长沙市麓山国际九年级数学考试试卷
- 格式:doc
- 大小:439.63 KB
- 文档页数:22
麓山国际实验学校初三年级第二次月考数学试卷(问卷)(时量120分钟总分120分)一、填空题(每小题3分,共24分)1、点P(1,-2)关于原点的对称点的坐标是________________.2、投掷一枚质地均匀的普通骰子,朝上的一面为6点的概率是.3、边长为6的正六边形外接圆半径.4、在⊙O中,∠AOB=60°,弦AB=3cm,则劣弧的长为______cm .5、如图,⊙O是△ABC的内切圆,若∠BOC=130°,则∠A的度数是___________.6、如图,把一块含有300的直角尺ACB绕点B顺时针旋转,使得点A与CB的延长线上的点E重合,连结CD,则∠BCD的度数是。
7、已知二次函数22y x x m=-++的部分图象如图所示,则关于x的一元二次方程220x x m-++=的解为.8、如图, AB是⊙O的直径,点C在⊙O上,∠BAC=30°,点P在线段OB上运动.设∠ACP=x,则x的取值范围是 .第8题A BOCxPyO13(第7题)二、选择题(每小题3分,共24分)9、已知⊙O1的直径r为6cm,⊙O2的直径R为8cm,两圆的圆心距O1O2 为1cm,则这两圆的位置关系是()A、相交B、内含C、内切D、外切10、二次函数21(4)52y x=-+的开口方向、对称轴、顶点坐标分别是()A、向上、直线x=4、(4,5)B、.向上、直线x=-4、(-4,5)C、向上、直线x=4、(4,-5)D、向下、直线x=-4、(-4,5)11、在下列图形中,既是轴对称图形又是中心对称图形的是().12、在以小岛O为圆心,2千米为半径的圆形区域外无暗礁,小岛O到某船的航线AB(AB为直线)的距离为3千米.那么“船触到暗礁”为()A、必然事件B、不可能事件C、不确定事件D、以上都不对13、如图,圆锥形烟囱帽的底面直径为80cm,母线长为50cm,则这样的烟囱帽的侧面积是().A、4000πcm2B、3600πcm2C、2000πcm2D、1000πcm214、把抛物线y= -2x2向上平移1个单位,得到的抛物线是()A、y= -2(x+1)2B、y= -2(x-1)2C、y= -2x2+1D、y= -2x2-115、一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A、18个B、15个C、12个D、10个16、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a-b+c<0;④a+c>0,其中正确结论的个数为()A、4个B、3个C、2个D、1个麓山国际实验学校初三年级第二次月考数学试卷(答卷)(时量120分钟 总分120分)一、填空题(每小题3分,共24分)1、 2、 3、 4、 5、 6、 7、 8、 题号 9 10 11 12 13 14 15 16 答案三、解答题(第17~22每题6分,第23、24每题8分,第25、26每题10分) 17、如图,AB 为⊙O 直径,BC 切⊙O 于B ,CO 交⊙O 交于D , AD 的延长线交BC 于E ,若∠C = 25°,求∠A 的度数。
麓山国际实验学校2019-2020学年度第一学期开学考试初三数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)1.在以下数据75,80,85,90,80中,众数和中位数分别是()A.75,80B.80,80C.80,85D.85.902.将一块长方形桌布铺在长为3m ,宽为2m 的长方形桌面上,各边下垂的长度相同,且桌布的面积是桌面面积的2倍,求桌布下垂的长度,若设桌布下垂的长度为x m ,则所到的方程是()A.()()2322232x x ++=⨯⨯B.()()23232x x ++=⨯C.())32232x x ++=⨯⨯(D.()()2232232x x ++=⨯3.在某次射击训练中,甲、乙、丙、丁4人各射击10次,平均成绩相同,方差分别是2=0.35S 甲,2=0.15S 乙,2=0.25S 丙,2=0.27S 丁,这4人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁4.关于x 的一元二次方程2+620x x k +=有两个不相等的实数根,则实数k 的取值范围是() A.92k ≤ B.92k ≥ C.92k < D.92k > 5.下列命题是真命题的是A.对角线相等的平行四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.四边都相等的四边形是矩形6.如图,已知矩形ABCD ,AB=3,BC=4,AE 平分∠BAD 交BC 于点E ,点F ,G 分别为AD ,AE 的中点,则FG=()A.52C.2D.27.在函数y =x 的取值范围是() A.0x ≥ B.03x x >≠且 C.03x x ≥≠且 D.0x >8.在平面直角坐标系中,点A ,B 的坐标分别是(0,3),(4-,0),则原点到直线AB 的距离是()A.2B.2.4C.2.5D.39. 爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中,下面图形中表示爷爷离家的距离y (米)与又爷离开公园的时间x (分)之间的函数关系是()10. 已知抛物线21y x x =--与x 轴的一个交点为(m ,0),则代数式22019m m -+的值为()A.2018B.2019C.2020D.202111.已知二次函数()2230y ax ax a a =--≠,关于此函数的图象及性质,下列结论中不一定成立的是()A.该图象的顶点坐标为(1)4a -,B.该图象在x 轴上截得的线段的长为4C.若该图象经过点(2-,5),则一定经过点(4,5)D.当1x >时,y 随x 的增大而增大12.如图,二次函数2y ax bx c =++的图象经过点A (3-,0),其对称轴为直线1x =-,有下列结论:①0abc <;②20a b c -->;③关于x 的方程()2ax b m x c m +-+= 有两个不相等的实数根;④若P (5-,1y ),Q (m ,2y )是抛物线上两点,且12y y >,则实数m 的取值范围是53m -<<.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分)13.已知m ,n 是关于x 的方程2210x x +-=的两个不相等的实数根,则m n +=.14.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值落围是.15.一次函数23y x =+的图象与x 轴的交点坐标是.16.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点O 作直线EF 分别与AB ,DC 相 交于E ,F 两点,若AC=10,BD=4,则图中阴影部分的面积等于.17.给出一组数据10,12,10,x ,8;若这组数据的众数和平均数相等,则中位数为.18.二次函数2y x bx =+的图象如图,对称轴为1x =.若关于x 的一元二次方程220x bx t +-=(t 为实数)在14t -<≤的范围内有解,则t 的取值范围是.三、解答题(本大题共8个小题,共66分)19.(6)201212-⎛⎫-+ ⎪⎝⎭.20.(6分)为了调查学生每天零花钱情况,对我校初二学年某班50名同学每天零花钱情况进行了统计,并绘制成下面的统计图。
湖南省长沙市岳麓区麓山国际实验学校2019-2020学年九年级(上)第一次月考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)已知关于x的一元二次方程x2﹣2ax+4=0的一个根是2,则a的值为()A.1B.﹣1C.2D.﹣23.(3分)关于抛物线y=2x2,下列说法错误的是()A.开口向上B.对称轴是y轴C.函数有最大值D.在x>0时,函数y随x随增大而增大4.(3分)随着划片招生和小班政策的实施,麓山国际实验学校初一新生人数逐步减少,2014届初一新入校人数为1300人,2016届初一新入校人数为1053人,设该校入校人数平均每年的下降率为x,则根据题意可列方程为()A.1053=1300(1﹣x)2B.1300=1053(1﹣x)2C.1300=1053(1+x)2D.1053=1300(1+x)25.(3分)二次函数经过(﹣3,0)和(0,3),对称轴是x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+36.(3分)如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC 的度数是()A.15°B.20°C.25°D.30°7.(3分)下列说法:①过切点的直线垂直于切线,则这条直线必过圆心;②长度相等的弧是等弧;③平分弦的直径必垂直于弦;④三角形内心到三个顶点的距离相等.其中正确的个数有()A.1B.2C.3D.48.(3分)如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙C的半径为6.5,则⊙C与AB 的位置关系是()A.相切B.相离C.相交D.无法确定9.(3分)如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°10.(3分)一个圆的内接正三边形的边长为2,则该圆的内接正方形的边长为()A.B.4C.2D.211.(3分)如图1,⊙O的半径为r,若点P′在射线OP上,满足OP′×OP=r2,则称点P′是点P关于⊙O的“反演点”,如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A'是点A关于⊙O的反演点,求A'B的长为()A.B.2C.2D.412.(3分)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6个小是,每小是3分,共18分)13.(3分)方程x2+2x﹣3=0的解是.14.(3分)如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA'B',那么点A′的坐标为.15.(3分)用一个半径为30,圆心角为90°的扇形围成一个圆锥,则这个圆锥的底面半径是.16.(3分)关于x的方程x2﹣kx﹣2k=0的两个根的平方和为12,则k=.17.(3分)二次函数y=2x2﹣4x+1在0≤x≤3时y的取值范围为.18.(3分)如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是.三、解答题(本大题共8小题,共66分19.(6分)计算(π﹣2)0+﹣()﹣2+|﹣1|20.(6分)先化简,再求值;(a﹣b)2+2(a+b)(a﹣b)﹣a(a﹣2b),其中a=,b=﹣.21.(8分)在“优秀传统文化进校园”活动中,学校计划每周一下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动,教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图并计算扇形统计图中武术所对的圆心角度数;(2)教师从武术类中选取最优秀的4人,刚好2男2女,现教务处从中任意抽取2人参加比赛,用列表法或树状图法求出被抽取的两名学生性别相同的概率是多少.22.(8分)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)若∠ACO=25°,求∠BCD的度数.(2)若EB=4cm,CD=16cm,求⊙O的直径.23.(9分)如图,△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接OD、DE,已知∠BAC=30°,AB=8.(1)求劣弧BD的长.(2)求阴影部分的面积.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD的延长线于点E,交AB的延长线于点F,且EG=EK.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为13,CH=12,=,求FG的长.25.(10分)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于80万元,已知这种设备的月产量x(套)与每套的售价y(万元)之间满足关系式y=150﹣2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数关系式;(2)求月产量x的范围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?26.(10分)如图,已知抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心为M(1,﹣1),已知点B(3,0),设⊙M与y轴交于点D,抛物线的顶点为E.(1)求⊙M的半径及抛物线的解析式;(2)若点F在抛物线的第四象限上,求△FBC的面积的最大值;(3)探究坐标轴上是否存在点P,使得△PAC是直角三角形,且两直角边的长度之比是1:3?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.解:A、图形不是中心对称图形;B、图形是中心对称图形;C、图形不是中心对称图形;D、图形不是中心对称图形,故选:B.2.解:∵关于x的一元二次方程x2﹣2ax+4=0的一个根是2,∴22﹣2a×2+4=0,即﹣4a=﹣8解得,a=2.故选:C.3.解:A、抛物线y=2x2,开口向上,正确,不合题意;B、抛物线y=2x2,对称轴是y轴,正确,不合题意;C、抛物线y=2x2,函数有最小值,错误,符合题意;D、抛物线y=2x2,在x>0时,函数y随x随增大而增大,正确,不合题意.故选:C.4.解:设该校入校人数平均每年的下降率为x,根据题意得:1300(1﹣x)2=1053.故选:A.5.解:点(﹣3,0)关于直线x=﹣1的对称点的坐标为(1,0),设抛物线的解析式为y=a(x+3)(x﹣1),把(0,3)代入得3=a•3•(﹣1),解得a=﹣1,所以抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3.故选:D.6.解;如图,由四边形的内角和定理,得∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得∠AOC=∠BOC=50°.由圆周角定理,得∠ADC=∠AOC=25°,故选:C.7.解:过切点的直线垂直于切线,则这条直线必过圆心,所以①正确;在同圆或等圆中,长度相等的弧是等弧,所以②错误;平分弦(非直径)的直径必垂直于弦,所以③错误;三角形内心到三边的距离相等.所以④错误.故选:A.8.解:过C作CD⊥AB于D,由勾股定理得:AB==13,由三角形的面积公式得:AC×BC=AB×CD,∴5×12=13×CD,∴CD=,∴⊙C与AB的位置关系是相交,故选:C.9.解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°﹣∠ACD﹣∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.10.解:如图,连接OC,OA,OB,过O作OG⊥CD于G,则CG=CD=,∵△ACD是圆内接正三角形,∴∠OCG=30°,∴OC==2,∵四边形ABEF是正方形,∴∠AOB=90°,∴AB=OA=2,故选:D.11.解:设OA交⊙O于C,连结B′C,如图2,∵OA′•OA=42而r=4,OA=8∴OA′=2,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴BA′⊥OC,在Rt△OA′B中,sin∠A′OB=,∴A′B=4sin60°=2.故选:B.12.解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.二、填空题(本大题共6个小是,每小是3分,共18分)13.解:x2+2x﹣3=0(x+3)(x﹣1)=0x1=﹣3;x2=1故本题的答案是﹣3或1.14.解:作BC⊥x轴于C,如图,∵△OAB是边长为2的等边三角形∴OA=OB=2,AC=OC=1,∠BOA=60°,∴A点坐标为(﹣2,0),O点坐标为(0,0),在Rt△BOC中,BC==,∴B点坐标为(﹣1,);∵△OAB按顺时针方向旋转60°,得到△OA′B′,∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,∴点A′与点B重合,即点A′的坐标为(﹣1,),故答案为(﹣1,).15.解:设该圆锥底面圆的半径为r,根据题意得2πr=,解得r=7.5,即该圆锥底面圆的半径为7.5.故答案为:7.516.解:设关于x的方程x2﹣kx﹣2k=0的两实数根分别为x1、x2,则x1+x2=k,x1•x2=﹣2k①∵原方程两实根的平方和为12,∴x12+x22=(x1+x2)2﹣2x1x2=12 ②∵方程有两实数根,∴△=k2﹣4×(﹣2k)≥0,∴k≥0或k≤﹣8,把①代入②得,k2﹣2×(﹣2k)=12,解得k1=2,k2=﹣6(舍去).∴k=2.故答案为:2.17.解:∵y=2x2﹣4x+1=2(x﹣1)2﹣1,∴当x=1时,y取得最小值﹣1,又∵0≤x≤3,∴当x=3时,y取得最大值,最大值为7,∴在0≤x≤3时y的取值范围为﹣1≤y≤7,故答案为:﹣1≤y≤7.18.解:作OD⊥AB,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°,故答案为:60°或120°.三、解答题(本大题共8小题,共66分19.解:原式=1+3﹣4+1=3﹣2.20.解:原式=a2﹣2ab+b2+2a2﹣2b2﹣a2+2ab=2a2﹣b2,当a=,b=﹣时,原式=﹣=0.21.解:(1)100名学生中女生人数有100﹣10﹣20﹣13﹣9=48人,参加武术活动的女生人数为48﹣15﹣8﹣15=10人,补全条形统计图如图所示,扇形统计图中武术所对的圆心角度数=×360°=360°×30%=108°;(2)列表如下:所有等可能的情况有12种,其中被抽取的两名学生性别相同的情况有4种,则P==.22.解:(1)∵AO=CO,∴∠A=∠ACO=25°,∵AB为⊙O的直径,CD是弦,且AB⊥CD,∴=,∴∠BCD=∠A=25°;(2)设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣4(cm),∵AB⊥CD,CD=16cm,∴CE=CD=8cm,在Rt△OCE中,OC2=OE2+CE2,∴x2=82+(x﹣4)2,解得:x=10,∴⊙O 的直径为20cm . 23.解:(1)∵OA =OD , ∴∠OAD =∠ODA =30°, ∴∠AOD =120°, ∴∠DOB =60°,∴的长==.(2)S 阴=S 扇形OAD ﹣S △AOD =﹣×4×2=﹣4.24.(1)证明:连接OG , ∵弦CD ⊥AB 于点H , ∴∠AHK =90°, ∴∠HKA +∠KAH =90°, ∵EG =EK , ∴∠EGK =∠EKG , ∵∠HKA =∠GKE , ∴∠HAK +∠KGE =90°, ∵AO =GO , ∴∠OAG =∠OGA , ∴∠OGA +∠KGE =90°, ∴GO ⊥EF , ∴EF 是⊙O 的切线;(2)解:连接CO ,在Rt △OHC 中, ∵CO =13,CH =12, ∴HO =5, ∴AH =8,∵=,∴OF =15,∴FG ===2.25.解:(1)设函数关系式为y2=kx+b,把坐标(30,1400)(40,1700)代入,,解得:,∴函数关系式y2=30x+500;(2)依题意得:,解得:25≤x≤35;(3)∵W=x•y1﹣y2=x(150﹣2x)﹣(500+30x)=﹣2x2+120x﹣500∴W=﹣2(x﹣30)2+1300∵25<30<35,∴当x=30时,W=1300最大答:当月产量为30件时,利润最大,最大利润是1300万元.26.解:(1)由题意得:点M在抛物线的对称轴上,则抛物线的对称轴为x=1,则:x=﹣=1,即:b=﹣2a,把点B的坐标代入抛物线表达式得:a×9﹣2a×3﹣3=0,则a=1,故抛物线的表达式为:y=x2﹣2x﹣3,过点M作MN⊥y轴,交y轴于点N,则圆的半径=MC===;(2)点B、C的坐标分别为(3,0)、(0,﹣3),则直线BC的表达式为:y=x﹣3,设:点F是抛物线在第四象限的点,过点F作y轴的平行线,交在BC与点P,设:点F的坐标为(x,x2﹣2x﹣3),则点P坐标为(x,x﹣3),S=×PF×OB=(x﹣3﹣x2+2x+3)×3=﹣(x﹣)2+,△FBC有最大值,∵a=﹣,故S△FBC故当x=时,△FBC的面积的最大值;(3)当点P在点O、P、P′的位置时,△PAC是直角三角形,且两直角边的长度之比是1:3,即:∠P′AC=∠ACP=∠AOC=90°,此时,点P的坐标分别为:(0,)或(9,0)或(0,0).。
