λ = - 6.30取整 k max1 = -6. 2分 (4) 但因 d / a = 3,所以,第-6,-3,… 级谱线缺级. 2分 (5) 综上所述,能看到以下各级光谱线: -5,-4,-2,-1,0,1,2,共7条光谱线. 2分6、解:人眼最小分辨角为 θr = 1.22 λ /D 2分汽车两前灯对人眼的张角 L d /≈'θ1分 人眼刚能分辨两灯时,θθ'=r ,或 d / L =1.22 λ /D∴ ==)22.1/(λDd L 9.09 km 2分d 屏 光栅 透镜。
第11章 波动光学一. 基本要求1. 解获得相干光的方法。
掌握光程的概念以及光程差与相位差的关系。
2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。
3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。
4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 理解自然光和偏振光及偏振光的获得方法和检验方法。
6. 理解马吕斯定律和布儒斯特定律。
二. 内容提要1. 相干光及其获得方法 能产生干涉的光称为相干光。
产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。
获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。
2. 光程、光程差与相位差的关系 光波在某一介质中所经历的几何路程l 与介质对该光波的折射率n 的乘积n l 称为光波的光学路程,简称光程。
若光波先后通过几种介质,其总光程为各分段光程之和。
若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。
来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆ 其中λ为光在真空中的波长。
3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。
其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,(ΛΛλλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。
第四篇 光学第一章 振动一、选择题1. 一质点作简谐振动, 其运动速度与时间的关系曲线如下图。
假设质点的振动规律用余弦函数描述,那么其初相应为:[ ] (A)6π (B) 65π (C) 65π- (D) 6π- (E) 32π-2. 如下图,一质量为m 的滑块,两边分别与劲度系数为k 1和k 2的轻弹簧联接,两弹簧的另外两端分别固定在墙上。
滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。
现将滑块m 向左移动x0,自静止释放,并从释放时开始计时。
取坐标如下图,那么其振动方程为:[ ] ⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos(A)⎥⎦⎤⎢⎣⎡++=πt k k m k k x x )(cos (B)21210⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (C)⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (D) ⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos (E)3. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。
假设t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,那么质点第二次通过x = -2cm 处的时刻为:[ ](A) 1s ; (B)s 32; (C) s 34; (D) 2s 。
4. 一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。
与其对应的振动曲线是: [ ]5. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的:[ ](A)167; (B) 169; (C) 1611; (D) 1613; (E) 1615。
(A)-(B)(C)(D)-06. 图中所画的是两个简谐振动的振动曲线,假设 这两个简谐振动可叠加,那么合成的余弦振动 的初相为: [ ] π21(A) π(B) π23(C) 0(D)二、填空题1. 一简谐振动的表达式为)3cos(ϕ+=t A x ,0=t 时的初位移为0.04m, s -1,那么振幅A = ,初相位 =2. 两个弹簧振子的的周期都是0.4s, 设开始时第一个振子从平衡位置向负方向运动,经过0.5s 后,第二个振子才从正方向的端点开始运动,那么这两振动的相位差为 。
大学物理(波动光学)试卷班级:_____________ 姓名:_____________ 学号:_____________日期:__________年_______月_______日成绩:_____________一、选择题(共27分)1.(本题3分)在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为D (D>>d).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d.(B) λd / D.23456(B) 2 ,5 ,8 ,11......(C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12......[]7.(本题3分)一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为(A) 4/0I2.(B) I0 / 4.(C) I0 / 2.(D) 2I0 / 2.[]8.(本题3分)自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[]9.(本题3分)自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为(A) 完全线偏振光且折射角是30°.101112131415f16如图所示的杨氏双缝干涉装置,若用单色自然光照射狭缝S,在屏幕上能看到干涉条纹.若在双缝S1和S2的一侧分别加一同质同厚的偏振片P1、P2,则当P1与P2的偏振化方向相互______________时,在屏幕上仍能看到很清晰的干涉条纹.17.(本题3分)光的干涉和衍射现象反映了光的________性质.光的偏振现象说明光波是_________波.P2P1S1S2S三、计算题(共38分) 18.(本题8分)在牛顿环装置的平凸透镜和平玻璃板之间充以折射率n =1.33的液体(透镜和平玻璃板的折射率都大于1.33 ). 凸透镜曲率半径为300 cm ,用波长λ=650 nm (1 nm=10-9 m)的光垂直照射,求第10个暗环的半径(设凸透镜中心刚好与平板接触,中心暗斑不计入环数). 19.(本题5分)用波长λ=632.8nm(1nm=10-9m)的平行光垂直入射在单缝上,缝后用焦距f=40cm 的凸透镜把衍射光会聚于焦平面上.测得中央明条纹的宽度为 3.4mm ,单缝的宽度是多少? 20.