2020-2021学年湖南省长沙市岳麓区麓山国际实验学校九年级(上)第三次月考数学试卷1. tan60°等于( )A. 12B. √32C. √33D. √32. 下列计算正确的是( )A. −42=−16B. 23=6C. −8−8=0D. −5−2=−33. 下列图形中既是中心对称图形,又是轴对称图形的是( )A.B.C.D.4. “校园足球”已成为麓山国际实验学校的一张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( )A. 0.24×105B. 2.4×106C. 2.4×105D. 24×1045. 若代数式√x−2√x−1有意义,则实数x 的取值范围是( )A. x ≥1B. x ≥2C. x >1D. x >26. 下列说法正确的是( )A. “打开电视机,正在播放体育节目”是必然事件B. 了解夏季冷饮市场上冰淇淋的质量情况适合用普查C. 抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为12 D. 甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S 甲2=0.3,S 乙2=0.5,则乙的射击成绩较稳定7. 如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是( )A. 数B. 学C. 活D. 的8. 正十二边形的每一个内角的度数为( )A. 120°B. 135°C. 150°D. 108°9.在同一平面直角坐标系中,反比例函数y=k与一次函数y=kx−1(k为常数,k>x0)的图象可能是()A. B.C. D.10.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A. 6cmB. 4cmC. 10cmD. 以上都不对11.如图,将半径为4cm的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A. 2√3cmB. 4√3cmC. √3cmD. √2cm(k≠0)图象上的12.如图,点A、B是反比例函数y=kx两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A. −12B. −10C. −9D. −613.已知点P(m−3,m+1)在第一象限,则m的取值范围是______.14.已知4x2m y m+n与−3x6y2是同类项,则m−n=______.15.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为______米.16.已知圆锥的高为6,底面圆的半径为8,则圆锥的侧面积为______.17.在半径为5cm圆内有两条互相平行的弦,一条弦长为8cm,另一条弦长为6cm,则这两条弦之间的距离为______.18.抛物线y=ax2+bx+c的顶点为D(−1,2),与x轴的一个交点A在点(−3,0)和(−2,0)之间,其部分图象如图,则以下结论:①b2−4ac<0;②当x>−1时y随x增大而减小;③a+b+c<0;④若方程ax2+bx+c−m=0没有实数根,则m>2;⑤3a+c<0.其中,正确结论的序号是______ .19.计算:sin30°−√4+(π−4)0+|−12|.20.先化简,再求值:a2−3aa2+a ÷a−3a2−1⋅a+1a−1,其中a=2020.21.按国家要求贫困家庭均要“建档立卡”.某中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A4班选出两人进行座谈,若A4中有一名女生,三名男生,请用树状图或列表表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.22.如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.(1)求证:BG=DE;(2)若点G为CD的中点,求HG的值.GF23.“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,某公司生产A,B两种机械设备,每台B种设备的成本是A种设备的1.5倍,公司若投入16万元生产A种设备,36万元生产B种设备,则可生产两种设备共10台.请解答下列问题:(1)A、B两种设备每台的成本分别是多少万元?(2)若A,B两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A种设备至少生产53台,求该公司有几种生产方案.24.如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是AD⏜上一点,连接AF交CD的延长线于点E.(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为AD⏜的中点时,求AF的值.25.如图1,如果一条直线截一个三角形的任意两边,把这个三角形分成了一个四边形和一个三角形.若这个四边形的四个顶点在同一个圆上,则称这条直线为该三角形的一条共圆线.(1)如图1,DE为△ABC的一条共圆线,判断△ABC被DE所分成的三角形与△ABC的形状有什么关系?并说明理由;(2)如图2,在Rt△ABC中,∠C=90°,AB=5,AC=3,点P是边BC上的一点,PC=1,求过P的共圆线被△ABC两边截得的线段长;(3)如图3,A(1,3),B(−3,0),C(4,0),点P为线段BC上一动点,设CP=x,若过P存在△ABC的共圆线,求x的取值范围.x+2与x轴、y轴分别交于B、C两点,经过B、C两点的抛26.如图1,直线y=−23物线与x轴的另一交点坐标为A(−1,0).(1)求B、C两点的坐标及该抛物线所对应的函数关系式;(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线a//y轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m,△BCE的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②求S的最大值,并判断此时△OBE的形状,说明理由;(3)过点P作直线b//x轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:tan60°=√3.故选D.根据tan60°=√3即可得出答案.此题考查了特殊角的三角函数值,比较简单,注意熟练记忆一些特殊角的三角函数值.2.【答案】A【解析】解:A、−42=−16,此选项正确;B、23=8,此选项错误;C、−8−8=−8+(−8)=−16,此选项错误;D、−5−2=−5+(−2)=−7,此选项错误;故选:A.根据有理数的乘方和减法法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的乘方和减法法则.3.【答案】C【解析】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误.故选:C.根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】B【解析】解:2400000=2.4×106. 故选:B .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要确定a 的值以及n 的值.5.【答案】B【解析】 【分析】本题考查二次根式有意义的条件以及分式有意义的条件,解题的关键是正确理解二次根式有意义的条件以及分式有意义的条件,本题属于基础题型. 根据二次根式有意义的条件以及分式有意义的条件即可求出x 的范围. 【解答】解:由题意可知:{x −2≥0x −1>0∴解得:x ≥2, 故选:B .6.【答案】C【解析】解:A 、“打开电视机,正在播放体育节目”是随机事件,故此选项错误; B 、了解夏季冷饮市场上冰淇淋的质量情况应该采用抽样调查的方式,故此选项错误; C 、抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为12;正确;D 、甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S 甲2=0.3,S 乙2=0.5,则甲的射击成绩较稳定,错误.故选:C .分别利用概率的意义以及抽样调查的意义以及方差的意义分别分析得出答案. 此题主要考查了概率的意义以及抽样调查的意义以及方差的意义,正确把握相关定义是解题关键.7.【答案】B【解析】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“生”字相对的面上的汉字是“学”.故选:B.正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.8.【答案】C【解析】【分析】本题考查了多边形的计算,正确理解内角与外角的关系是关键.首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【解答】=30°,解:正十二边形的每个外角的度数是:360°12则每一个内角的度数是:180°−30°=150°.故选:C.9.【答案】B【解析】【分析】本题主要考查了反比例函数与一次函数的图象,解题时注意:系数k的符号决定直线的方向以及双曲线的位置.先根据k的符号,得到反比例函数y=k与一次函数y=kx−1都经过第一、三象限,再x根据一次函数y=kx−1与y轴交于负半轴,即可得出结果.【解答】解:当k>0时,反比例函数图象在第一、三象限都是y随x的增大而增大,且一次函数图象必过第一、三象限,故A,C选项错误;∵一次函数y=kx−1与y轴交于负半轴,∴D选项错误,B选项正确,故选:B.10.【答案】A【解析】【分析】本题考查了角平分线定理,垂直的定义,直角三角形证明全等的方法−HL,利用了转化及等量代换的思想,熟练掌握角平分线定理是解本题的关键.由∠C=90°,根据垂直定义得到DC与AC垂直,又AD平分∠CAB交BC于D,DE⊥AB,利用角平分线定理得到DC=DE,再利用HL证明三角形ACD与三角形AED全等,根据全等三角形的对应边相等可得AC=AE,又AC=BC,可得BC=AE,然后由三角形BED的三边之和表示出三角形的周长,将其中的DE换为DC,由CD+DB=BC进行变形,再将BC换为AE,由AE+EB=AB可得出三角形BDE的周长等于AB的长,由AB 的长可得出周长.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,{DC=DEAD=AD,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6(cm).故选:A.11.【答案】B【解析】【分析】本题考查的是垂径定理在实际生活中的运用及翻折变换的性质,根据题意画出图形,作出辅助线利用数形结合解答.连接AO,过O作OD⊥AB,交AB⏜于点D,交弦AB于点E,根据折叠的性质可知OE=DE,再根据垂径定理可知AE=BE,在Rt△AOE中利用勾股定理即可求出AE的长,进而可求出AB的长.【解答】解:如图所示,连接AO,过O作OD⊥AB,交AB⏜于点D,交弦AB于点E,∵AB⏜折叠后恰好经过圆心,∴OE=DE,∵⊙O的半径为4,∴OE=12OD=12×4=2,∵OD⊥AB,∴AE=12AB,在Rt△AOE中,AE=√OA2−OE2=√42−22=2√3.∴AB=2AE=4√3.故选:B.12.【答案】A【解析】【分析】设A(m,km ),C(0,n),则D(m,0),E(13m,0),由AB=BC,推出B(m2,km+n2),根据点B在y=kx 上,推出m2⋅km+n2=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2⋅S△AEB=14,根据S△AEC=S△AEO+S△ACO−S△ECO,构建方程即可解决问题;本题考查反比例函数与一次函数的交点问题,解题的关键是学会利用参数解决问题,属于中考选择题中的压轴题.【解答】解:设A(m,km ),C(0,n),则D(m,0),E(13m,0),∵AB=BC,∴B(m2,km+n2),∵点B在y=kx上,∴m2⋅km+n2=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2⋅S△AEB=14,∵S△AEC=S△AEO+S△ACO−S△ECO,∴14=12⋅(−13m)⋅km+12⋅n⋅(−m)−12⋅(−13m)⋅n,∴14=−16k−3k2+k2k2,∴k=−12.故选A.13.【答案】m>3【解析】【分析】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,此特点常与不等式、方程结合起来求一些字母的取值范围.属于基础题.在第一象限内的点的横纵坐标均为正数,列式求值即可.【解答】解:∵点P(m −3,m +1)在第一象限,∴{m −3>0m +1>0, 解得m >3.故答案为m >3.14.【答案】4【解析】解:根据题意得:{2m =6m +n =2, 解得:{m =3n =−1, 则m −n =3+1=4.故答案是:4.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.【答案】5【解析】【分析】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.易得:△ABM∽△OCM ,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO ,根据相似三角形的性质可知ABOC =AMOA+AM,即1.68=AM20+AM,解得AM=5m.则小明的影长为5米.16.【答案】80π【解析】解:圆锥的主视图如右图所示,半径BD=8,AD=6,∴AB√BD2+AD2=√62+82=10,∴圆锥的侧面积是:12×16π×10=80π,故答案为:80π.根据题意可以求得圆锥的母线长,然后根据圆锥的侧面展开图是一个扇形,由扇形的面积公式S=12lr即可解答本题.本题考查圆锥的计算,解答本题的关键是明确题意,知道圆锥的侧面展开图是扇形和扇形的面积计算公式.17.【答案】1cm或7cm【解析】解:①当弦A和CD在圆心同侧时,如图,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF−OE=1cm;②当弦A和CD在圆心异侧时,如图,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∵OA=OC=5cm,∴EO=4cm,OF=3cm,∴EF=OF+OE=7cm.故答案为:1cm或7cm.分两种情况进行讨论:①弦A和CD在圆心同侧;②弦A和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.本题考查了勾股定理和垂径定理,解此类题目要注意将圆的问题转化成三角形的问题再进行计算.18.【答案】②③④⑤【解析】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,∴结论①不正确.∵抛物线的对称轴x=−1,∴当x>−1时,y随x增大而减小,∴结论②正确.∵抛物线与x轴的一个交点A在点(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,∴结论③正确.∵y=ax2+bx+c的最大值是2,∴方程ax2+bx+c−m=0没有实数根,则m>2,∴结论④正确.=−1,∵抛物线的对称轴x=−b2a∴b=2a,∵a+b+c<0,∴a+2a+c<0,∴3a+c<0,∴结论⑤正确.综上,可得正确结论的序号是:②③④⑤.故答案为:②③④⑤.①根据抛物线与x轴有两个交点,可得b2−4ac>0,据此解答即可.②根据抛物线的对称轴x=−1,可得当x>−1时,y随x增大而减小,据此判断即可.③根据抛物线与x轴的一个交点A在点(−3,0)和(−2,0)之间,可得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,据此判断即可.④根据y=ax2+bx+c的最大值是2,可得方程ax2+bx+c−m=0没有实数根,则m>2,据此判断即可.⑤首先根据抛物线的对称轴x=−b2a=−1,可得b=2a,然后根据a+b+c<0,判断出3a+c<0即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).19.【答案】解:原式=12−2+1+12=0.【解析】原式利用特殊角角的三角函数值,平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:a2−3aa2+a ÷a−3a2−1⋅a+1a−1=a(a−3)a(a+1)⋅(a+1)(a−1)a−3⋅a+1a−1=a+1,当a=2020时,原式=2020+1=2021.【解析】先把除法变成乘法,同时把分式的分子和分母分解因式,再根据分式的乘法法则进行计算,最后求出答案即可.本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.21.【答案】解:(1)6÷40%=15(人),即七年级已“建档立卡”的贫困家庭的学生一共有15人;(2)A 2所对应的学生为15−2−6−4=3(人),补全的条形统计图如右图所示:A 1所在扇形的圆心角的度数是:360°×215=48°;(3)树状图如下所示:由树状图可知,一共有12中结果,其中一男一女有6种结果,故恰好选出一名男生和一名女生的概率为612=12.【解析】(1)根据A 3对应的人数和所占的百分比,可以计算出七年级已“建档立卡”的贫困家庭的学生总人数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出A 2所对应的学生人数,从而可以将条形统计图补充完整,再根据A 1所对应的学生人数,即可计算出A 1所在扇形的圆心角的度数;(3)根据题意,先画出树状图,然后即可得到恰好选出一名男生和一名女生的概率. 本题考查列表法与树状图法、扇形统计图、条形统计图,利用数形结合的思想解答是解答本题的关键.22.【答案】解:(1)∵BF ⊥DE ,∴∠GFD =90°,∵∠BCG =90°,∠BGC =∠DGF ,∴∠CBG =∠CDE ,在△BCG 与△DCE 中,{∠CBG =∠CDE BC =CD ∠BCG =∠DCE∴△BCG≌△DCE(ASA),∴BG=DE,(2)设CG=1,∵G为CD的中点,∴GD=CG=1,由(1)可知:△BCG≌△DCE(ASA),∴CG=CE=1,∴由勾股定理可知:DE=BG=√5,∵sin∠CDE=CEDE =GFGD,∴GF=√55,∵AB//CG,∴△ABH∽△CGH,∴ABCG =BHGH=21,∴BH=23√5,GH=13√5,∴HG=5【解析】(1)由于BF⊥DE,所以∠GFD=90°,从而可知∠CBG=∠CDE,根据全等三角形的判定即可证明△BCG≌△DCE,从而可知BG=DE;(2)设CG=1,从而知CG=CE=1,由勾股定理可知:DE=BG=√5,由易证△ABH∽△CGH,所以BHHG =2,从而可求出HG的长度,进而求出HGGF的值.本题考查相似三角形的综合问题,涉及相似三角形的判定与性质,全等三角形的判定与性质,勾股定理等知识,综合程度较高,属于中等题型.23.【答案】解:(1)设A种设备每台的成本是x万元,B种设备每台的成本是1.5x万元,根据题意得:16x +361.5x=10,解得:x=4,经检验x=4是分式方程的解,∴1.5x=6.答:A种设备每台的成本是4万元,B种设备每台的成本是6万元;(2)设A种设备生产a台,则B种设备生产(60−a)台,根根据题意得:{(6−4)a +(10−6)(60−a)≥126a ≥53, 解得:53≤a ≤57.∵a 为整数,∴a =53,54,55,56,57,∴该公司有5种生产方案.【解析】本题考查了分式方程的应用、一元一次不等式组的应用有关知识.(1)设A 种设备每台的成本是x 万元,B 种设备每台的成本是1.5x 万元.根据数量=总价÷单价结合“投入16万元生产A 种设备,36万元生产B 种设备,则可生产两种设备共10台”,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设A 种设备生产a 台,则B 种设备生产(60−a)台.根据销售后获利不低于126万元且A 种设备至少生产53台,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,再根据a 为正整数即可得出a 的值,进而即可得出该公司生产方案种数.24.【答案】解:(1)∵CD ⊥AB ,AB 是⊙O 的直径∴AD⏜=AC ⏜ ∴∠AFC =∠ACD .∵在△ACF 和△AEC 中,∠AFC =∠ACD ,∠CAF =∠EAC∴△AFC∽△ACE .(2)∵四边形ACDF 内接于⊙O∴∠AFD +∠ACD =180°∵∠AFD +∠DFE =180°∴∠DFE =∠ACD∵∠AFC =∠ACD∴∠AFC =∠DFE .∵△AFC∽△ACE∴∠ACF =∠DEF .∵F 为AD⏜的中点 ∴AF =DF .∵在△ACF 和△DEF 中,∠ACF =∠DEF ,∠AFC =∠DFE ,AF =DF∴△ACF≌△DEF(AAS)∴AC =DE =5∵CD ⊥AB ,AB 是⊙O 的直径∴CH=DH=3.∴EH=8在Rt△AHC中,AH2=AC2−CH2=16,在Rt△AHE中,AE2=AH2+EH2=80,∴AE=4√5.∵△AFC∽△ACE∴AFAC =ACAE,即AF5=54√5,∴AF=5√54.【解析】(1)先由垂径定理得AD⏜=AC⏜,从而得∠AFC=∠ACD.再结合∠CAF=∠EAC,可得答案;(2)先由圆内接四边形的性质及邻补角关系得∠DFE=∠ACD,进而得∠AFC=∠DFE;再求证△ACF≌△DEF,从而得AC=DE=5;然后在在Rt△AHC中和在Rt△AHE中,由勾股定理求得AE的长;最后由△AFC∽△ACE,根据相似三角形的性质,写出比例式,即可解出AF的长.本题考查了相似三角形的判定与性质、圆中的相关性质及定理的应用,熟练掌握相关性质定理及其应用,是解题的关键.25.【答案】解:(1)如图1,△DEC∽△BAC,理由是:∵A、B、E、D四点共圆,∴∠EDC=∠B,∵∠C=∠C,∴△DEC∽△BAC;(2)分两种情况:①如图2(a),过P作PD⊥AB于D,∴∠ADP=90°,∵∠C=90°,∴∠ADP+∠C=180°,∴A、D、P、C四点共圆,∴直线PD就是△ABC的共圆线,在Rt△ABC中,AB=5,AC=3,由勾股定理得:BC=4,∴BP=BC−PC=4−1=3,∵∠BDP=∠C=90°,∠B=∠B,∴△BDP∽△BCA,∴PDAC =BPAB,∴PD3=35,∴PD=95;②如图2(b),当∠PDC=∠B时,A、B、P、D四点共圆,直线PD为就是△ABC的共圆线,∴△PDC∽△ABC,∴PDAB =PCAC,∴PD5=13,∴PD=53;(3)过A作AD⊥BC于D,∵A(1,3),C(4,0),∴AD=3,CD=4−1=3,∴△ADC是等腰直角三角形,∴∠ACD=45°,过A作AE⊥AB,交AC于E,作∠BAE的平分线AP,交x 轴于P,∵∠DAE+∠DAB=90°,∠DAE+∠AED=90°,∴∠DAB=∠AED,∵∠ADB=∠ADE=90°,∴△ADE∽△BDA,∴ADBD =AEAB,在Rt△ADB中,AD=3,BD=3+1=4√52+(154)2,∴AB=5,∴34=AE5,∴AE =154, 由勾股定理得:BE =√AB 2+AE 2=√52+(154)2=254,∴EC =7−254=34,∵AP 平分∠BAE ,∴AB AE =BPPE ,∴5154=7−xx−34,∴x =247;如图4,在AB 上任意取一点D 作DE ⊥AB ,交BC 于E ,再作∠BDE 的平分线,则∠BDE =90°,∴∠BDP =45°,∵∠ACD =45°,∴∠ACD =∠BDP ,∴A 、D 、P 、C 四点共圆,∴当247<x <7时,过P 存在△ABC 的共圆线,如图5,作∠CAP =∠ABC ,∴△APE∽△BAD ,∵AD =3,BD =4,∴设PE =3a ,AE =4a ,则EC =3a ,AP =5a ,∴PC =3√2a ,∴PD =DC −PC =3−3√2a ,在Rt △APD 中,32+(3−3√2a)2=(5a)2,7a 2+18√2a −18=0,(a +3√2)(7a −3√2)=0,a 1=−3√2(舍),a 2=3√27,∴PC =3√2a =3√2×3√27=187,如图6,同理作∠PEC =∠ABC ,则A 、B 、P 、E 四点共圆,则当0<x <187时,过P 存在△ABC 的共圆线,综上所述,当0<x <187和247<x <7时,过P 存在△ABC 的共圆线.【解析】(1)相似,根据四点共圆时,圆外角等于它的内对角得:∠EDC =∠B ,利用两角对应相等,则两三角形相似;(2)分两种情况:①如图2(a),过P 作PD ⊥AB 于D ,根据对角互补的四边形四点共圆,可得A 、D 、P 、C 四点共圆,则直线PD 就是△ABC 的共圆线,分别求出BP 、PC 的长,利用相似求出所截线段PD 的长即可;②如图2(b),同理根据相似三角形的相似比可得PD 的长;(3)分两种情况:第一种:如图4和图5,过P 的直线与A 、C 共圆,根据∠ACD =45°,求出x 的最小值为247;第二种情况:如图5和图6,过P 的直线与A 、B 共圆,作一个角与∠ABC 相等,求此时x 的最大值为187;由此写出x 的取值范围.本题主要考查了四点共圆的性质和判定,即:①共圆的四个点所连成的同侧共底的两个三角形的顶角相等;②圆内接四边形对角互补;③圆内接四边形的外角等于内对角;反之也成立.26.【答案】解:(1)在y =−23x +2中,令y =0,得−23x +2=0,解得x =3, 令x =0,得y =2,∴B(3,0),C(0,2),设抛物线y =ax 2+bx +c(a ≠0),∵抛物线经过点A(−1,0)、B(3,0)、C(0,2),∴{a −b +c =09a +3b +c =0c =2,解得{a =−23b =43c =2,∴抛物线解析式为,y =−23x 2+43x +2;(2)①∵点P 的横坐标为m ,过点P 作直线a//y 轴,∴EP =−23m 2+43m +2−(−23m +2)=−23m 2+2m ,∴△BCE 的面积为S =12EP ⋅|x B −x C |=12×(−23m 2+2m)×|3−0|=−m 2+3m ,∵P 在线段BC 上的一个动点(与B 、C 不重合),∴0<m <3,∴S 与m 之间的函数关系式为:S =−m 2+3m(0<m <3);②∵S =−m 2+3m =−(m −32)2+94, ∴当m =32时,S 最大值=94,当m =32时,P 是BC 的中点,OE =BE ,EF =94,∴△OBE 是等腰三角形;(3)令y =0,则−23x 2+43x +2=0,整理得,x 2−2x −3=0,解得x 1=−1,x 2=3,∴点A(−1,0),易得直线AC 的解析式为y =2x +2,∵点P 的横坐标为m ,∴点P 的纵坐标为−23m +2,∴点Q 的纵坐标为−23m +2,代入直线AC得,2x +2=−23m +2,解得x =−13m ,∴PQ =m −(−13m)=43m ,①当PQ 是等腰直角三角形△PQR 的直角边时,43m =−23m +2, 解得m =1,∴QR 是直角边时,点R 1(−13,0),PQ 是直角边时,点R 2(1,0),②PQ是等腰直角三角形△PQR的斜边时,1 2×43m=−23m+2,解得m=32,∴PQ=43m=43×32=2,OR=m−12PQ=32−12×2=12,∴点R3(12,0),综上所述,x轴上存在点R(−13,0)或(1,0)或(12,0),使得△PQR为等腰直角三角形.【解析】(1)根据直线解析式令y=0求解得到点B的坐标,令x=0得到点C的坐标,然后利用待定系数法求二次函数解析式解答;(2)①根据直线和抛物线解析式表示出EP的长度,再根据△BCE的面积等于△CEP的面积和△BEP的面积之和列式整理即可得解,再根据点P在线段BC上确定出m的取值范围;②把二次函数整理成顶点式形式,然后根据最值问题求出S的最大值,再根据线段垂直平分线上的点到线段两端点的距离相等可得OE=BE,判断出△OBE是等腰三角形;(3)根据抛物线解析式求出点A的坐标,然后求出直线AC的解析式,再根据点P的横坐标求出点P的纵坐标,再求出点Q的横坐标,然后求出PQ的长,再根据等腰直角三角形的性质分PQ是斜边和底边两种情况讨论求解即可.本题是二次函数综合题,主要利用了求直线与坐标轴的交点,待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,等腰直角三角形的性质,(2)根据两函数图象解析式表示EP是解题的关键,(3)难点在于要分情况讨论并根据等腰直角三角形的性质列出方程.。
2022-2023学年湖南省长沙市岳麓区麓山国际学校九年级(上)第三次月考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣2D.22.(3分)下列运算正确的是()A.a2+a3=a5B.(ab)2=ab2C.a3•a2=a6D.(﹣a2)3=﹣a63.(3分)下列说法正确的是()A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.7,则他投10次一定可投中7次C.对新冠阳性感染者的密接人员进行核酸检测可以采用抽样调查的方式D.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8,则乙组学生的身高较整齐4.(3分)如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB =1.5,BC=2,DE=1.8,则EF=()A.4.4B.4C.3.4D.2.45.(3分)如图,一根排水管的截面是一个半径为5的圆,管内水面宽AB=8,则水深CD为()A.3B.2C.D.6.(3分)已知一个正n边形的一个外角为40°,则n=()A.10B.9C.8D.77.(3分)如图,已知△ABC∽△BDC,其中AC=4,CD=2,则BC=()A.2B.C.D.48.(3分)已知关于x的一元二次方程x2﹣kx﹣6=0的一个根为x=3,则另一个根为()A.x=﹣2B.x=﹣3C.x=2D.x=39.(3分)如图,AB为⊙O直径,点D是AB上方圆上异于A、B的一点,若∠BOC=130°,则∠D的度数()A.50°B.25°C.70°D.35°10.(3分)对于反比例函数y=,下列说法不正确的是()A.这个函数的图象分布在第一、三象限B.点(1,4)在这个函数图象上C.这个函数的图象既是轴对称图形又是中心对称图形D.当x>0时,y随x的增大而增大二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)因式分解:8﹣2x2=.12.(3分)若二次根式在实数范围内有意义,则x的取值范围为.13.(3分)如图,小雅同学在利用标杆BE测量建筑物的高度时,测得标杆BE高1.2m,又知AB=2m,BC =16m,则建筑物CD的高是.14.(3分)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面积为cm2(结果π表示).15.(3分)一只不透明的袋子中共有2个白球和若干个红球,这些球除颜色外其他都相同.从袋中随机摸出1个球,恰好是红球的概率为,则袋中红球的个数是个.16.(3分)如图,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数和的图象分别经过点A和点B,则的值为.三、解答题(本大题共9小题,共72分)17.(6分)计算.18.(6分)先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)+(a+b)2,其中a=﹣,b=1.19.(6分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F.(1)求证:△AFE∽△CFD;(2)若AB=4,AD=3,求CF的长.20.(8分)2022年虎年新春,中国女足3:2逆转韩国,时隔16年再夺亚洲杯总冠军:2022年国庆,中国女篮高歌猛进,时隔28年再夺世界杯亚军,一扫男足、男篮颓势,展现了中国体育的风采!为了培养青少年人才储备,雅礼某初中开展了“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了一些学生(每名学生必选且只能选择这五项活动中的一种).根据以下统计图提供的信息,请解答下列问题:(1)本次被调查的学生有名;补全条形统计图;(2)扇形统计图中“排球”对应的扇形的圆心角度数是;(3)学校准备推荐甲、乙、丙、丁四名同学中的2名参加全市中学生篮球比赛,请用列表法或画树状图法分析甲和乙同学同时被选中的概率.21.(8分)如图,已知点A(4,2),B(﹣1,b)是直线y1=2x+m与反比例函数y2=图象的交点,且该直线与y轴交于点C.(1)填空:b=;m=;k=;(2)连接OA,OB,求△AOB的面积;(3)根据图象,直接写出不等式y1>y2时x的取值范围.22.(9分)2022年北京冬奥会吉祥物“冰墩墩”深受人们的喜欢,为了抓住商机,某商店决定购进A,B 两种“冰墩墩”纪念品进行销售,已知每件A种纪念品比每件B种纪念品的进价高30元,用1000元购进A种纪念晶的数量和用400元购进B种纪念品的数量相同.(1)求A,B两种纪念品每件的进价分别是多少元?(2)若该商店计划购进这两种纪念品共150件,且B种纪念品的数量不超过A种纪念品数量的2倍,设购进A种纪念品为m件,总费用为w元,请设计出最省钱的购进方案.23.(9分)如图,P为⊙O外一点,P A、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.(1)求证:∠ADE=∠P AE;(2)若P A=8,PE=4,求直径DE的长;(3)连结BD,若AD2=PE⋅PD,试判断四边形ADBP的形状,并说明理由.24.(10分)定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,简称“四点共圆”.我们学过了“圆的内接四边形的对角互补”这一定理,它的逆命题“对角互补的四边形四个顶点共圆”是证明“四点共圆”的一种常用方法.除此之外,我们还经常用“同旁张角相等”来证明“四点共圆”.如图1,在线段AB同侧有两点C,D.连接AD,AC,BC,BD,如果,那么A,B,C,D“四点共圆”(1)如图2,已知四边形ABCD中,对角线AC、BD相交于点P,点E在CB的延长线上,下列条件:①∠1=∠2;②∠2=∠4:③∠5=:④P A•PC=PB•PD.其中,能判定A,B,C,D“四点共圆”的条件有:(2)如图3,直线y=x+6与x轴交于点A,与y轴交于点B,点C在x轴正半轴上,点D在y轴负半轴上,若A,B,C,D“四点共圆”,且,求四边形ABCD的面积;(3)如图4,已知△ABC是等腰三角形,AB=AC,点D是线段BC上的一个动点(点D不与点B重合,且BD<CD,连结AD,作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE,DE.①求证:A,D,B,E“四点共圆”;②若AB=2,AD•AF的值是否会发生变化,若不变化,求出其值:若变化,请说明理由.25.(10分)如图,二次函数y=﹣x+2的图象与x轴交于点A、B,与y轴交于点C.(1)求直线AC的解析式;(2)连接BC,判断∠CAB和∠CBA的数量关系,并说明理由;(3)设点D为直线AC上方抛物线上一点(与A、C不重合),连BD、AD,且BD交AC于点E,△ABE 的面积记作S1,△ADE的面积记作S2,求的最小值.参考答案一、选择题(本大题共10个小题,每小题3分,共30分)1.B;2.D;3.D;4.D;5.B;6.B;7.B;8.A;9.B;10.D;二、填空题(本大题共6个小题,每小题3分,共18分)11.2(2+x)(2﹣x);12.x≤;13.10.8m;14.60π;15.4;16.﹣;三、解答题(本大题共9小题,共72分)17..;18.;19.(1)见解析;(2).;20.100;18°;21.﹣8;﹣6;8;22.(1)A种纪念品每件进价50元,B种纪念品每件进价20元;(2)A种纪念品购进50件,B种纪念品购进100件时最省钱.;23.(1)见解析;(2)12;(3)菱形,理由见解析.;24.①③④;25.(1)直线AC的解析式为y=x+2;(2)∠CAB=2∠CBA,理由见解析;(3)有最小值,最小值为.。