(本题10分)一束平行光垂直入射到某个光栅上,该光束有两种波长的光,λ1=440 nm ,λ2=660 nm(1 nm = 10-9 m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角ϕ=60°的方向上.求此光栅的光栅常数d . 21.(本题10分)一光束由强度相同的自然光和线偏振光混合而成.此光束垂直入射到几个叠在一起的偏振片上.(1) 欲使最后出射光振动方向垂直于原来入射光中线偏振光的振动方向,并且入射光中两种成分的光的出射光强相等,至少需要几个偏振片?它们的偏振化方向应如何放置? (2) 这种情况下最后出射光强与入射光强的比值是多少? 22.(本题5分)在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i '. 四、理论推导与证明题(共5分)23.(本题5分)如图所示的双缝干涉装置中,假定两列光波在屏上P 点处的光场随时间t 而变化的表示式各为E 1 = E 0 sin ω t E 2=E 0 sin (ωt+φ) φ表示这两列光波之间的相位差.试证P 点处的合振幅为 ⎪⎭⎫⎝⎛=θλsin πcos d E E m p 式中λ是光波波长,E m 是E p 的最大值.五、回答问题(共5分) 24.(本题5分)在单缝衍射图样中,离中心明条纹越远的明条纹亮度越小,试用半波带法说明.DOPr 1 r 2 θ S S 1 S 2d (D>>d )大学物理(波动光学)试卷解答一、选择题(共27分) D B B D A D B C D二、填空题(共25分) 10.(本题4分)上 2分 (n -1)e 2分 11.(本题3分) 225 3分 12.(本题3分)λ/(2n ) 3分 13.(本题3分)干涉(或答“相干叠加”) 3分 14.(本题3分)30° 3分 15.(本题3分)632.6 或 633 3分 参考解:d sin ϕ =λ --------① l =f ·tg ϕ --------②由②式得 tg ϕ =l / f = 0.1667 / 0.5 = 0.3334sin ϕ = 0.3163λ = d sin ϕ =2.00×0.3163×103 nm = 632.6 nm 16.(本题3分)平行或接近平行 3分 17.(本题3分)波动 1分 横 2分 三、计算题(共38分) 18.(本题8分)解: R 2=r 2+(R - r )2 r 2 = 2Re – e 2略去e 2,则 Rre 22= 2分 暗环: 2ne +21λ=( 2k +1)21λ 2e =λn k(k =0,1,2,…) 3分nRk r λ= k =10 2分r =0.38 cm 1分 19.(本题5分)解:中央明纹宽度 ∆x = 2 x 1 ≈2 f λ/ a 2分 单缝的宽度 a = 2 f λ/∆x = 2×400×6328×10-9 / 3.4 m 2分 = 0.15 mm 1分Re r20.(本题10分)解:由光栅衍射主极大公式得 111sin λϕk d = 222sin λϕk d =212122112132660440sin sin k k k k k k =⨯⨯==λλϕϕ 4分当两谱线重合时有 ϕ1= ϕ2 1分 即69462321===k k ....... 1分 两谱线第二次重合即是4621=k k , k 1=6, k 2=4 2分 由光栅公式可知d sin60°=6λ1 ο60sin 61λ=d =3.05×10-3mm 2分 21.(本题10分)解:设入射光中两种成分的强度都是I 0,总强度为2 I 0.(1) 通过第一个偏振片后,原自然光变为线偏振光,强度为I 0 / 2, 原线偏振光部分强度变为I 0 cos 2θ,其中θ为入射线偏振光振动方向与偏振片偏振化方向P 1的夹角.以上两部分透射光的振动方向都与P 1一致.如果二者相等,则以后不论再穿过几个偏振片,都维持强度相等(如果二者强度不相等,则以后出射强度也不相等).因此,必须有 I 0 / 2=I 0 cos 2 θ,得θ=45︒. 2分为了满足线偏振部分振动方向在出射后“转过”90︒,只要最后一个偏振片偏振化方向与入射线偏振方向夹角为90︒就行了. 2分综上所述,只要两个偏振片就行了(只有一个偏振片不可能将振动方向“转过”90︒). 2分配置如图,E ϖ表示入射光中线偏振部分的振动方向,P 1、P 2分别是第一、第二偏振片的偏振化方向 2分 (2) 出射强度I 2=(1/2)I 0 cos 2 45︒+I 0 cos 4 45︒ =I 0 [(1 / 4)+(1 / 4)]=I 0/2比值 I 2/(2I 0)=1 / 4 2分22.(本题5分)解:光自水中入射到玻璃表面上时,tg i 0=1.56 / 1.33 2分 i 0=49.6° 1分 光自玻璃中入射到水表面上时,tg 0i '=1.33 / 1.56 0i '=40.4° (或 0i '=90°-i =40.4°) 2四、推导与证明题(共5分)23.(本题5分)证:由于 相位差=波长光程差π2 1分所以 ()θλφsin π2d =1分P 点处合成的波振动 E = E 1 +E 2P 1P 245°45°Eϖ⎪⎭⎫ ⎝⎛+=2sin 2cos20φωφt E ⎪⎭⎫ ⎝⎛+=2sin φωt E p 所以合成振幅 2cos20φE E p =3分式中E m = 2E 0是E p 的最大值.五、回答问题(共5分) 24.(本题5分)答:除中央明纹(零级)外,其他明纹的衍射方向对应着奇数个半波带(一级对应三个,二级对应五个…),级数越大,则单缝处的波阵面可以分成的半波带数目越多.其中偶数个半波带的作用两两相消之后,剩下的光振动未相消的一个半波带的面积就越小,由它决定的该明条纹的亮度也就越小. 5分。
物理光学练习题干涉衍射与偏振物理光学练习题:干涉、衍射与偏振干涉、衍射以及偏振是光学中重要的现象和理论概念。
它们揭示了光的波动性质以及光与物质相互作用的规律。
本文将利用练习题的形式,探讨干涉、衍射与偏振的基本原理,并解答相应的问题。
答案将与问题紧密结合,以便更好地理解这些光学现象。
1. 干涉问题一:两束具有相同波长的单色光,它们的相位差为π,干涉时形成何种干涉?答案一:当两束光的相位差为π(或2πn,其中n为整数),它们之间将形成完全相消的干涉,即消干涉。
问题二:两束光的相位差为π/2,它们的干涉条纹呈现怎样的形态?答案二:两束光的相位差为π/2,它们之间形成的干涉是等厚线(等倾斜线)干涉,干涉条纹呈现交替明暗的斜纹状。
2. 衍射问题三:一束单色光通过一狭缝后,光的传播方向会发生什么变化?答案三:当光通过狭缝时,光的传播方向将发生弯曲,这一现象称为衍射。
问题四:单缝衍射光斑的宽度与狭缝宽度之间有什么关系?答案四:单缝衍射光斑的宽度与狭缝宽度成反比关系,狭缝越窄,光斑越宽。
3. 偏振问题五:什么是偏振光?答案五:偏振光是指只在一个特定平面上振动的光,振动方向垂直于传播方向。
它们的波动特性与普通光有所区别。
问题六:线偏振光与自然光之间有何区别?答案六:线偏振光的电场矢量在振动过程中只沿一个特定方向上振动,而自然光的电场矢量则在所有可能的方向上都有振动。
通过这些练习题,我们深入了解了干涉、衍射与偏振的基本原理。
这些现象和理论不仅在光学领域有重要应用,还在其他科学和技术领域有广泛的应用。
进一步研究和理解光学现象对于我们探索自然规律,推动科学技术前进具有重大意义。
(字数:408字)。
波动光学练习题1. 介绍波动光学是物理学中的一个重要分支,研究光在传播过程中的波动性质。
它深入研究了光的传播和干涉、衍射、偏振、散射等现象,对于理解光的本质和应用具有重要意义。
本文将为大家介绍一些波动光学的练习题,以帮助读者更好地理解相关概念和原理。