9-2-2018-19-002麓山国际初三入学数学考试试卷数 学总分:120分 时量:120分钟一.选择题(本大题共12个小题,每小题3分,共36分) 1.在下列四个数中,其中无理数的是( ) A .722 B .﹣2018C .4D .π2.下列计算正确的是( ) A .33=-x xB .a a a 143=÷C .12)1(22--=-x x xD .6326)2(a a -=-3. 近几年,长沙市经济呈现稳中有进,稳中向好的态势,2018年GDP 突破4000亿元大关,4000亿这个数用科学记数法表示为( ) A .12104⨯ B .11104⨯C .12104.0⨯D .111040⨯4. 不等式组⎩⎨⎧-<+->14212x x xx 的解集为( )A .1>xB .31>xC .131<<x D .无解5.下列语句所描述的事件是随机事件的是( ) A .任意画一个四边形,其内角和为180° B .经过任意两点画一条直线 C .任意画一个菱形,是中心对称图形 D .过平面内任意三点画一个圆6.一个几何体的三视图如图所示,则这个几何体是( )A .B .C .D .7.如图,两条直线21//l l ,ABC Rt ∆中, 90=∠C ,BC AC =,顶点B A ,分别在1l 和2l 上,∠1=20°,则∠2的度数是( ) A .45° B .55° C .65° D .75°8.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5,这组数据的众数和平均数分别是( ) A .5和5.5B .5和5C .5和17D .17和5.5 9.已知二次函数1412-+-=m x x y 的图象与x 轴有交点,则m 的取值范围是( ) A .5≤m B .2≥m C .5<m D .2>m10.如图,把直角三角形ABO 放置在平面直角坐标系中,已知30=∠OAB ,B 点的坐标为(0,2),将ABO ∆沿着斜边AB 翻折后得到ABC ∆,则点C 的坐标是( ) A .)4,32( B .)32,2( C .)3,3( D .)3,3(11.如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位:天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是( ) A .第24天的销售量为300件 B .第10天销售一件产品的利润是15元 C .第27天的日销售利润是1250元 D .第15天与第30天的日销售量相等第7题图 第10题图 第11题图12. 已知抛物线c bx ax y ++=2(0<<b a )与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴右侧;②关于x 的方程022=-++c bx ax 有两个不相等的实数根;③024≤+-c b a ;④03<+c a .其中,正确结论的个数为( )A .1个B .2个C .3个D .4个二.填空题(本大题共6个小题,每小题3分,共18分) 13.分解因式:23828a a a -+= .14.如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且34=EA OE ,则BCFG= . 15.若反比例函数xky -=2的图象位于第二、四象限,则k 的取值范围是 . 16.如图,已知⊙O 的半径为6cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP =2cm ,则O P A ∠ta n 的值是 .17.如图,一艘轮船自西向东航行,航行到A 处测得小岛C 位于北偏东60°方向上,继续向东航行10海里到达点B 处,测得小岛C 在轮船的北偏东15°方向上,此时轮船与小岛C 的距离为 海里. 18.如图,在矩形ABCD 中,AB =4,AD =3,矩形内部有一动点P 满足ABCD PAB S S 矩形31=∆,则点P 到B A 、两点的距离之和PB PA +的最小值为 .第14题图 第16题图 第17题图 第18题图三、解答题(本大题共8个小题,共66分) 19.(6分)计算:45tan )21(4|2|1++---20.(6分)先化简,后求值121)11(22++-÷+-a a a a a ,其中12+=a .21.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类杜团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),个数的中位数是 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.22.(8分)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE =CF . (1)求证:△BOE ≌△DOF ;(2)若BD =EF ,连接DE 、BF ,判断四边形EBFD 的形状,并说明理由.23.(9分)某自行车经销商计划投入7.1万元购进100辆A 型和30辆B 型自行车,其中B 型车单价是A 型车单价的6倍少60元.(1)求A 、B 两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B 型车多少辆?24.(9分)如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,OF ⊥AB ,交AC 于点F ,点E 在AB 的延长线上,射线EM 经过点C ,且∠ACE +∠AFO =180°. (1)求证:EM 是⊙O 的切线;(2)若∠A =∠E ,BC =3,求阴影部分的面积.(结果保留π和根号).25.(10分)定义:若存在实数对坐标(,)x y 同时满足一次函数y ax b =+和反比例函数cy x=-,则二次函数2y ax bx c =++为一次函数和反比例函数的“派生”函数.(1)试判断(需要写出判断过程):一次函数3y x =-+和反比例函数4y x=是否存在“派生”函数,若存在,写出它们的“派生”函数和实数对坐标:若不存在,请说明理由;(2)已知:整数m ,n ,t 满足条件9t n m <<,并且一次函数(6)22y n x m =+++与反比例函数xy 2019=存在“派生”函数2019)10()3(2--++=x t m x t m y ,求m 的值;(3)若同时存在两组实数对坐标1(x ,1)y 和2(x ,2)y 使一次函数2(0)y ax b a =+≠和反比例函数3(0)cy c x=-≠有“派生”函数,其中,实数23a b c >>,0a b c ++=,设12||S x x =-,S 的取值范围.26.(10分)如图1,在平面直角坐标系中,直线1y x =-与抛物线2y x bx c =-++交于A 、B 两点,其中(,0)A m 、(4,)B n ,该抛物线与y 轴交于点C ,与x 轴交于另一点D . (1)求这条抛物线的解析式;(2)如图2,若点P 为线段AD 上的一动点(不与A 、D 重合),分别以AP 、DP 为斜边,在直线AD 的同侧作等腰直角APM ∆和等腰直角DPN ∆,连接MN ,试确定MPN ∆面积最大时P 点的坐标;(3)如图3,连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A 、D 、Q 为顶点的三角形与ABD ∆相似,若存在,求出点Q 的坐标;若不存在,请说明理由.9-2-2018-19-002麓山国际初三入学数学考试试卷参考答案。
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. $\sqrt{2}$B. $\pi$C. $-2\sqrt{3}$D. $2\sqrt{5}$2. 如果$a$,$b$是方程$2x^2-5x+2=0$的两个根,那么$a+b$的值是()A. 2B. $\frac{5}{2}$C. 3D. $\frac{7}{2}$3. 在直角坐标系中,点$A(2,3)$关于原点的对称点是()A. $(-2,-3)$B. $(-2,3)$C. $(2,-3)$D. $(2,3)$4. 如果$2a+3b=5$,$a-b=1$,那么$3a+2b$的值是()A. 6B. 7C. 8D. 95. 在等腰三角形$ABC$中,$AB=AC$,$AD$是$BC$边上的高,且$AD=6$,$BD=4$,那么$AB$的长度是()A. 8B. 10C. 12D. 146. 若函数$f(x)=2x-3$,则$f(2x-1)$的值是()A. $4x-5$B. $4x-7$C. $4x-9$D. $4x-11$7. 下列各数中,无理数是()A. $\sqrt{9}$B. $\sqrt{16}$C. $\sqrt{25}$D. $\sqrt{36}$8. 在一次函数$y=kx+b$中,若$y$随$x$的增大而增大,那么$k$的取值范围是()A. $k>0$B. $k<0$C. $k=0$D. $k$无限制9. 在等腰梯形$ABCD$中,$AD//BC$,$AB=CD$,$AD=10$,$BC=12$,那么$ABCD$的面积是()A. 60B. 70C. 80D. 9010. 下列函数中,是反比例函数的是()A. $y=2x+3$B. $y=\frac{1}{x}$C. $y=x^2+1$D. $y=3x-2$二、填空题(每题5分,共50分)11. 已知$3x+2y=8$,$x-2y=1$,则$x=$________,$y=$________。
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是()A.4.5米B.8米C.5米D.5.5米2.去年某校有1 500人参加中考,为了了解他们的数学成绩,从中抽取200名考生的数学成绩,其中有60名考生达到优秀,那么该校考生达到优秀的人数约有( )A.400名B.450名C.475名D.500名3.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A.B.C. D.4.如图,一个透明的玻璃正方体表面嵌有一根黑色的铁丝.这根铁丝在正方体俯视图中的形状是()A.B.C.D.5.下列是电视台的台标,属于中心对称图形的是()A.B.C.D.6.若反比例函数y=kx图象经过点(5,-1),该函数图象在()A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限7.如图,正五边形ABCDE 内接于⊙O ,则∠ABD 的度数为( )A .60°B .72°C .78°D .144°8.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( )A .6B .7C .8D .99.一块圆形宣传标志牌如图所示,点A ,B ,C 在O 上,CD 垂直平分AB 于点D ,现测得8dm AB =,2dm DC =,则圆形标志牌的半径为( )A .6dmB .5dmC .4dmD .3dm10.如图,过⊙O 上一点C 作⊙O 的切线,交⊙O 直径AB 的延长线于点D .若∠D =40°,则∠A 的度数为( )A .20°B .25°C .30°D .40°二、填空题(每小题3分,共24分)11.m 、n 分别为的一元二次方程2410x x --=的两个不同实数根,则代数式24m m mn -+的值为________12.如图,正六边形ABCDEF 内接于圆O ,点M 是边CD 的中点,连结AM ,若圆O 的半径为2,则AM =____________.13.关于x 的方程2x 2-ax +1=0一个根是1,则它的另一个根为________.14.设,m n 分别为一元二次方程2220190+-=x x 的两个实数根,则33m n mn +-=____.15.河堤横截面如图所示,堤高BC 为4米,迎水坡AB 的坡比为1:3(坡比=:BC AC ),那么AB 的长度为____________米.16.如图,有一菱形纸片ABCD ,∠A =60°,将该菱形纸片折叠,使点A 恰好与CD 的中点E 重合,折痕为FG ,点F 、G 分别在边AB 、AD 上,联结EF ,那么cos ∠EFB 的值为____.17.计算:118()4sin 302--+=__________.18.如图,四边形ABCD 是⊙O 的外切四边形,且AB =5,CD =6,则四边形ABCD 的周长为_______.三、解答题(共66分)19.(10分)如图,一次函数y=kx+b (k≠0)与反比例函数y=m x(m≠0)的图象有公共点A (1,a )、D (﹣2,﹣1).直线l 与x 轴垂直于点N (3,0),与一次函数和反比例函数的图象分别交于点B 、C .(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x 在什么范围内,一次函数的值大于反比例函数的值;(3)求△ABC 的面积.20.(6分)如图,已知直线y=kx+b与反比例函数y=mx(x>0)的图象交于A(1,4)、B(4,1)两点,与x轴交于C点.(1)求一次函数与反比例函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比例函数值?(3)点P是y=mx(x>0)图象上的一个动点,作PQ⊥x轴于Q点,连接PC,当S△CPQ=12S△CAO时,求点P的坐标.21.(6分)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B(4,3),C(0,3).动点P从点O出发,以每秒32个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒1个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=10时,求t的值;(3)连接OB交PQ于点D,若双曲线ykx(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.22.(8分)某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条平均每条鱼的质量/kg第1次捕捞20 1.6第2次捕捞 15 2.0 第3次捕捞 15 1.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y (元)与出售该种鱼的质量x (kg )之间的函数关系,并估计自变量x 的取值范围.23.(8分)如图,在平面直角坐标系xOy 中,函数y x b =+的图象与函数k y x=(0x >)的图象相交于点(1,6)A ,并与x 轴交于点B .点C 是线段AB 上一点,OBC ∆与OBA ∆的面积比为2:1.(1)k = ,b = ;(2)求点C 的坐标;(1)若将OBC ∆绕点O 顺时针旋转,得到''OB C ∆,其中B 的对应点是'B ,C 的对应点是'C ,当点'C 落在x 轴正半轴上,判断点'B 是否落在函数k y x=(0x >)的图象上,并说明理由.24.(8分)如图,四边形ABCD 内接于⊙O ,∠1至∠6是六个不同位置的圆周角.(1)分别写出与∠1、∠2相等的圆周角,并求∠1+∠2+∠3+∠4的值;(2)若∠1-∠2=∠3-∠4,求证: AC ⊥BD .25.(10分)已知:如图,在平行四边形ABCD 中,过点C 分别作AD 、AB 的垂线,交边AD 、AB 延长线于点E 、F .(1)求证:AD DE AB BF ⋅=⋅;(2)联结AC ,如果CF AC DE CD =,求证:22AC AF BC BF=. 26.(10分)已知:在△ABC 中,点D 、点E 分别在边AB 、AC 上,且DE // BC ,BE 平分∠ABC .(1)求证:BD=DE ;(2)若AB=10,AD=4,求BC 的长.参考答案一、选择题(每小题3分,共30分)1、A【解析】根据同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似即可得. 【详解】如图,由题意可得:11111111.5,2,6,AC B C AC A B C ABC ===∆~∆由相似三角形的性质得:1111AC AC B C BC =,即1.526AC = 解得: 4.5AC =(米)故选:A.【点睛】本题考查了相似三角形的性质,理解题意,将问题转化为利用相似三角形的性质求解是解题关键.2、B【分析】根据已知求出该校考生的优秀率,再根据该校的总人数,即可求出答案.【详解】∵抽取200名考生的数学成绩,其中有60名考生达到优秀, ∴该校考生的优秀率是:60200×100%=30%, ∴该校达到优秀的考生约有:1500×30%=450(名);故选B .【点睛】此题考查了用样本估计总体,关键是根据样本求出优秀率,运用了样本估计总体的思想.3、C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a =->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.4、A【解析】从上面看得到的图形是A 表示的图形,故选A .5、C【解析】根据中心对称图形的概念即可求解.【详解】A 、不是中心对称图形,故此选项错误;B 、不是中心对称图形,故此选项错误;C 、是中心对称图形,故此选项正确;D 、不是中心对称图形,故此选项错误.故选:C .【点睛】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.6、D【解析】∵反比例函数y=k x 的图象经过点(5,-1), ∴k=5×(-1)=-5<0,∴该函数图象在第二、四象限.故选D .7、B【分析】如图(见解析),先根据正五边形的性质得圆心角AOD ∠的度数,再根据圆周角定理即可得.【详解】如图,连接OA 、OE 、OD由正五边形的性质得:1360725AOE DOE ∠=∠=⨯︒=︒ 144AOD AOE DOE ∴∠=∠+∠=︒由圆周角定理得:1722ABD AOD ∠=∠=︒(一条弧所对圆周角等于其所对圆心角的一半) 故选:B.【点睛】本题考查了正五边形的性质、圆周角定理,熟记性质和定理是解题关键.8、B【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.9、B【分析】连结OD ,OA ,设半径为r ,根据垂径定理得4,2AD OD r ==- ,在Rt ADO ∆中,由勾股定理建立方程,解之即可求得答案.【详解】连结OD ,OA ,如图,设半径为r ,∵8AB =,CD AB ⊥,∴4=AD ,点O 、D 、C 三点共线,∵2CD =,∴2OD r =-,在Rt ADO ∆中,∵222AO AD OD =+,,即2224(2)r r =+-,解得=5r ,故选B.【点睛】本题考查勾股定理,关键是利用垂径定理解答.10、B【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC ,∵DC 是⊙O 的切线,C 为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO ,∴∠A=∠ACO ,∴∠A=12∠DOC=25°.故选:B .【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.二、填空题(每小题3分,共24分)11、1【分析】由一元二次方程的解的定义可得m 2-4m-1=1,则m 2-4m=1,再由根于系数的关系可得mn=-1,最后整体代入即可解答.【详解】解:∵m 、n 分别为的一元二次方程2410x x --=∴m+n=4,mn=-1,m 2-4m-1=1,∴m 2-4m=1∴24m m mn -+=1-1=1故答案为1.【点睛】本题考查了一元二次方程的解和根与系数的关系,其中正确运用根与系数的关系是解答本题的关键.1213【分析】连接AD,过M 作MG ⊥AD 于G ,根据正六边形的相关性质,求得AD,MD 的值,再根据∠CDG=60°,求出DG ,MG 的值,最后利用勾股定理求出AM 的值.【详解】解:连接AD,过M 作MG ⊥AD 于G ,则由正六边形可得, AD=2AB=4,∠CDA=60°,又MD=12CD=1, ∴DG=123∴AG=AD-DG=72,∴AM=2234913.44MG AG +=+= 故答案为13.【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,作出辅助线构造直角三角形是解题的关键.13、12. 【详解】试题分析:设方程的另一个根为m ,根据根与系数的关系得到1•m=12,解得m=12. 考点:根与系数的关系.14、-2025【分析】根据一元二次方程根与系数的关系即可得出2m n +=-,2019=-mn ,将其代入33++m n mn 中即可求出结论.【详解】解:m ,n 分别为一元二次方程2220190+-=x x 的两个实数根,2m n ∴+=-,2019=-mn ,则()()3333220192025++=++=⨯--=-m n mn m n mn .故答案为:2025-.【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出2m n +=-,2019=-mn 是解题的关键. 15、8【分析】在Rt △ABC 中,根据坡面AB 的坡比以及BC 的值,求出AC 的值,再通过解直角三角形即可求出斜面AB 的长.【详解】∵Rt △ABC 中,BC=6米,迎水坡AB 的坡比为13∴BC :AC=13∴33,∴2222(43)48AB AC BC=+=+=(米)【点睛】本题考查了解直角三角形的应用----坡度坡角问题,熟练运用勾股定理是解答本题的关键.16、1 7【分析】连接BE,由菱形和折叠的性质,得到AF=EF,∠C=∠A=60°,由cos∠C=12,12CEBC=,得到△BCE是直角三角形,则32BE BC=,则△BEF也是直角三角形,设菱形的边长为m,则EF=m FB-,32BE m=,由勾股定理,求出FB=18m,则78EF m=,即可得到cos∠EFB的值.【详解】解:如图,连接BE,∵四边形ABCD是菱形,∴AB=BC=CD,∠C=∠A=60°,AB∥DC,由折叠的性质,得AF=EF,则EF=AB-FB,∵cos∠C=1 cos602︒=,∵点E是CD的中线,∴12 CEBC=,∴1 cos2CCEBC∠==,∴△BCE是直角三角形,即BE⊥CD,∴BE⊥AB,即△BEF是直角三角形.设BC=m,则BE=sin603BC︒=,在Rt△BEF中,EF=m FB-,由勾股定理,得:222FB BE EF+=,∴2223()()2FB m FB +=-, 解得:18FB m =, 则78EF m =, ∴118cos 778m FB EFB EF m ∠===; 故答案为:17. 【点睛】本题考查了解直角三角形,特殊角的三角函数值,菱形的性质,折叠的性质,以及勾股定理的运用,解题的关键是正确作出辅助线,构造直角三角形,从而利用解直角三角形进行解题.17、22【分析】先计算根号、负指数和sin30°,再运用实数的加减法运算法则计算即可得出答案.【详解】原式=12224222-+⨯=,故答案为22. 【点睛】本题考查的是实数的运算,中考必考题型,需要熟练掌握实数的运算法则.18、1【分析】根据圆外切四边形的对边之和相等求出AD+BC ,根据四边形的周长公式计算即可.【详解】解:∵四边形ABCD 是⊙O 的外切四边形,∴AE=AH ,DH=DG ,CG=CF ,BE=BF ,∵AB=AE+EB=5,CD=DG+CG=6,AH+DH+BF+CF=AE+DG+BE+CG ,即AD+BC=AB+CD=11,∴四边形ABCD 的周长=AD+BC+AB+CD=1,故答案为:1.【点睛】本题考查的是切线长定理,掌握圆外切四边形的对边之和相等是解题的关键.三、解答题(共66分)19、(1)反比例函数的解析式为:y=2x ,一次函数的解析式为:y=x+1;(2)当﹣2<x <0或x >1时,一次函数的值大于反比例函数的值;(3)S △ABC =103. 【解析】试题分析:(1)由反比例函数经过点D (﹣2,﹣1),即可求得反比例函数的解析式;然后求得点A 的坐标,再利用待定系数法求得一次函数的解析式;(2)结合图象求解即可求得x 在什么范围内,一次函数的值大于反比例函数的值;(3)首先过点A 作AE⊥x 轴交x 轴于点E ,由直线l 与x 轴垂直于点N (3,0),可求得点E ,B ,C 的坐标,继而求得答案.试题解析:(1)∵反比例函数经过点D (﹣2,﹣1),∴把点D 代入y=m x (m≠0), ∴﹣1=2m -,∴m=2,∴反比例函数的解析式为:y=2x, ∵点A (1,a )在反比例函数上,∴把A 代入y=2x ,得到a=21=2,∴A(1,2), ∵一次函数经过A (1,2)、D (﹣2,﹣1),∴把A 、D 代入y=kx+b (k≠0),得到:212k b k b =+⎧⎨-=-+⎩ ,解得:11k b =⎧⎨=⎩, ∴一次函数的解析式为:y=x+1;(2)如图:当﹣2<x <0或x >1时,一次函数的值大于反比例函数的值;(3)过点A 作AE⊥x 轴交x 轴于点E ,∵直线l⊥x 轴,N (3,0),∴设B (3,p ),C (3,q ),∵点B 在一次函数上,∴p=3+1=4,∵点C 在反比例函数上,∴q=23, ∴S △ABC =12BC•EN=12×(4﹣23)×(3﹣1)=103.【点睛】本题考查了一次函数与反比例函数的交点问题,掌握待定系数法求函数解析式是解题的关键.20、(1)y=﹣x+1;(2)当1<x<4时,一次函数值大于反比例函数值;(3)1014,75 P⎛⎫ ⎪⎝⎭【分析】(1)根据待定系数法求得即可;(2)由两个函数图象即可得出答案;(3)设P(m,4m),先求得△AOC的面积,即可求得△CPQ的面积,根据面积公式即可得到12|1﹣m|•4m=1,解得即可.【详解】解:(1)把A(1,4)代入y=mx(x>0),得m=1×4=4,∴反比例函数为y=4x;把A(1,4)和B(4,1)代入y=kx+b得4 41 k bk b+=⎧⎨+=⎩,解得:k1 b5=-⎧⎨=⎩,∴一次函数为y=﹣x+1.(2)根据图象得:当1<x<4时,一次函数值大于反比例函数值;(3)设P(m,4m),由一次函数y=﹣x+1可知C(1,0),∴S△CAO=1542⨯⨯=10,∵S△CPQ=12S△CAO,∴S△CPQ=1,∴12|1﹣m|•4m=1,解得m=107或m=﹣103(舍去),∴P (107,145). 【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式,熟练掌握待定系数法求函数解析式是解决问题的关键.21、(1)22520254y t t =-+(0≤t ≤4);(2)t 1=2,t 2=65;(2)经过点D 的双曲线k y x=(k ≠0)的k 值不变,为10825. 【分析】(1)过点P 作PE ⊥BC 于点E ,由点P ,Q 的出发点、速度及方向可找出当运动时间为t 秒时点P ,Q 的坐标,进而可得出PE ,EQ 的长,再利用勾股定理即可求出y 关于t 的函数解析式(由时间=路程÷速度可得出t 的取值范围);(2)将PQ=10代入(1)的结论中可得出关于t 的一元二次方程,解之即可得出结论;(2)连接OB ,交PQ 于点D ,过点D 作DF ⊥OA 于点F ,求得点D 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值,此题得解.【详解】解:(1)过点P 作PE ⊥BC 于点E ,如图1所示.当运动时间为t 秒时(0≤t≤4)时,点P 的坐标为(32t ,0),点Q 的坐标为(4-t ,2), ∴PE=2,EQ=|4-t-32t|=|4-52t|, ∴PQ 2=PE 2+EQ 2=22+|4-52t|2=254t 2-20t+21, ∴y 关于t 的函数解析式及t 的取值范围:y =254t 2−20t+21(0≤t≤4); 故答案为:y =254t 2−20t+21(0≤t≤4). (2)当PQ 10时,254t 2−20t+21=10)2 整理,得1t 2-16t+12=0,解得:t 1=2,t 2=65.(2)经过点D的双曲线y =kx(k≠0)的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=2,BC=4,∴OB22OC BC1.∵BQ∥OP,∴△BDQ∽△ODP,∴2332BD BQ ttOD OP===,∴OD=2.∵CB∥OA,∴∠DOF=∠OBC.在Rt△OBC中,sin∠OBC=35OCOB=,cos∠OBC=BCOB=45,∴OF=OD•cos∠OBC=2×45=125,DF=OD•sin∠OBC=2×35=95,∴点D的坐标为(125,95),∴经过点D的双曲线y=kx(k≠0)的k值为125×95=10825..【点睛】此题考查勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当10时t的值;(2)利用相似三角形的性质及解直角三角形,找出点D的坐标.22、(1)1.78kg;(2)1kg;(3)y=14x,0≤x≤1.【分析】(1)根据平均数的公式求解即可;(2)根据每条鱼的平均质量×总条数=总质量即可得答案;(3)根据收入=单价×质量,列出函数表达式即可.【详解】(1)样本中平均每条鱼的质量为20 1.615 2.015 1.8 1.78201515⨯+⨯+⨯=++(kg ). (2)∵样本中平均每条鱼的质量为1.78kg ,∴估计鱼塘中该种鱼的总质量为1.78×5000=1(kg ).(3)∵每千克的售价为14元,∴所求函数表达式为y =14x ,∵该种鱼的总质量约为1kg ,∴估计自变量x 的取值范围为0≤x≤1.【点睛】本题考查一次函数的应用、用样本估计总体,明确题意,写出相应的函数关系式,利用平均数的知识求出每条鱼的质量是解题关键.23、(1)6,5;(2)(1,4)D -;(1)B ,点'B 不在函数6y x =的图象上. 【分析】(1)将点(1,6)A 分别代入反比例函数与一次函数的表达式中即可求出k,b 的值;(2)先求出B 的坐标,然后求出AOB S,进而求出OBC S ,得出C 的纵坐标,然后代入到一次函数的表达式中即可求出横坐标;(1)先根据题意画出图形,利用旋转的性质和''10OBC OB C S S ==,求出'B 的纵坐标,根据勾股定理求出横坐标,然后判断横纵坐标之积是否为6,若是,说明在反比例函数图象上,反之则不在.【详解】(1)将点(1,6)A 代入反比例函数k y x =中得61k = , ∴6k = ∴反比例函数的表达式为6y x= 将点(1,6)A 代入一次函数y x b =+中得16b += ,∴5b =∴一次函数的表达式为5y x =+(2)当0y =时,50x += ,解得5x =-(5,0)B ∴-5OB ∴=156152AOB S ∴=⨯⨯= ∵OBC ∆与OBA ∆的面积比为2:1.10OBC S ∴= 设点C 的坐标为(,)c c x y1102OBC c S OB y == 4c y ∴=当4c y =时,45c x =+,解得1c x =-∴(1,4)C - (1)如图,过点'B 作''B D OC ⊥ 于点D∵OBC ∆绕点O 顺时针旋转,得到''OB C ∆''10OBC OB C S S ∴==22'(1)4=17OC OC ==-+''1''102OB C S OC B D ∴== 17'17B D ∴=5OB ='5OB ∴=22517''OD OB B D ∴=-= ∴5172017'(B517617⨯≠ ∴点'B 不在函数6y x=的图象上. 【点睛】本题主要考查反比例函数,一次函数与几何综合,掌握反比例函数的图象和性质,待定系数法是解题的关键.24、(1)∠6=∠1,∠5=∠2,1°;(2)详见解析【分析】(1)根据圆的性质可得出与∠1、∠2相等的圆周角,然后计算∠1+∠2+∠3+∠4可得;(2)先得出∠1+∠4=90°,从而得出∠6+∠4=90°,从而证垂直.【详解】(1)∵∠1和∠6所对应的圆弧相同,∴∠1=∠6同理,∠2=∠∠5∵∠1=∠6,∠2=∠5∴∠1+∠2+∠3+∠4=∠6+∠5+∠3+∠4=1°;(2)∵∠1-∠2=∠3-∠4∴∠1+∠4=∠2+∠3∵∠1+∠2+∠3+∠4=1°∴∠1+∠4=∠2+∠3=90°∵∠1=∠6∴∠6+∠4=90°∴AC ⊥BD .【点睛】本题考查圆周角的特点,同弧或等弧所对应的圆周角相等,解题关键是得出∠1+∠2+∠3+∠4=1.25、(1)见解析;(2)见解析【分析】(1)证明四边形ABCD 是平行四边形即可解决问题. (2)由ACF CDE ∆∆∽,CDE CBF ∆∆∽,推出ACF CBF ∆∆∽,可得22ACF CBF S AC S BC ∆∆=,又ACF ∆与CBF ∆等高,推出ACF CBF S AF S BF ∆∆=,可得结论22AC AF BC BF=. 【详解】解:(1)四边形ABCD 是平行四边形,//CD AB ∴,//AD BC ,CDE DAB ∴∠=∠,CBF DAB ∠=∠,CDE CBF ∴∠=∠,CE AE ⊥,CF AF ⊥,90CED CFB ∴∠=∠=︒,CDE CBF ∴∆∆∽, ∴BC CD BF DE=, 四边形ABCD 是平行四边形,BC AD ∴=,CD AB =,∴AD AB BF DE=, ··AD DE AB BF ∴=.(2)如图:CF AC DE CD=,90CED CFB ∠=∠=︒, ACF CDE ∴∆∆∽,又CDE CBF ∆∆∽, ACF CBF ∴∆∆∽,∴22ACF CBF S AC S BC∆∆=, 又∵1212ACFCBF AF CF S AF S BF BF CF ∆∆==, ∴22AC AF BC BF=. 【点睛】本题考查了相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.26、(1)见解析;(2)15【分析】(1)利用平行线性质及角平分线线定理得到∠DEB=∠DBE,再利用等腰三角形判定得到BD=DE ,即得到答案.(2)利用相似的判定得到△ADE∽△ABC,再利用相似的性质得到AD DEAB BC=,代入值即可得到答案.【详解】(1)证明:∵DE // BC,∴∠DEB=∠EBC∵ BE平分∠ABC∴∠DBE=∠EBC∴∠DEB=∠DBE∴BD=DE(2) 解:∵AB=10,AD=4∴BD=DE=6∵DE // BC∴△ADE∽△ABC∴AD DE AB BC=∴46 10BC=∴BC=15【点睛】本题考查平行线性质、等腰三角形的判定以及相似三角形的判定、性质,解题的关键是熟练掌握基本知识,属于中考常考题型.。