2. 题目一:干涉现象一束波长为550nm的单色光以垂直入射的方式照射到一块玻璃薄膜上,该薄膜的折射率为1.5,厚度为500nm,折射率与入射角度无关。
求在此条件下,该薄膜表面反射光的相位差和干涉条纹的间距。
解析:根据菲涅尔公式,入射角为垂直入射的情况下,反射光的相位差为2δ,其中δ为反射光的相位改变:δ = 2πnt/λ其中n为玻璃的折射率,t为薄膜的厚度,λ为入射光的波长。
代入具体数值,可得:δ = 2π * 1.5 * 500 * 10^(-9) / 550 * 10^(-9) ≈ 5.455rad干涉条纹的间距d可以由以下公式计算得到:d = λ / (2sinθ)其中θ为反射光的角度。
由于入射角为垂直入射,故θ = 0,因此d无穷大,即干涉条纹间距无限宽。
3. 题目二:衍射光斑有一束波长为600nm的单色光通过一条宽度为0.1mm的狭缝照射到屏幕上,屏幕距离狭缝的距离为1m。
求衍射光斑的宽度和位置。
解析:根据夫琅禾费衍射公式,衍射光斑的宽度可以由以下公式计算得到:δy = (λL) / (2d)其中δy为衍射光斑的宽度,λ为入射光的波长,L为狭缝到屏幕的距离,d为狭缝的宽度。
代入具体数值,可得:δy = (600 * 10^(-9) * 1) / (2 * 0.1 * 10^(-3)) ≈ 3mm衍射光斑的位置可以由以下公式计算得到:y = (λL) / d其中y为光斑离中心的偏移距离。
代入具体数值,可得:y = (600 * 10^(-9) * 1) / (0.1 * 10^(-3)) ≈ 6mm所以,衍射光斑的宽度为3mm,位置偏移约为6mm。
一 选择题 (共42分)1. (本题 3分)(3173) 在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A) 干涉条纹的间距不变,但明纹的亮度加强. (B) 干涉条纹的间距不变,但明纹的亮度减弱. (C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹. [ ]2. (本题 3分)(3246) 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2. (B) 1 / 3. (C) 1 / 4. (D) 1 / 5. [ ]3. (本题 3分)(3248) 一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为I =I 0 / 8.已知P 1和P 2的偏振化方向相互垂直,若以入射光线为轴,旋转P 2,要使出射光的光强为零,P 2最少要转过的角度是(A) 30°. (B) 45°.(C) 60°. (D) 90°. [ ]4. (本题 3分)(3368) 一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为 (A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D)2I 0 / 2. [ ]5. (本题 3分)(3369) 三个偏振片P 1,P 2与P 3堆叠在一起,P 1与P 3的偏振化方向相互垂直,P 2与P 1的偏振化方向间的夹角为30°.强度为I 0的自然光垂直入射于偏振片P 1,并依次透过偏振片P 1、P 2与P 3,则通过三个偏振片后的光强为(A)I 0 / 4. (B) 3 I 0 / 8. (C) 3I 0 / 32.(D) I 0 / 16. [ ]6. (本题 3分)(3538) 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动180°时透射光强度发生的变化为: (A) 光强单调增加.(B) 光强先增加,后又减小至零. (C) 光强先增加,后减小,再增加.(D) 光强先增加,然后减小,再增加,再减小至零. [ ]如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A)I 0 / 8. (B) I 0 / 4. (C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]8. (本题 3分)(5221) 使一光强为I 0的平面偏振光先后通过两个偏振片P 1和P 2.P 1和P 2的偏振化方向与原入射光光矢量振动方向的夹角分别是α 和90°,则通过这两个偏振片后的光强I 是(A) 21I 0 cos 2α . (B) 0.(C) 41I 0sin 2(2α). (D) 41I 0 sin 2α .(E) I 0 cos 4α . [ ]9. (本题 3分)(5222) 光强为I 0的自然光依次通过两个偏振片P 1和P 2.若P 1和P 2的偏振化方向的夹角α=30°,则透射偏振光的强度I 是(A) I 0 / 4.(B)3I 0 / 4.(C)3I 0 / 2. (D) I 0 / 8.(E) 3I 0 / 8. [ ]10. (本题 3分)(3544) 一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,则在界面2的反射光(A) 是自然光. (B) 是线偏振光且光矢量的振动方向垂直于入射面. (C) 是线偏振光且光矢量的振动方向平行于入射面.(D) 是部分偏振光. [ ]11. (本题 3分)(3545) 自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为(A) 完全线偏振光且折射角是30°.(B) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角 是30°.(C) 部分偏振光,但须知两种介质的折射率才能确定折射角.(D) 部分偏振光且折射角是30°. [ ]12. (本题 3分)(3639) 自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是 (A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光. (C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光. [ ]某种透明媒质对于空气的临界角(指全反射)等于45°,光从空气射向此媒质时的布儒斯特角是 (A) 35.3°.(B) 40.9°. (C) 45°. (D) 54.7°. (E) 57.3°. [ ]14. (本题 3分)(5330) ABCD 为一块方解石的一个截面,AB 为垂直于纸面的晶体平面与纸面的交线.光轴方向在纸面内且与AB 成一锐角θ,如图所示.一束平行的单色自然光垂直于AB 端面入射.在方解石内折射光分解为o 光和e 光,o 光和e 光的(A) 传播方向相同,电场强度的振动方向互相垂直. (B) 传播方向相同,电场强度的振动方向不互相垂直.(C) 传播方向不同,电场强度的振动方向互相垂直.(D) 传播方向不同,电场强度的振动方向不互相垂直. []D二 填空题 (共129分)15. (本题 5分)(3230) 要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过__________块理想偏振片.在此情况下,透射光强最大是原来光强的_______________________倍 .16. (本题 3分)(3370) 一束自然光垂直穿过两个偏振片,两个偏振片的偏振化方向成45°角.已知通过此两偏振片后的光强为I ,则入射至第二个偏振片的线偏振光强度为________________.17. (本题 3分)(3371) 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为8/0I ,则此两偏振片的偏振化方向间的夹角(取锐角)是____________,若在两片之间再插入一片偏振片,其偏振化方向与前后两片的偏振化方向的夹角(取锐角)相等.则通过三个偏振片后的透射光强度为____________.一束光垂直入射在偏振片P 上,以入射光线为轴转动P ,观察通过P 的光强的变化过程.若入射光是__________________光,则将看到光强不变;若入射光是__________________,则将看到明暗交替变化,有时出现全暗;若入射光是__________________,则将看到明暗交替变化,但不出现全暗.19. (本题 3分)(3541) 用相互平行的一束自然光和一束线偏振光构成的混合光垂直照射在一偏振片上,以光的传播方向为轴旋转偏振片时,发现透射光强的最大值为最小值的5倍,则入射光中,自然光强I 0与线偏振光强I 之比为__________.20. (本题 3分)(3543) 两个偏振片堆叠在一起,其偏振化方向相互垂直.若一束强度为I 0的线偏振光入射,其光矢量振动方向与第一偏振片偏振化方向夹角为π / 4,则穿过第一偏振片后的光强为__________________,穿过两个偏振片后的光强为___________.21. (本题 3分)(3548) 一束自然光通过两个偏振片,若两偏振片的偏振化方向间夹角由α1转到α2,则转动前后透射光强度之比为________________.22. (本题 3分)(3550) 如图所示的杨氏双缝干涉装置,若用单色自然光照射狭缝S ,在屏幕上能看到干涉条纹.若在双缝S 1和S 2的一侧分别加一同质同厚的偏振片P 1、P 2,则当P 1与P 2的偏振化方向相互______________时,在屏幕上仍能看到很清晰的干涉条纹.P 2P 1S 1S 2S23. (本题 3分)(3643) 马吕斯定律的数学表达式为I = I 0 cos 2 α.式中I 为通过检偏器的透射光的强度;I 0为入射__________的强度;α为入射光__________方向和检偏器_________方向之间的夹角.24. (本题 3分)(5224) 使光强为I 0的自然光依次垂直通过三块偏振片P 1,P 2和P 3.P 1与P 2的偏振化方向成45°角,P 2与P 3的偏振化方向成45°角.则透过三块偏振片的光强I 为______________.光强为I 0的自然光垂直通过两个偏振片后,出射光强I=I 0/8,则两个偏振片的偏振化方向之间的夹角为__________.26. (本题 5分)(5660) 如图,P 1、P 2为偏振化方向间夹角为α 的两个偏振片.光强为I 0的平行自然光垂直入射到P 1表面上,则通过P 2的光强I =__________.若在P 1、P 2之间插入第三个偏振片P 3,则通过P 2的光强发生了变化.实验发现,以光线为轴旋转P 2,使其偏振化方向旋转一角度θ后,发生消光现象,从而可以推算出P 3的偏振化方向与P 1的偏振化方向之间的夹角α′=___________.(假设题中所涉及的角均为锐角,且设α′ <α).27. (本题 3分)(3233) 一束自然光从空气投射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃板的折射率等于____________.28. (本题 5分)(3234) 一束自然光以布儒斯特角入射到平板玻璃片上,就偏振状态来说则反射光为____________________,反射光E G矢量的振动方向______________________,透射光为________________________.29. (本题 5分)(3235) 如果从一池静水(n =1.33)的表面反射出来的太阳光是线偏振的,那么太阳的仰角(见图)大致等于________________.在这反射光中的E K矢量的方向应____________________.30. (本题 5分)(3236) 一束平行的自然光,以60°角入射到平玻璃表面上.若反射光束是完全偏振的,则透射光束的折射角是____________________________;玻璃的折射率为________________.在以下五个图中,前四个图表示线偏振光入射于两种介质分界面上,最后一图表示入射光是自然光.n 1、n 2为两种介质的折射率,图中入射角i 0=arctg (n 2/n 1),i ≠i 0.试在图上画出实际存在的折射光线和反射光线,并用点或短线把振动方向表示出来.32. (本题 3分)(3238) 如图所示,一束自然光入射到折射率分别为n 1和n 2的两种介 质的交界面上,发生反射和折射.已知反射光是完全偏振光,那么折射角r 的值为_______________________.33. (本题 3分)(3238) 如图所示,一束自然光入射到折射率分别为n 1和n 2的两种介 质的交界面上,发生反射和折射.已知反射光是完全偏振光,那么折射角r 的值为_______________________.34. (本题 3分)(3239) 应用布儒斯特定律可以测介质的折射率.今测得此介质的起偏振角i 0=56.0,这种物质的折射率为_________________.35. (本题 3分)(3240) 某一块火石玻璃的折射率是1.65,现将这块玻璃浸没在水中(n=1.33)。
专业班级____________ 学号 ____________姓名__________ 序号大学物理练习题波动光学一、选择题1. 两块平玻璃构成空气劈尖,左边为棱边(劈尖尖端),用单色平行光垂直入射,若上面的平玻璃慢慢地向上平移,则干涉条纹[ ]。
(A)向棱边方向平移,条纹间隔发生变化;(B)向棱边方向平移,条纹间隔不变;(C)向远离棱的方向平移,条纹间隔发生变化;(D)向远离棱的方向平移,条纹间隔不变。
2. 两块平玻璃构成空气劈尖,左边为棱边(劈尖尖端),用单色平行光垂直入射,若上面的平玻璃以棱边为轴缓慢向上旋转,则干涉条纹[ ] 。
(A)向棱边方向平移,条纹间隔变小;(B)向棱边方向平移,条纹间隔不变;(C)向远离棱的方向平移,条纹间隔变大;(D)向远离棱的方向平移,条纹间隔不变。
3. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则[ ]。
(A) 干涉条纹的宽度将发生改变;(B) 产生红光和蓝光的两套彩色干涉条纹;(C) 干涉条纹的亮度将发生改变;(D) 不产生干涉条。
4. 在双缝干涉实验中,两条缝的宽度原来是相等的.若其中一缝的宽度略变窄(缝中心位置不变),则[ ]。
(A) 干涉条纹的间距变宽;(B) 干涉条纹的间距变窄;(C) 干涉条纹的间距不变,但原极小处的强度不再为零;(D) 不再发生干涉现象。
5. 把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D (D >>d),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是[ ](A) λD / (nd);(B) nλD/d;(C) λd / (nD);(D) λD / (2nd)。
6. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]。
(A) 中心暗斑变成亮斑;(B) 变疏;(C) 变密;(D) 间距不变。