2021-2022学年湖南省长沙市岳麓区麓山国际实验学校九年级第一学期第一次月考数学试卷一、选择题(共有10小题,每小题3分,共30分.)1.随着人们健康生活理念的提高,环保意识也不断增强,以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.2.要使有意义,则实数x的取值范围是()A.x≥2B.x>0C.x≥﹣2D.x>23.2022年北京冬奥会会将于2022年在北京举行,届时将需要200000名城市志愿者和50000名赛会志愿者,数250000用科学记数法表示为()A.2.5×104B.25×104C.0.25×106D.2.5×1054.⊙O的半径为4cm,点P到圆心O的距离为5cm,点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定5.绍兴是著名的桥乡,如图,圆拱桥的拱顶到水面的距离CD=8m,桥拱半径OC=5m,则水面宽AB=()A.4 m B.5 m C.6 m D.8 m6.如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为()A.27°B.108°C.116°D.128°7.如图,在△ABC中,∠BAC=138°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'刚好落在BC边上,且AB'=CB',则∠C的度数为()A.13°B.14°C.15°D.16°8.如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是()A.15°B.22.5°C.30°D.45°9.下列命题:①平⾏四边形是中⾏对称图形,也是轴对称图形;②直径是最长的弦,半径是最短的弦;③过切点的直线是圆的切线;④三角形的外⾏是三条边垂直平分线的交点;⑤三角形的内⾏是三条内角平分线的交点,其中正确的有()A.1个B.2个C.3个D.4个10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18°B.36°C.41°D.58°二、填空题(本大题共有6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.若点P(m,﹣m+3)关于原点的对称点Q在第三象限,那么m的取值范围是.12.如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,以点C为圆心r为半径作圆,如果⊙C与AB相切,则半径r的值是.13.已知:如图,⊙O是△ABC的内切圆,分别切BC、AB、AC于点D、E、F,△ABC的周长为24cm,BC=10cm,则AE=cm.14.如图,A、B、C、D为一个正多边形的相邻四个顶点,O为正多边形的中心,若∠ADB =12°,则这个正多边形的边数为.15.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,BC=,将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△AB′C′,并使点C′落在AB边上,则点B所经过的路径长为.(结果保留π)16.如图,点O是三角形ABC内的一点,OA=OB=OC=4,∠BAC=45°,已知S△AOC﹣S△AOB=2,则∠BOC=,S△ABC=.三、解答题(本大题共有9小题,共72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:(﹣)﹣2﹣|﹣1|+(π﹣1)0+3.18.先化简,再求值:(2a﹣1)2+6a(a+1)﹣(3a+2)(3a﹣2),其中a2+2a﹣2021=0.19.解不等式组:.20.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标:;(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.21.如图,AB是⊙O的直径,D为⊙O上一点,E为的中点,点C在BA的延长线上,且∠CDA=∠B.(1)求证:CD是⊙O的切线;(2)若DE=2,∠BDE=30°,求CD的长.22.如图,△ABC是等腰三角形,其中AB=BC,将△ABC绕顶点B逆时针旋转50°到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别相交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=50°时,判断四边形A1BCE的形状并说明理由.23.某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF 围成圆锥时,AE,AF恰好重合.(1)求这种加工材料的顶角∠BAC的大小.(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)24.在一次数学探究活动中,李老师设计了一份活动单:已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(Ⅰ)这样的点A唯一吗?(Ⅱ)点A的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),…,小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为;②△ABC面积的最大值为;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠BA′C>30°.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=.①求线段PB长的最小值;②若S△PCD=S△PAD,求线段的PD长.25.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式;(2)如图1,直线y=kx+1(k<0)与抛物线交于P,Q两点,交抛物线的对称轴于点T,若△QMT的面积是△PMT面积的两倍,求k的值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.参考答案一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.随着人们健康生活理念的提高,环保意识也不断增强,以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.【分析】一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.解:选项A、C、D不能找到这样的一个点,使这些图形绕某一点旋转180°后与原来的图形重合,所以它们不是中心对称图形;选项B能找到这样的一个点,使这个图形绕某一点旋转180°后与原来的图形重合,所以它是中心对称图形;故选:B.2.要使有意义,则实数x的取值范围是()A.x≥2B.x>0C.x≥﹣2D.x>2【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.解:由题意得,x﹣2>0,解得,x>2,故选:D.3.2022年北京冬奥会会将于2022年在北京举行,届时将需要200000名城市志愿者和50000名赛会志愿者,数250000用科学记数法表示为()A.2.5×104B.25×104C.0.25×106D.2.5×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:250000=2.5×105.故选:D.4.⊙O的半径为4cm,点P到圆心O的距离为5cm,点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).解:∵OP=5>4,∴点P与⊙O的位置关系是点在圆外.故选:C.5.绍兴是著名的桥乡,如图,圆拱桥的拱顶到水面的距离CD=8m,桥拱半径OC=5m,则水面宽AB=()A.4 m B.5 m C.6 m D.8 m【分析】连接OA,根据勾股定理求出AD的长,根据垂径定理计算即可.解:连接OA,∵CD=8m,OC=5m,∴OD=3m,∴AD==4m,由垂径定理得,AB=2AD=8m,故选:D.6.如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为()A.27°B.108°C.116°D.128°【分析】直接由圆周角定理求解即可.解:∵∠A=54°,∴∠BOC=2∠A=108°,故选:B.7.如图,在△ABC中,∠BAC=138°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'刚好落在BC边上,且AB'=CB',则∠C的度数为()A.13°B.14°C.15°D.16°【分析】由AB'=CB',得∠C=∠CAB',根据外角性质可证∠AB'B=2∠C,由旋转的性质可知AB=AB',则∠AB'B=∠B=2∠C,根据三角形内角和为180°得∠B+∠C+∠CAB =180°即可解答.解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣138°,∴∠C=14°,故选:B.8.如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是()A.15°B.22.5°C.30°D.45°【分析】连接OB,根据直角三角形的边角关系可求出∠BOC=30°,进而求出∠BOD =60°最后再由圆周角定理得出答案.解:如图,连接OB,∵A(2,0),D(4,0),矩形OABC,∴OA=2,OD=4=OB,∴sin∠OBA==,∴∠OBA=30°,∴∠BOD=90°﹣30°=60°,∴∠BED=∠BOD=×60°=30°,故选:C.9.下列命题:①平⾏四边形是中⾏对称图形,也是轴对称图形;②直径是最长的弦,半径是最短的弦;③过切点的直线是圆的切线;④三角形的外⾏是三条边垂直平分线的交点;⑤三角形的内⾏是三条内角平分线的交点,其中正确的有()A.1个B.2个C.3个D.4个【分析】利用平行四边形的对称性、圆的有关定义、切线的判定及三角形的内心和外心的性质分别判断后即可确定正确的选项.解:①平⾏四边形是中⾏对称图形,但不是轴对称图形,故原命题错误,不符合题意;②直径是最长的弦,但半径不一定是最短的弦,故原命题错误,不符合题意;③过切点且垂直于半径的直线是圆的切线,故原命题错误,不符合题意;④三角形的外⾏是三条边垂直平分线的交点,正确,符合题意;⑤三角形的内⾏是三条内角平分线的交点,正确,符合题意,故选:B.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18°B.36°C.41°D.58°【分析】根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.解:由题意可知函数图象为开口向上的抛物线,由图表数据描点连线,补全图可得如图,∴抛物线对称轴在36和54之间,约为41℃,∴旋钮的旋转角度x在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C.二、填空题(本大题共有6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.若点P(m,﹣m+3)关于原点的对称点Q在第三象限,那么m的取值范围是0<m <3.【分析】根据关于原点对称的点的坐标特点得到点Q的坐标,根据点Q在第三象限列出不等式组,解不等式组得到答案.解:点P(m,﹣m+3)关于原点的对称点Q(﹣m,m﹣3),∵点Q在第三象限,∴﹣m<0,m﹣3<0,解得0<m<3.故答案为:0<m<3.12.如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,以点C为圆心r为半径作圆,如果⊙C与AB相切,则半径r的值是.【分析】过点C作CD⊥AB于D,根据勾股定理求出BC,根据三角形的面积公式求出CD,根据直线与圆的位置关系求出r.解:过点C作CD⊥AB于D,在Rt△ABC中,∠C=90°,AB=13,AC=5,由勾股定理得:BC===12,S△ABC=×BC×AC=×AB×CD,∴×12×5=×13×CD,解得:CD=,当⊙C与AB相切时,半径r的值是,故答案为:.13.已知:如图,⊙O是△ABC的内切圆,分别切BC、AB、AC于点D、E、F,△ABC的周长为24cm,BC=10cm,则AE=2cm.【分析】由切线长定理,可知:AE=AF,CD=CF,BE=BD,设AF=AE=x;BD=BE =y;CF=CD=z,利用已知数据建立方程组即可求出AE的长.解:∵⊙O是△ABC的内切圆,分别切BC、AB、AC于点D、E、F,设AF=AE=x;BD=BE=y;CF=CD=z,根据题意得:,解得x=2,∴AE=2.14.如图,A、B、C、D为一个正多边形的相邻四个顶点,O为正多边形的中心,若∠ADB =12°,则这个正多边形的边数为15.【分析】根据圆周角定理可得正多边形的边AB所对的圆心角∠AOB=24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案.解:如图,设正多边形的外接圆为⊙O,连接OA,OB,∵∠ADB=12°,∴∠AOB=2∠ADB=24°,而360°÷24°=15,∴这个正多边形为正十五边形,故答案为:15.15.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,BC=,将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△AB′C′,并使点C′落在AB边上,则点B所经过的路径长为π.(结果保留π)【分析】由直角三角形的性质可求∠BAC=60°,AB=3,由旋转的性质可求∠BAB'=∠BAC=60°,由弧长公式可求解.解:在Rt△ABC中,∠C=90°,∠ABC=30°,BC=,∴∠BAC=60°,cos∠ABC=,∴AB=2,∵将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△AB′C′,∴∠BAB'=∠BAC=60°,∴点B所经过的路径长==π,故答案为:π.16.如图,点O是三角形ABC内的一点,OA=OB=OC=4,∠BAC=45°,已知S△AOC﹣S△AOB=2,则∠BOC=90°,S△ABC=8+2.【分析】由OA=OB=OC=4可得△ABC是以O为圆心,半径为4的内接三角形,所以∠BOC=2∠BAC=90°,延长AO交BC于点E,作BM⊥AE,CN⊥AE,证明△BOM≌△CON,由S△AOC﹣S△AOB =2及BM2+CN2=16可得BM及CN长度,进而求解.解:∵OA=OB=OC=4,∴△ABC是以O为圆心,半径为4的内接三角形,延长AO交BC于点E,作BM⊥AE,CN⊥AE,∵∠BAC=45°,∴∠BOC=2∠BAC=90°,∴BC=OB=4,∵S△AOC﹣S△AOB=2,∴AO•CN﹣AO•BM=2(CN﹣BM)=2,∴CN﹣BM=1.∵∠BOM+∠CON=90°,∠BOM+∠OBM=90°,∴∠CON=∠OBM,又∵∠BMO=∠CNO=90°,OB=OC,在△BOM和△CON中,∴△BOM≌△CON(AAS),∴OM=CN,在Rt△BOM和Rt△CON中,由勾股定理得:BM2+OM2=ON2+CN2=16,即BM2+CN2=16,联立方程,解得BM=或BM=(舍).∴CN=BM+1=.∴S△AOC+S△AOB=AO•CN+AO•BM=2(CN+BM)=2.∵S△BOC=OB•OC=8,∴S△ABC=S△AOC+S△AOB+S△BOC=8+2.故答案为:90°,8+2.三、解答题(本大题共有9小题,共72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:(﹣)﹣2﹣|﹣1|+(π﹣1)0+3.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及二次根式性质计算即可求出值.解:原式=4﹣(﹣1)+1+3×=4﹣+1+1+=6.18.先化简,再求值:(2a﹣1)2+6a(a+1)﹣(3a+2)(3a﹣2),其中a2+2a﹣2021=0.【分析】直接利用乘法公式以及整式的混合运算法则化简,再利用已知变形代入即可.解:原式=4a2﹣4a+1+6a2+6a﹣9a2+4=a2+2a+5,∵a2+2a﹣2021=0,∴a2+2a=2021,∴原式=2021+5=2026.19.解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x﹣1≥x+2,得:x≥1.5,解不等式x+4<4x﹣2,得:x>2,则不等式组的解集为x>2.20.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标:(4,﹣1);(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.解:(1)点B关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);(2)如图所示,△A1B1C1即为所求.(3)如图所示,△A2B2C2即为所求.21.如图,AB是⊙O的直径,D为⊙O上一点,E为的中点,点C在BA的延长线上,且∠CDA=∠B.(1)求证:CD是⊙O的切线;(2)若DE=2,∠BDE=30°,求CD的长.【分析】(1)连结OD,利用已知条件证明OD⊥CD即可求证CD是⊙O的切线;(2)连结OE,根据∠BDE=30°,E为的中点即可求出∠BOD度数以及求证三角形EOD为等边三角形,进而求出∠DOC度数,再利用tan∠DOC的值即可求出CD的长.【解答】(1)证明:连结OD,如图所示:∵AB是直径,∴∠BDA=90°,∴∠BDO+∠ADO=90°,又∵OB=OD,∠CDA=∠B,∴∠B=∠BDO=∠CDA,∴∠CDA+∠ADO=90°,∴OD⊥CD,且OD为⊙O半径,∴CD是⊙O的切线;(2)解:连结OE,如图所示:∵∠BDE=30°,∴∠BOE=2∠BDE=60°,又∵E为的中点,∴∠EOD=60°,∴△EOD为等边三角形,∴ED=EO=OD=2,又∵∠BOD=∠BOE+∠EOD=120°,∴∠DOC=180°﹣∠BOD=180°﹣120°=60°,在Rt△DOC中,∠DOC=60°,OD=2,∴tan∠DOC=tan60°===,∴CD=2.22.