一. 选择题[A ]1. 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2. (B) 1 / 3. (C) 1 / 4. (D) 1 / 5.提示:[ D ]2. 某种透明媒质对于空气的临界角(指全反射)等于45°,光从空气射向此媒质时的布儒斯特角是(A) 35.3°.(B) 40.9°.(C) 45°. (D) 54.7°. (E) 57.3°.[ ]3. 一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,则在界面2的反射光(A) 是自然光. (B) 是线偏振光且光矢量的振动方向垂直于入射面. (C) 是线偏振光且光矢量的振动方向平行于入射面. (D) 是部分偏振光. 提示:[ ]4. 一束自然光通过两个偏振片,若两偏振片的偏振化方向间夹角由α1转到α2,则转动前后透射光强度之比为2212cos :cos αα提示:二. 填空题1. 如图所示的杨氏双缝干涉装置,若用单色自然光照射狭缝S ,在屏幕上能看到干涉条纹.若在双缝S 1和S 2的一侧分别加一同质同厚的偏振片P 1、P 2,则当P 1与P 2的偏振化方向相互___平行________时,在屏幕上仍能看到很清晰的干涉条纹.提示:要相互平行。
致”,两个偏振片方向为了满足“振动方向一致,相位差恒定。
频率相同,振动方向一件:两束光必须满足相干条为了看到清晰的条纹,2. 要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过_____2_____块理想偏振片.在此情况下,透射光强最大是原来光强的___1/4_____倍 。
提示:如图P 2P 1S 1S 2S3. 在以下五个图中,前四个图表示线偏振光入射于两种介质分界面上,最后一图表示入射光是自然光.n 1、n 2为两种介质的折射率,图中入射角i 0=arctg (n 2/n 1),i ≠i 0.试在图上画出实际存在的折射光线和反射光线,并用点或短线把振动方向表示出来.提示:作图时注意细节。
波动光学复习题答案1. 光的干涉现象是指两束或多束相干光波在空间相遇时,由于光波的相位差引起的光强分布的规律性变化。
在双缝干涉实验中,当两束光波的相位差为零时,会发生构造性干涉,光强最大;当相位差为π时,会发生破坏性干涉,光强最小。
2. 薄膜干涉是指光波在薄膜的前后表面反射后,由于光程差引起的干涉现象。
薄膜干涉的条纹间距与薄膜厚度、光波波长和入射角有关。
3. 光的衍射现象是指光波在遇到障碍物或通过狭缝时,会发生弯曲和扩散的现象。
衍射现象说明了光具有波动性。
4. 单缝衍射的衍射图样是一个中心亮斑和两侧的暗条纹交替出现的衍射图样。
中心亮斑的宽度与狭缝宽度成正比,与光波波长成反比。
5. 圆孔衍射的衍射图样是一个中心亮斑和第一暗环的直径与圆孔直径相等,随着远离中心,亮斑的亮度逐渐减弱,暗环的直径逐渐增大。
6. 光的偏振现象是指光波振动方向的选择性。
自然光是无偏振光,而偏振光是只有一个振动方向的光。
偏振片可以改变光的偏振状态。
7. 马吕斯定律描述了偏振光通过偏振片后,透射光的强度与入射光的偏振方向和偏振片的偏振轴之间角度的关系。
当偏振片的偏振轴与入射光的偏振方向平行时,透射光强度最大;当偏振轴与入射光的偏振方向垂直时,透射光强度为零。
8. 布儒斯特定律描述了当偏振光以布儒斯特角入射到透明介质表面时,反射光完全偏振。
布儒斯特角与介质的折射率有关。
9. 光的色散现象是指不同波长的光在介质中传播速度不同,导致光的折射率不同,从而引起光的分离。
色散现象可以通过棱镜或光栅实现。
10. 光的全反射现象是指当光从光密介质入射到光疏介质时,当入射角大于临界角时,光将完全反射回光密介质中,不会发生折射。
临界角的大小与两种介质的折射率有关。
大 学 物 理(波动光学)试 卷班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________一、选择题(共27分) 1.(本题3分)在双缝干涉实验中,两缝间距离为d ,双缝与屏幕之间的距离为D (D >>d ).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是 (A) 2λD / d . (B) λ d / D .(C) dD / λ. (D) λD /d . [ ] 2.(本题3分)在双缝干涉实验中,设缝是水平的.若双缝所在的平面稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. [ ] 3.(本题3分)把一平凸透镜放在平玻璃上,构成牛顿环装置.当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环(A) 向中心收缩,条纹间隔变小.(B) 向中心收缩,环心呈明暗交替变化. (C) 向外扩张,环心呈明暗交替变化.(D) 向外扩张,条纹间隔变大. [ ] 4.(本题3分)在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 (A) λ / 2. (B) λ / (2n ). (C) λ / n . (D)()12-n λ. [ ]5.(本题3分)在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹 (A) 宽度变小. (B) 宽度变大. (C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大. [ ] 6.(本题3分) 某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是 (A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ...... (D) 3 ,6 ,9 ,12...... [ ] 7.(本题3分)一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为 (A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D) 2I 0 / 2. [ ]8.(本题3分)自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是 (A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光. (C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光. [ ] 9.(本题3分)自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为(A) 完全线偏振光且折射角是30°.(B) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°. (C) 部分偏振光,但须知两种介质的折射率才能确定折射角.(D) 部分偏振光且折射角是30°. [ ] 二、填空题(共25分) 10.(本题4分)如图,在双缝干涉实验中,若把一厚度为e 、折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为__________________.11.(本题3分)一平凸透镜,凸面朝下放在一平玻璃板上.透镜刚好与玻璃板接触.波长分别为λ1=600 nm 和λ2=500 nm 的两种单色光垂直入射,观察反射光形成的牛顿环.从中心向外数的两种光的第五个明环所对应的空气膜厚度之差为______nm .12.(本题3分)波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________. 13.(本题3分)惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的_________________,决定了P 点的合振动及光强. 14.(本题3分)波长为500 nm(1nm=10−9m)的单色光垂直入射到光栅常数为1.0×10-4 cm 的平面衍射光栅上,第一级衍射主极大所对应的衍射角ϕ =____________. 15.(本题3分)用波长为λ的单色平行红光垂直照射在光栅常数d =2μm (1μm=10-6 m)的光栅上,用焦距f =0.500 m 的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l =0.1667m .则可知该入射的红光波长λ=_________________nm .(1 nm =10-9 m) 16.(本题3分)如图所示的杨氏双缝干涉装置,若用单色自然光照射狭缝S ,在屏幕上能看到干涉条纹.若在双缝S 1和S 2的一侧分别加一同质同厚的偏振片P 1、P 2,则当P 1与P 2的偏振化方向相互______________时,在屏幕上仍能看到很清晰的干涉条纹.17.(本题3分)光的干涉和衍射现象反映了光的________性质.光的偏振现象说明光波是_________波.SP 2P 1S 1S 2S三、计算题(共38分) 18.(本题8分)在牛顿环装置的平凸透镜和平玻璃板之间充以折射率n =1.33的液体(透镜和平玻璃板的折射率都大于1.33 ). 凸透镜曲率半径为300 cm ,用波长λ=650 nm (1 nm=10-9 m)的光垂直照射,求第10个暗环的半径(设凸透镜中心刚好与平板接触,中心暗斑不计入环数). 19.(本题5分)用波长λ=632.8nm(1nm=10-9m)的平行光垂直入射在单缝上,缝后用焦距f=40cm 的凸透镜把衍射光会聚于焦平面上.测得中央明条纹的宽度为 3.4mm ,单缝的宽度是多少? 20.(本题10分)一束平行光垂直入射到某个光栅上,该光束有两种波长的光,λ1=440 nm ,λ2=660 nm(1 nm = 10-9 m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角ϕ=60°的方向上.求此光栅的光栅常数d . 21.(本题10分)一光束由强度相同的自然光和线偏振光混合而成.此光束垂直入射到几个叠在一起的偏振片上.(1) 欲使最后出射光振动方向垂直于原来入射光中线偏振光的振动方向,并且入射光中两种成分的光的出射光强相等,至少需要几个偏振片?它们的偏振化方向应如何放置? (2) 这种情况下最后出射光强与入射光强的比值是多少? 22.(本题5分)在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i '. 四、理论推导与证明题(共5分)23.(本题5分)如图所示的双缝干涉装置中,假定两列光波在屏上P 点处的光场随时间t 而变化的表示式各为E 1 = E 0 sin ω t E 2=E 0 sin (ωt+φ) φ表示这两列光波之间的相位差.试证P 点处的合振幅为 ⎪⎭⎫ ⎝⎛=θλsin πcos d E E m p式中λ是光波波长,E m 是E p 的最大值.五、回答问题(共5分) 24.(本题5分)在单缝衍射图样中,离中心明条纹越远的明条纹亮度越小,试用半波带法说明.DOPr 1 r 2 θ S 1 S 2d (D>>d )大学物理(波动光学)试卷解答一、选择题(共27分) D B B D A D B C D二、填空题(共25分) 10.(本题4分)上 2分 (n -1)e 2分 11.(本题3分) 225 3分 12.(本题3分)λ/(2n ) 3分 13.(本题3分)干涉(或答“相干叠加”) 3分 14.(本题3分)30° 3分 15.(本题3分)632.6 或 633 3分 参考解:d sin ϕ =λ --------① l =f ·tg ϕ --------②由②式得 tg ϕ =l / f = 0.1667 / 0.5 = 0.3334sin ϕ = 0.3163λ = d sin ϕ =2.00×0.3163×103 nm = 632.6 nm 16.(本题3分)平行或接近平行 3分 17.(本题3分)波动 1分 横 2分 三、计算题(共38分) 18.(本题8分)解: R 2=r 2+(R - r )2 r 2 = 2Re – e 2略去e 2,则 Rre 22= 2分 暗环: 2ne +21λ=( 2k +1)21λ 2e =λn k(k =0,1,2,…) 3分nRk r λ= k =10 2分r =0.38 cm 1分 19.(本题5分)解:中央明纹宽度 ∆x = 2 x 1 ≈2 f λ/ a 2分 单缝的宽度 a = 2 f λ/∆x = 2×400×6328×10-9 / 3.4 m 2分 = 0.15 mm 1分Re r20.(本题10分)解:由光栅衍射主极大公式得 111sin λϕk d = 222sin λϕk d =212122112132660440sin sin k k k k k k =⨯⨯==λλϕϕ 4分 当两谱线重合时有 ϕ1= ϕ2 1分即 69462321===k k ....... 1分 两谱线第二次重合即是 4621=k k , k 1=6, k 2=4 2分由光栅公式可知d sin60°=6λ160sin 61λ=d =3.05×10-3mm 2分 21.(本题10分)解:设入射光中两种成分的强度都是I 0,总强度为2 I 0.(1) 通过第一个偏振片后,原自然光变为线偏振光,强度为I 0 / 2, 原线偏振光部分强度变为I 0 cos 2θ,其中θ为入射线偏振光振动方向与偏振片偏振化方向P 1的夹角.以上两部分透射光的振动方向都与P 1一致.如果二者相等,则以后不论再穿过几个偏振片,都维持强度相等(如果二者强度不相等,则以后出射强度也不相等).因此,必须有 I 0 / 2=I 0 cos 2 θ,得θ=45︒. 2分为了满足线偏振部分振动方向在出射后“转过”90︒,只要最后一个偏振片偏振化方向与入射线偏振方向夹角为90︒就行了. 2分综上所述,只要两个偏振片就行了(只有一个偏振片不可能将振动方向“转过”90︒). 2分配置如图,E表示入射光中线偏振部分的振动方向,P 1、P 2分别是第一、第二偏振片的偏振化方向 2分 (2) 出射强度I 2=(1/2)I 0 cos 2 45︒+I 0 cos 4 45︒ =I 0 [(1 / 4)+(1 / 4)]=I 0/2比值 I 2/(2I 0)=1 / 4 2分22.(本题5分)解:光自水中入射到玻璃表面上时,tg i 0=1.56 / 1.33 2分 i 0=49.6° 1分 光自玻璃中入射到水表面上时,tg 0i '=1.33 / 1.56 0i '=40.4° (或 0i '=90°-i 0=40.4°) 2分 四、推导与证明题(共5分)23.(本题5分)证:由于 相位差=波长光程差π2 1分所以 ()θλφsin π2d =1分P 点处合成的波振动 E = E 1 +E 2P 1P 245°45°E⎪⎭⎫⎝⎛+=2sin 2cos 20φωφt E ⎪⎭⎫ ⎝⎛+=2sin φωt E p 所以合成振幅 2cos 20φE E p =3分式中E m = 2E 0是E p 的最大值.五、回答问题(共5分) 24.(本题5分)答:除中央明纹(零级)外,其他明纹的衍射方向对应着奇数个半波带(一级对应三个,二级对应五个…),级数越大,则单缝处的波阵面可以分成的半波带数目越多.其中偶数个半波带的作用两两相消之后,剩下的光振动未相消的一个半波带的面积就越小,由它决定的该明条纹的亮度也就越小. 5分。