如图,△ABC是等腰三角形,其中AB=BC,将△ABC绕顶点B逆时针旋转50°到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别相交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=50°时,判断四边形A1BCE的形状并说明理由.【分析】(1)由等腰三角形的性质得出∠A=∠C,由旋转的性质得出∠A=∠A1=∠C,∠A1BD=∠CBC1,则可得出答案;(2)证明A1E∥BC,A1B∥EC,得出四边形A1BCE是平行四边形,由菱形的判定方法可得出结论.【解答】(1)证明:∵AB=BC,∴∠A=∠C,∵△A1BC1是由△ABC绕顶点B逆时针旋转而得,∴∠A=∠A1=∠C,∠A1BD=∠CBC1,AB=A1B,在△BCF和△BA1D中,,∴△BCF≌△BA1D(ASA);(2)解:四边形A1BCE是菱形.∵△ABC是等腰三角形,∠C=50°,∴∠A=∠C1=∠C=50°,又∵△BCF≌△BA1D,∴∠CBF=∠A1BD=50°,∴∠C1=∠CBF,∠A=∠A1BD,∴A1E∥BC,A1B∥EC,即四边形A1BCE是平行四边形,又∵A1B=BC,∴四边形A1BCE是菱形.23.某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF 围成圆锥时,AE,AF恰好重合.(1)求这种加工材料的顶角∠BAC的大小.(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)【分析】(1)设∠BAC=n°.根据弧EF的两种求法,构建方程,可得结论.(2)根据S阴=•BC•AD﹣S扇形AEF求解即可.解:(1)设∠BAC=n°.由题意得π•DE=,AD=2DE,∴n=90,∴∠BAC=90°.(2)∵AD=2DE=10(cm),∴S阴=•BC•AD﹣S扇形AEF=×10×20﹣=(100﹣25π)cm2.24.在一次数学探究活动中,李老师设计了一份活动单:已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(Ⅰ)这样的点A唯一吗?(Ⅱ)点A的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),…,小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为2;②△ABC面积的最大值为+2;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠BA′C>30°.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=.①求线段PB长的最小值;②若S△PCD=S△PAD,求线段的PD长.【分析】(1)①设O为圆心,连接BO,CO,根据圆周角定理得到∠BOC=60°,证明△OBC是等边三角形,可得半径;②过点O作BC的垂线,垂足为E,延长EO,交圆于D,以BC为底,则当A与D重合时,△ABC的面积最大,求出OE,根据三角形面积公式计算即可;(2)延长BA′,交圆于点D,连接CD,利用三角形外角的性质和圆周角定理证明即可;(3)①根据,连接PD,设点Q为PD中点,以点Q为圆心,PD为半径画圆,可得点P 在优弧CPD上,连接BQ,与圆Q交于P′,可得BP′即为BP的最小值,再计算出BQ 和圆Q的半径,相减即可得到BP′;②根据AD,CD和S△PCD=S△PAD推出,可得点P在∠ADC的平分线上,从而找到点P的位置,过点C作CF⊥PD,垂足为F,解直角三角形即可求出DP.【解答】(1)解:①设O为圆心,连接BO,CO,∵∠BCA=30°,∴∠BOC=60°,又OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=2,即半径为2,故答案为:2;②∵△ABC以BC为底边,BC=2,∴当点A到BC的距离最大时,△ABC的面积最大,如图,过点O作BC的垂线,垂足为E,延长EO,交圆于D,以BC为底,则当A与D 重合时,△ABC的面积最大,∴BE=CE=1,DO=BO=2,∴OE==,∴DE=+2,∴△ABC的最大面积为×2×(+2)=+2,故答案为:+2;(2)证明:如图,延长BA′,交圆于点D,连接CD,∵点D在圆上,∴∠BDC=∠BAC,∵∠BA′C=∠BDC+∠A′CD,∴∠BA′C>∠BDC,∴∠BA′C>∠BAC,即∠BA′C>30°;(3)解:①如图,当点P在BC上,且PC=时,∵∠PCD=90°,AB=CD=2,AD=BC=3,∴tan∠DPC==,为定值,连接PD,设点Q为PD中点,以点Q为圆心,PD为半径画圆,∴当点P在优弧CPD上时,tan∠DPC=,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE⊥BE,垂足为E,∵点Q是PD中点,∴点E为PC中点,即QE=CD=1,PE=CE=PC=,∴BE=BC﹣CE=3﹣=,∴BQ==,∵PD==,∴圆Q的半径为×=,∴BP′=BQ﹣P′Q=﹣=,即BP的最小值为;②∵AD=3,CD=2,S△PCD=S△PAD,∴,∴△PAD中AD边上的高=△PCD中CD边上的高,即点P到AD的距离和点P到CD的距离相等,∴点P在∠ADC的平分线上,如图,过点C作CF⊥PD,垂足为F,∵PD平分∠ADC,∴∠ADP=∠CDP=45°,∴△CDF为等腰直角三角形,又CD=2,∴CF=DF=,∵tan∠DPC==,∴PF=,∴PD=DF+PF=+=.25.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式;(2)如图1,直线y=kx+1(k<0)与抛物线交于P,Q两点,交抛物线的对称轴于点T,若△QMT的面积是△PMT面积的两倍,求k的值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【分析】(1)运用待定系数法即可求出抛物线解析式;(2)设P(x1,y1),Q(x2,y2),令y=kx+1=﹣x2+2x+3,求得x1+x2=2﹣k,x1x2=﹣2①,再根据△QMT的面积是△PMT面积的两倍,求得x2=3﹣2x1②,将②代入①求得:x1=2或,再代入①,结合k>0,即可求得k;(3)如图,连接BE,设D(t,﹣t2+2t+3),且t>3,可得DF=t2﹣2t﹣3,BF=t﹣3,AF=t+1,运用圆内接四边形的性质可得∠DAF=∠BEF,进而证明△AFD∽△EFB,利用,即可求得答案.解:(1)根据表格可得出A(﹣1,0),B(3,0),C(0,3),设抛物线解析式为y=a(x+1)(x﹣3),将C(0,3)代入,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,∴该抛物线解析式为y=﹣x2+2x+3;(2)设P(x1,y1),Q(x2,y2),令y=kx+1=﹣x2+2x+3,整理得:x2+(k﹣2)x﹣2=0,∴x1+x2=2﹣k,x1x2=﹣2①,∵△QMT的面积是△PMT面积的两倍,∴MT•(x2﹣1)=2×MT•(1﹣x1),∴2x1+x2=3,即x2=3﹣2x1②,将②代入①得:2x12﹣3x1﹣2=0,解得:x1=2或,∴或,∴k=1或,∵k>0,∴k=1;(3)线段EF的长为定值1,如图,连接BE,设D(t,﹣t2+2t+3),且t>3,∵EF⊥x轴,∴DF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,∵F(t,0),∴BF=OF﹣OB=t﹣3,AF=t﹣(﹣1)=t+1,∵四边形ABED是圆内接四边形,∴∠DAF+∠BED=180°,∵∠BEF+∠BED=180°,∴∠DAF=∠BEF,∵∠AFD=∠EFB=90°,∴△AFD∽△EFB,∴,∴,∴EF===1,∴线段EF的长为定值1.。
2020-2021学年湖南省长沙市岳麓区麓山国际实验学校九年级(下)入学数学试卷1. 在实数35,0,√5,−π,911,√83中,无理数有( )个. A. 4 B. 3 C. 2 D. 12. 下列计算,正确的是( )A. a 5+a 5=a 10B. a 3÷a −1=a 2C. a ⋅2a 2=2a 4D. (−a 2)3=−a 63. 如图所示,在数轴上表示实数√8的点可能是( )A. 点MB. 点NC. 点PD. 点Q4. 北京间为5月27日,蛟龙号载人潜水器在太平洋玛利亚纳海作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表示为( )A. 65×102B. 6.5×102C. 6.5×103D. 6.5×1045. 已知关于x 的一次函数y =(2−m)x +2的图象如图所示,则实数m 的取值范围为( )A. m >2B. m <2C. m >0D. m <06. 分式方程1x =2x−2的解为( ) A. x =2 B. x =−2 C. x =−23 D. x =23 7. 若一个多边形的内角和是其外角和的4倍,则这个多边形的边数( )A. 7B. 8C. 9D. 108. 由四个相同的小正方体组成的立体图形,它的三视图如下图所示,则这个立体图形可能是( )A. B. C. D.9.一副学生用的三角板如图放置,则∠AOD的度数为()A. 75°B. 100°C. 105°D. 120°10.在平面直角坐标系中,将点A(−1,−2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A. (−3,−2)B. (2,2)C. (−2,2)D. (2,−2)11.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. √15B. 2√5C. 2√15D. 812.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和B,与y轴的正半轴交于点C.下列结论:①abc>0;②4a−2b+c>0;③2a−b>0;④3a+c<0,其中正确结论的个数为()A. 1个B. 2个C. 3个D. 4个13.因式分解:3a2−12a+12=______.14.如图,已知点P(1,2)在反比例函数y=k的图象上,观察图象x可知,当x>1时,y的取值范围是______ .15.在正方形网格中,△ABC的位置如图所示,则sin B的值为______.16.如图,在Rt△ABC中,AB=AC=8,点E,F分别是AB,AC的中点,点P是扇形AEF的弧EF上任意一点,连接BP,CP,则12BP+CP的最小值是______ .17.计算:|√3−2|+sin60°−√27+2−2.18.先化简,再求值:4(x−1)2−(2x+3)(2x−3),其中x=−1.19.求关于x的不等式组{x−12+2>x2(x−2)≤3x−5的所有整数解之和.20.某校创建“环保示范学校”,为了解全校学生参加环保类杜团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称A.酵素制作社团B.回收材料小制作社团C.垃圾分类社团D.环保义工社团E.绿植养护社团人数10155105(1)填空:在统计表中,这5个数的中位数是______;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG//EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.22.2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?哪种进货方案的费用最低?最低费用为多少元?23.如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB⋅PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是AB⏜的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.24.已知y是关于x的函数,若其函数图象经过点P(t,t),则称点P为函数图象上的“麓点”,例如:y=3x−2上存在“麓点”P(1,1).(1)直线______ (填写直线解析式)上的每一个点都是“麓点”;双曲线y=1x上的“麓点”是______ ;(2)若抛物线y=−12x2+(23a+1)x−29a2−a+1上有“麓点”,且“麓点”为A(x1,y1)和B(x2,y2),求W=x12+x22的最小值;(3)若函数y=14x2+(n−k+1)x+m+k−1的图象上存在唯一的一个“麓点”,且当−2≤n≤1时,m的最小值为k,求k的值.25.如图1,在平面直角坐标系中,直线y=x−1与抛物线y=−x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.答案和解析1.【答案】C3=2,【解析】解:√8无理数有:√5,−π,共2个.故选:C.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了算术平方根、立方根以及无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】D【解析】解:a5+a5=2a5,A错误;a3÷a−1=a3−(−1)=a4,B错误;a⋅2a2=2a3,C错误;(−a2)3=−a6,D正确,故选:D.根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.【答案】B【解析】解:∵4<8<9,∴2<√8<3,故选:B.估算出√8的范围,结合数轴即可得到答案.本题考查了无理数的估算,无理数的估算常用夹逼法,估算出√8的范围是解题的关键.4.【答案】C【解析】解:数6500用科学记数法表示为6.5×103.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】B【解析】解:由题意:2−m>0,∴m<2.故选:B.观察图象可知k>0,构建不等式即可解决问题.本题考查一次函数图象与系数的关系,解题的关键是熟练掌握基本知识,学会用转化的思想解决问题,属于中考常考题型.6.【答案】B【解析】解:去分母得:2x=x−2,解得:x=−2,经检验x=−2是分式方程的解,则分式方程的解为x=−2,故选:B.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了分式方程的解,解分式方程利用了转化的思想,还有注意不要忘了检验.7.【答案】D【解析】解:设这个多边形的边数为n,则该多边形的内角和为(n−2)×180°,依题意得:(n−2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:D.设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n 的一元一次方程,解方程即可得出结论.本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n−2)×180°=360°×4.8.【答案】A【解析】解:由三视图可得:这个立体图形可能是,故选:A.从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,进而解答即可.此题主要考查了三视图,关键是把握好三视图所看的方向.9.【答案】C【解析】解:由题可得,∠ACB=45°,∠DBC=30°,∴△BCO中,∠BOC=180°−45°−30°=105°,∴∠AOD=∠BOC=105°,故选:C.依据三角形内角和定理,即可得到∠BOC=105°,再根据对顶角相等,即可得出∠AOD的度数.本题考查了三角形的内角和定理以及对顶角的性质,利用三角形内角和为180°是关键.10.【答案】B【解析】解:点A(−1,−2)向右平移3个单位长度得到的B的坐标为(−1+3,−2),即(2,−2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.此题主要考查了坐标与图形变化−平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.11.【答案】C【解析】【分析】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA−AP=2,接着在Rt△OPH中根据含30度OP=1,然后在Rt△OHC中利用勾股定理计算出的直角三角形的性质计算出OH=12CH=√15,所以CD=2CH=2√15.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA−AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=√OC2−OH2=√15,∴CD=2CH=2√15.故选C.12.【答案】C【解析】解:①∵由抛物线的开口向下,∴a<0,∵对称轴位于y轴的左侧,∴a、b同号,即ab>0.∴b<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,∴①正确;②如图,当x=−2时,y=4a−2b+c>0,∴②正确;③对称轴为x=−b2a >−1,即b2a<1,∵a<0,∴b>2a,即2a−b<0,∴③错误;④当x=1时,y=a+b+c=0,又∵b>2a,∴a+b+c=0>a+2a+c=3a+c,即3a+c<0.∴④正确.综上所述,正确的结论有①②④共3个,故选:C.根据抛物线的开口方向,对称轴,顶点坐标以及过特殊点,结合不等式的性质逐个进行判断即可.本题考查二次函数的图形和性质,掌握抛物线的开口方向、对称轴、顶点坐标以及过特殊点是系数a、b、c所满足的关系是正确判断的前提.13.【答案】3(a−2)2【解析】解:3a2−12a+12=3(a2−4a+4)=3(a−2)2.故答案是:3(a−2)2.直接提取公因式3,再利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.