20222023学年新教材粤教版(2019)高中物理选择性必修一一.多选题(共8小题)(多选)1.关于光和声波的认识,下列说法中正确的有()A.光在水中的传播速度大于光在真空中的传播速度B.声波从空气传入水中时,频率不变,波长变短C.光的传播不需要介质,声波的传播需要介质D.红外线比紫外线更容易发生衍射现象(多选)2.关于光在传播过程中所表现的现象,下列说法正确的是()A.雨后天空出现的彩虹是光的衍射现象B.涂有增透膜的照相机镜头呈淡紫色,说明增透膜增强了对淡紫色的透色程度C.夜间观看到天边星座的位置比实际位置偏高,这是光的折射现象D.利用红外线进行遥感控制主要是因为红外线的波长长,容易发生衍射(多选)3.下列说法正确的是()A.光的偏振现象说明光是一种横波B.全息照相的拍摄利用了光的衍射原理C.激光雷达能根据多普勒效应测出目标的运动速度,从而对目标进行跟踪D.某玻璃对a光的折射率大于b光,则在该玻璃中传播速度a光大于b光(多选)4.用如图1所示装置做圆孔衍射实验,在屏上得到的衍射图样如图2所示,实验发现光绕过孔的边缘,传播到了相当大的范围。
下列说法中正确的是()A.这个实验用事实证明了光具有波动性B.圆孔变小,衍射图样的范围反而变大C.圆孔变小,中央亮斑的亮度反而变大D.不同波长的光对应衍射图样完全相同(多选)5.如图所示,一束宽度为d的平行光沿水平方向传播,经过不透光的挡板后照射到竖直墙面上,过挡板上边缘的水平延长线与竖直墙面相交于O点,下列说法正确的是()A.由于光的衍射,可能会进入到O点下方的墙上B.光只会沿直线前进,一定不会进入到O点下方的墙上C.光的波长越长,光线进入到O点下方墙上的区域越大D.光的能量越大,光线进入到O点下方墙上的区域越大(多选)6.下列说法中正确的是()A.如图甲所示,小球在倾角很小的光滑斜面上来回运动,小球做简谐运动B.如图乙所示,a是一束白光,射向半圆玻璃砖的圆心O,经折射后发生色散,最左侧为紫光,最右侧为红光C.如图丙所示为双缝干涉示意图,双缝间距d越大,相邻亮条纹间距越大D.如图丁所示为光导纤维示意图,内芯的折射率比外套的折射率大E.如图戊所示为单色光单缝衍射示意图,如果换成白光,屏上得到的条纹是彩色的(多选)7.对下列光学现象解释正确的是()A.海市蜃楼是光的偏振现象B.泊松亮斑是光的衍射现象C.彩色的肥皂泡是光的干涉现象D.立体电影是光的全反射现象(多选)8.下列说法中正确的是()A.光从折射率大的介质射向折射率小的介质时可能发生全反射B.光的偏振实验表明,光是一种纵波C.采用同一装置做双缝干涉实验,红光比紫光条纹宽度大D.由于超声波的频率很高,所以超声波容易发生衍射现象E.在同一种介质中,波长越短的光传播速度越小二.填空题(共3小题)9.利用图(a)所示的装置(示意图),观察蓝光的干涉、衍射现象,在光屏上得到如图(b)中甲和乙两种图样。
第6章波动光学6.1基本要求1.理解相干光的条件及获得相干光的方法.2.掌握光程的概念以及光程差和相位差的关系,了解半波损失,掌握半波损失对薄膜干涉极大值和极小值条件的影响。
3.能分析杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置4.了解迈克耳孙干涉仪的工作原理5.了解惠更斯-菲涅耳原理及它对光的衍射现象的定性解释.6.了解用波带法来分析单缝夫琅禾费衍射条纹分布规律的方法,会分析缝宽及波长对衍射条纹分布的影响.7.了解衍射对光学仪器分辨率的影响.8.掌握光栅方程,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响.9.理解自然光与偏振光的区别.10.理解布儒斯特定律和马吕斯定律.11.了解线偏振光的获得方法和检验方法.6.2基本概念1.相干光若两束光的光矢量满足频率相同、振动方向相同以及在相遇点上相位差保持恒定,则这两束光为相干光。
能够发出相干光的光源称为相干光源。
2.光程光程是在光通过介质中某一路程的相等时间内,光在真空中通过的距离。
若介质的折射率为n,光在介质中通过的距离为L,则光程为nL。
薄透镜不引起附加光程差。
光程差∆与相位差ϕ∆的关系2πϕλ∆=∆。
3.半波损失光在两种介质表面反射时相位发生突变的现象。
当光从光疏介质(折射率较小的介质)射向光密介质(折射率较大的介质)时,反射光的相位较之入射光的相位跃变了π,相当于反射光与入射光之间附加了半个波长的光程差,所以称为半波损失。
4.杨氏双缝干涉杨氏双缝干涉实验是利用波阵面分割法来获得相干光的。
用单色平行光照射一窄缝S ,窄缝相当于一个线光源。
S 后放有与其平行且对称的两狭缝S 1和S 2,两缝之间的距离很小。
两狭缝处在S 发出光波的同一波阵面上,构成一对初相位相同的等强度的相干光源,在双缝的后面放一个观察屏,可以在屏幕上观察到明暗相间的对称的干涉条纹,这些条纹都与狭缝平行,条纹间的距离相等。
5.薄膜干涉薄膜干涉是利用分振幅法来获得相干光的。
第六次 波动光学(衍射、偏振)
班 级 ___________________
姓 名 ___________________
班内序号 ___________________
一、选择题:
1. 在单缝衍射实验中,若所用的入射平行单色光的波长 λ 与缝宽 a 的关系为
λ2=a ,则对应于第一级暗纹的衍射角为: [ ]
A .8/π
B .6/π
C .4/π
D .3/π
2. 在双缝干涉实验中,用单色自然光入射,在屏上形成干涉条纹。
若将同一个偏
振片放在两缝后,则: [ ]
A .干涉条纹变窄,且明条纹亮度减弱;
B .干涉条纹的间距不变,但明条纹亮度加强;
C .干涉条纹的间距不变,但明条纹亮度减弱;
D .无干涉条纹。
3. 已知光栅常数cm b a 41000.6)(-⨯=+,透光缝cm a 4
105.1-⨯=.以波长为nm 600的单色光垂直照射在光栅上,其明条纹的特点是: [ ]
A .不缺级,最大级数是10;
B .缺2k 级,最大级数是9
C .缺3k 级,最大级数是10;
D .缺4k 级,最大级数是9
4.光强为 0I 的自然光依次通过两个偏振片1p 和 2p ,若 1p 和 2p 的偏振化方向
的夹角为030=α,则从 2p 透射出的偏振光的强度 I 是: [ ]
A .041I
B .022I
C .081I
D .083I 5. 自然光以060的入射角照射到不知其折射率的某一透明介质表面时,反射光为
线偏振光,则知: [ ]
A .折射光为线偏振光,折射角为030。
B .折射光为部分偏振光,折射角为030。
C .折射光为线偏振光,折射角不能确定。
D .折射光为部分偏振光,折射角不能确定。
二、填空题:
1.惠更斯引入________的概念提出了惠更斯原理,菲涅耳再用_____________
的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理。
2. 平行单色光垂直入射到单缝上,若屏幕上p 点处为第二级暗纹,则单缝处的波面相应
地可划分为___ _个半波带;若缝宽缩小一半,则p 点将是_ _级_ _纹。
3.一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a ,与不透明部
分宽度b 相等,则可能看到的衍射光谱的级次为____________________________。
4.一束自然光入射到单轴晶体内,将分成两束光,沿不同方向折射,这种现象
称为___________现象;其中一束折射光称为__________光,它遵从________定律;
另一束折射光称为___________光,它不遵从_________定律。
在晶体内,这两束光
沿___________方向传播时,它们的传播速率相等。
5.假设某一媒质对于空气的 临界角...
(出现全反射现象的最小入射角)是045, 则光从空气中射向此媒质时的布儒斯特角.....
为:____________________。
6.一束光是自然光和平面偏振光的混合,当它垂直通过一偏振片后,发现透射
光的强度与偏振片的偏振化方向有关,其透射的最大光强是最小光强的5倍,则入
射光中自然光和平面偏振光的强度之比为____________________。
7.在以下五个图中,前四个图表示线偏振光入射于两种介质的分界面上,最后
一图表示入射光是自然光。
五个图中,1n 、2n 为两种介质的折射率,图中入射角
)(120n n arctg i =>o 45,0i i ≠。
试在图中画出实际存在的折射光线和反射光线,并
用 点 或 短线 把振动方向表示出来。
(1) (2) (3)
(4) (5)
三、计算题:
1.在单缝夫琅和费衍射实验中,如垂直入射的光有两种波长:m n 400
1 =λ, m n
7602 =λ,已知单缝宽度cm a 2100.1-⨯=,透镜焦距cm f 50=。
(1)求:两种光的第一级衍射明纹中心之间的距离。
(2)若用光栅常数 cm d 3100.1-⨯= 的光栅替换单缝,其它条件不变,
求:两种光的第一级主极大之间的距离。
2.波长为m n 600 =λ的单色光垂直入射在一平面透射光栅上,测得第二级主极
大的衍射角为 2ϕ,且20.0sin 2=ϕ;已知第四级缺级。
(1)求:光栅常数(a + b ) ;
(2)求:光栅透光部分可能..
的宽度a ; (3)在上述条件下,在衍射角为 2/2/πϕπ<<- 的范围内,理论上可观测
到多少条明条纹? 它们的级数分别是什么?
3.假设入射的平面偏振光0I ,依次通过偏振片 1 P 和 2 P ; 1 P 和 2 P 的偏振化 方向,与原入射光光矢量0E 振动方向的夹角分别是 α 和 β(如图)。
如果
要使从 2 P 透射出的偏振光的振动方向2E ,与原入射光的振动方向0E 互相
垂直,并且透射光的光强2I 达到最大,则 α 和 β 应满足什么样的条件?
答案
一、选择题:
1.B 2.C 3.D 4.D 5.B
二、填空题:
⒈ 子波;子波相干叠加 ⒉ 4;第一,暗 ⒊ λd k k <±±= ,3 ,1 ,0且 ⒋ 双折射;寻常;折射;非常;折射;光轴 ⒌ "8'44542 ︒≈tg arc ⒍ 1:2 ⒎ ⑴反射、折射,均为点子 ⑵反射、折射,均为短线 ⑶反射、折射,均为点子、互相垂直 ⑷折射,短线 ⑸反射,点子;折射,点子、短线;互相垂直
三、计算题:
1.⑴ 由单缝衍射明纹公式(1=k )知:
1 1 1 23)12(21sin λλφ=+=k a , a
f f t
g f x 2 3sin 1 111λφφ=⋅≈⋅= 21223)12(21sin λλφ=+=k a , a
f f t
g f x 2 3sin 2 222λφφ=⋅≈⋅=
则两种单色光的第一级明纹中心之间距为: cm a
f x x x 27.02312=∆⋅=-=∆λ ⑵ 由光栅衍射主极大的公式: 1 1 1 1 sin λλφ==k d , 2 2 2 1 sin λλφ==k d
且有 f x tg =≈φφsin 所以 cm d f x x x 8.1/12=∆⋅=-=∆λ
2.⑴ 对应第二级主极大 λϕ2sin )(2=+b a , 则光栅常数m b a 0.6sin 22 μϕλ==+
⑵ 按题意:第四级开始缺级,由缺级公式 k a
b a k '+=,讨论可能的透光宽度 a 得: 若 4)( ,1=+='a b a k ,可得 4=k 缺级,则 a b 3=, m a m b 5.1 , 5.4 μμ==∴ 若 2)( ,2=+='a b a k ,也可得 4=k 缺级,但同时 2=k 缺级,与题意不符,故 2≠k 若 3
4 ,3=+='a b a k ,也可得 4=k 缺级,则 b a 3=, m a m b 5.4 , 5.1 μμ==∴ 故有两种答案,即 m a 5.1μ= 或 m a 5.4μ=
⑶ 由光栅方程,λφk b a =+sin )( 10max =+<λ
b a k , 考虑到第四级缺级,第八级也应缺级,
故理论上可能出现的为:9 ,7 ,6 ,5 ,3 ,2 ,1 ,0±±±±±±± 级,共15条明条纹。
3.⑴ 参见作业的图,可知为使通过 1P 和 2P 的透射光 2I 的振动方向 2E 与原振动方向
0E 互相垂直, 只能是:︒=90β
⑵ 根据马吕斯定律,透射光强
)(cos cos )(cos 220212αβααβ-⋅=-=I I I α2sin 4
20I = , 欲使 2I 为最大,则需使 ︒=∴︒=45 ,902αα。