【答案】0<y<2【解析】解:由P点坐标可知,当x>1时,y的取值范围是0<y<2.故答案为0<y<2.由反比例函数的图象的性质,可直接解答.本题考查了反比例函数的图象,利用数形结合思想是解题的关键.15.【答案】√22【解析】解:作AE⊥BC于E.在Rt△ABE中,∵AE=BE=4,∠AEB=90°,∴∠ABE=∠BAE=45°,∴sinB=sin45°=√22,故答案为√22.作AE⊥BC于E.利用等腰直角三角形的性质解决问题即可.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直径三角形解决问题.16.【答案】2√17【解析】解:在AB上取一点T,使得AT=2,连接PT,PA,CT,∵PA=4.AT=2,AB=8,∴PA2=AT⋅AB,∴PAAT =ABPA,∵∠PAT=∠PAB,∴△PAT∽△BAP,∴PTPB =APAB=12,∴PT=12PB,∴12PB+CP=CP+PT,∵PC+PT≥TC,在Rt△ACT中,∵∠CAT=90°,AT=2,AC=8,∴CT=√AT2+AC2=2√17,∴12PB+PC≥2√17,∴12PB+PC的最小值为2√17,故答案为:2√17.在AB上取一点T,使得AT=2,连接PT,PA,CT,构造出△PAT∽△BAP,从而有12PB+CP=CP+PT,即三点共线时和最小,求CT的值即可.本题主要考查了三角形相似的判定与性质、线段和最小等知识,构造出相似三角形将12BP转化为PT是解决问题的关键.17.【答案】解:原式=2−√3+√32−3√3+14=−72√3+94.【解析】直接利用负整数指数幂的性质以及二次根式、特殊角的三角函数值、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:原式=4(x2−2x+1)−(4x2−9)=4x2−8x+4−4x2+9=−8x+13,当x=−1时,原式=8+13=21.【解析】此题考查了整式的混合运算−化简求值,涉及的知识有:平方差公式、完全平方公式、去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键.先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,再将x 的值代入计算可得.19.【答案】解:{x−12+2>x①2(x−2)≤3x−5②,解不等式①得,x<3,解不等式②得,x≥1,所以,不等式组的解集是1≤x<3,所以,不等式组的整数解有1、2,它们的和为1+2=3.【解析】分别解出两不等式的解集,再求其公共解,然后求得整数解即可.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).20.【答案】解:(1)10;(2)没有选择的占1−10%−30%−20%−10%−20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=1.4【解析】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1−10%−30%−20%−10%−20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=1.4此题考查了扇形统计图,条形统计图,列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;21.【答案】解:(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,∴AE=OE=1AD,2∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE//FG ,∵OG//EF ,∴四边形OEFG 是平行四边形,∵EF ⊥AB ,∴∠EFG =90°,∴四边形OEFG 是矩形;(2)∵四边形ABCD 是菱形,∴BD ⊥AC ,AB =AD =10,∴∠AOD =90°,∵E 是AD 的中点,∴OE =AE =12AD =5; 由(1)知,四边形OEFG 是矩形,∴FG =OE =5,∵AE =5,EF =4,∴AF =√AE 2−EF 2=3,∴BG =AB −AF −FG =10−3−5=2.【解析】(1)根据菱形的性质得到BD ⊥AC ,∠DAO =∠BAO ,得到AE =OE =12AD ,推出OE//FG ,求得四边形OEFG 是平行四边形,根据矩形的判定定理即可得到结论;(2)根据菱形的性质得到BD ⊥AC ,AB =AD =10,得到OE =AE =12AD =5;由(1)知,四边形OEFG 是矩形,求得FG =OE =5,根据勾股定理得到AF =√AE 2−EF 2=3,于是得到结论.本题考查了矩形的判定和性质,菱形的性质,勾股定理,直角三角形的性质,正确的识别图形是解题的关键.22.【答案】解:(1)设A 型风扇进货的单价是x 元,B 型风扇进货的单价是y 元,依题意,得:{2x +5y =1003x +2y =62, 解得:{x =10y =16. 答:A 型风扇进货的单价是10元,B 型风扇进货的单价是16元;(2)设购进A 型风扇m 台,则购进B 型风扇(100−m)台,依题意,得:{m ≤3(100−m)10m +16(100−m)≤1170, 解得:7123≤m ≤75,又∵m 为正整数,∴m 可以取72、73、74、75,∴小丹共有4种进货方案,方案1:购进A 型风扇72台,B 型风扇28台;方案2:购进A 型风扇73台,B 型风扇27台;方案3:购进A 型风扇74台,B 型风扇26台;方案4:购进A 型风扇75台,B 型风扇25台.∵B 型风扇进货的单价大于A 型风扇进货的单价,∴方案4:购进A 型风扇75台,B 型风扇25台的费用最低,最低费用为75×10+25×16=1150元.【解析】(1)设A 型风扇进货的单价是x 元,B 型风扇进货的单价是y 元,根据“2台A 型风扇和5台B 型风扇进价共100元,3台A 型风扇和2台B 型风扇进价共62元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型风扇m 台,则购进B 型风扇(100−m)台,根据“购进A 型风扇不超过B 型风扇数量的3倍,购进A 、B 两种风扇的总金额不超过1170元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出各进货方案.本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23.【答案】(1)证明:连接OC ,如图1所示:∵PC 2=PB ⋅PA ,即PA PC =PCPB ,∵∠P =∠P ,∴△PBC∽△PCA ,∴∠PCB =∠PAC ,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠A +∠ABC =90°,∵OC =OB ,∴∠OBC=∠OCB,∴∠PCB+∠OCB=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:连接OD,如图2所示:∵PC=20,PB=10,PC2=PB⋅PA,∴PA=PC2PB =20210=40,∴AB=PA−PB=30,∵△PBC∽△PCA,∴ACBC =PAPC=2,设BC=x,则AC=2x,在Rt△ABC中,x2+(2x)2=302,解得:x=6√5,即BC=6√5,∵点D是AB⏜的中点,AB为⊙O的直径,∴∠AOD=90°,∵DE⊥AC,∴∠AEF=90°,∵∠ACB=90°,∴DE//BC,∴∠DFO=∠ABC,∴△DOF∽△ACB,∴OFOD =BCAC=12,∴OF=12OD=152,即AF=152,∵EF//BC,∴EFBC =AFAB=14,∴EF=14BC=3√52.【解析】(1)连接OC,△PBC∽△PCA,得出∠PCB=∠PAC,由圆周角定理得出∠ACB= 90°,证出∠PCB+∠OCB=90°,即OC⊥PC,即可得出结论;(2)连接OD,由相似三角形的性质得出ACBC =PAPC=2,设BC=x,则AC=2x,在Rt△ABC中,由勾股定理得出方程,得出BC=6√5,证出DE//BC,得出△DOF∽△ACB,得出OF OD =BCAC=12,得出OF=12OD=152,即AF=152,再由平行线得出EFBC=AFAB=14,即可得出结果.本题考查了相似三角形的判定与性质、切线的判定、圆周角定理、等腰三角形的性质、勾股定理、垂径定理等知识;熟练掌握切线的性质和圆周角定理,证明三角形相似是解题的关键.24.【答案】y=x(1,1)或(−1,−1)【解析】解:(1)由题意得:y=x时,图象经过点P(t,t),y=1x=x,解得:x=±1,故答案为:y=x,(1,1)或(−1,−1).(2)由题意得:y=x,即:y=−12x2+(23a+1)x−29a2−a+1=x,整理得:−12x2+23ax−29a2−a+1=0,∵△=(23a)2−4×(−12)(−29a2−a+1)=−2a+2≥0,解得:a≤1,由根与系数关系得:x1+x2=4a3,x1x2=49a2+2a−2,∴W=x12+x22=(x1+x2)2−2x1x2=89(a−94)2−12,∵89>0,故函数W有最小值,当a=1时,函数取得最小值为y=89(a−94)2−12=89.(3)∵函数y=14x2+(n−k+1)x+m+k−1的图象上存在“麓点”,则14x2+(n−k+1)x+m+k−1=x,整理得:14x2+(n−k)x+m+k−1=0,由函数图象上存在唯一的一个“麓点”可知:△=(n−k)2−(m+k−1)=0,∴m=(n−k)2−(k−1),①当−2≤n =k ≤1时,n =k 时,m 取得最小值,即:−(k −1)=k ,解得:k =12.②当n =k ≤−2时,n =−2,m 取得最小值,即:(−2−k)2−(k −1)=k ,解得:无解.③当n =k ≥1时,n =1,m 取得最小值,即:(1−k)2−(k −1)=k ,解得:k =2±√2(舍去负值)故:k 的值为:12或2+√2.(1)直接利用新定义建立方程求解即可;(2)先利用新定义得出:−12x 2+23ax −29a 2−a +1=0,用一元二次方程的判别式求出a 的范围,用根与系数的关系得出x 1+x 2=4a 3,x 1x 2=49a 2+2a −2,进而得出W =x 12+x 22=89(a −94)2−12,即可得出结论. (3)由题意得:y =14x 2+(n −k +1)x +m +k −1=x ,由题意△=0得:m =(n −k)2−(k −1),分当−2≤n =k ≤1、当n =k ≤−2、n =k ≥1三种情况,求解即可.此题主要考查了新定义,反比例函数图象上点的坐标特征,一次函数图象上点的在特征,一元二次方程的根的判别式,根与系数的关系,二次函数的性质,求出a 的范围是解本题的关键.25.【答案】解:(1)把A(m,0),B(4,n)代入y =x −1得:m =1,n =3,∴A(1,0),B(4,3),∵y =−x 2+bx +c 经过点A 与点B ,∴{−1+b +c =0−16+4b +c =3, 解得:{b =6c =−5, 则二次函数解析式为y =−x 2+6x −5;(2)如图2,△APM 与△DPN 都为等腰直角三角形,∴∠APM =∠DPN =45°,∴∠MPN =90°,∴△MPN 为直角三角形,令−x 2+6x −5=0,得到x =1或x =5,∴D(5,0),即DA =5−1=4,设AP =m ,则有DP =4−m ,∴PM =√22m ,PN =√22(4−m), ∴S △MPN =12PM ⋅PN =12×√22m ×√22(4−m)=−14m 2+m =−14(m −2)2+1, ∴当m =2,即AP =2时,S △MPN 最大,此时OP =3,即P(3,0);(3)存在,易得直线CD 解析式为y =x −5,设Q(x,x −5),由题意得:∠BAD =∠ADC =45°,当△ABD∽△DAQ 时,AB DA =BD AQ ,即3√24=√10AQ , 解得:AQ =4√53, 由两点间的距离公式得:(x −1)2+(x −5)2=809, 解得:x =73或x =113,此时Q(73,−83)或(113,−43)(舍去); 当△ABD∽△DQA 时,BD AQ =1,即AQ =√10,∴(x −1)2+(x −5)2=10,解得:x =2或x =4,此时Q(2,−3)或(4,−1)(舍去),综上,点Q 的坐标为(2,−3)或(73,−83).【解析】(1)把A 与B 坐标代入一次函数解析式求出m 与n 的值,确定出A 与B 坐标,代入二次函数解析式求出b 与c 的值即可;(2)由等腰直角△APM 和等腰直角△DPN ,得到∠MPN 为直角,由两直角边乘积的一半表示出三角形MPN 面积,利用二次函数性质确定出三角形面积最大时P 的坐标即可;(3)存在,分两种情况,根据相似得比例,求出AQ 的长,利用两点间的距离公式求出Q 坐标即可.此题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,二次函数的图象与性质,相似三角形的判定与性质,两点间的距离公式,熟练掌握各自的性质是解本题的关键.。
2024-2025学年湖南省长沙市岳麓区麓山国际洋湖实验中学九年级(上)入学数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是( )A. 24,25B. 23,23C. 23,24D. 24,242.下列是一元二次方程的是( )A. ax2+bx+c=0B. x−2=x2C. x2−2=x(x−2)D. 1x+x=13.关于一次函数y=−2x+1的图象和性质,下列说法正确的是( )A. y随x的增大而增大B. 图象经过第三象限C. 图象经过点(−1,2)D. 图象与y轴的交点是(0,1)4.将抛物线y=−4x2+3向右平移2个单位长度,再向下平移1个单位长度,得到的抛物线为( )A. y=−4(x+2)2−1B. y=−4(x−2)2+2C. y=−4(x−2)2−1D. y=−4(x+2)2+25.二次函数y=x2+3x−4的对称轴是直线( )A. x=3B. x=−3C. x=−32D. x=326.若m是方程2x2−3x−1=0的一个根,则6m2−9m+2016的值为( )A. 2016B. 2017C. 2018D. 20197.如图,直线y=kx+b和直线y=mx+n相交于点(3,−2),则方程组{y=kx+by=mx+n的解是( )A. {x=3y=−2B. {x=3y=2C. {x =−3y =−2D. {x =−3y =28.若点A(−2,y 1),B(2,y 2),C(3,y 3)在抛物线y =2(x−1)2+m 上,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 2<y 1<y 3C. y 2<y 3<y 1D. y 3<y 2<y 19.为了使居住环境更加美观,某小区建造了一个小型喷泉,水流从地面上的点O 喷出,在各个方向上沿形状相同的抛物线落到地面,某方向上抛物线的形状如图所示,落点A 到点O 的距离为4,水流喷出的高度y(m)与水平距离x(m)之间近似满足函数关系式y =ax 2+245x ,则水流喷出的最大高度为( )A. 245mB. 5mC. 112mD. 6m10.已知二次函数y =ax 2+bx +c(a ≠0)的图象经过三点A(x 1,y 1),B(x 2,y 2),C(−3,0),且对称轴为直线x =−1.有以下结论:①a +b +c =0;②2c +3b =0;③当−2<x 1<−1,0<x 2<1时,有y 1<y 2;④对于任何实数k >0,关于x 的方程ax 2+bx +c =k(x +1)必有两个不相等的实数根.其中结论正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共6小题,每小题3分,共18分。
2021-2022学年湖南省长沙市岳麓区麓山国际实验学校九年级(上)入学数学试卷一、选择题(共12小题,每小题3分,共36分)1.(3分)下列是一元二次方程的是()A.﹣5x+2=1B.2x2﹣y+1=0C.x2+2x=0D.x2﹣=0 2.(3分)7位评委给一个演讲者打分(满分10分)如下:9,8,9,10,10,7,9,若去掉一个最高分和一个最低分,这名演讲者的最后平均得分是()A.7分B.8分C.9分D.10分3.(3分)已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y =kx+b的图象大致是()A.B.C.D.4.(3分)一组数据3,3,4,2,8的中位数和众数分别是()A.3,3B.3,4C.4,3D.4,45.(3分)将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x﹣2)2+3B.y=5(x+2)2+3C.y=5(x﹣2)2﹣3D.y=5(x+2)2﹣36.(3分)某校七年级学生的平均年龄为13岁,年龄的方差为3,若学生人数没有变动,则两年后的同一批学生,对其年龄的说法正确的是()A.平均年龄为13岁,方差改变B.平均年龄为15岁,方差不变C.平均年龄为15岁,方差改变D.平均年龄为13岁,方差不变7.(3分)关于正比例函数y=﹣2x的下列结论中,正确的是()A.它的图象经过点(﹣1,﹣2)B.y随x的增大而增大C.它的图象经过原点(0,0)D.不论x取何值,总有y<08.(3分)一元二次方程x2+kx﹣4=0的一个根是x=﹣1,则另一个根是()A.4B.﹣1C.﹣3D.﹣29.(3分)用配方法解一元二次方程2x2﹣4x=1,配方后的结果是()A.(x﹣1)2=B.(2x﹣1)2=0C.2(x﹣1)2=1D.(x+2)2=10.(3分)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x 个队参赛,根据题意,可列方程为()A.x(x﹣1)=36B.x(x+1)=36C.x(x﹣1)=36D.x(x+1)=3611.(3分)已知m>0,关于x的一元二次方程(x+1)(x﹣2)﹣m=0的解为x1,x2(x1<x2),则下列结论正确的是()A.x1<﹣1<2<x2B.﹣1<x1<2<x2C.﹣1<x1<x2<2D.x1<﹣1<x2<2 12.(3分)二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为5m,最大值为5n,则m+n的值为()A.0B.﹣1C.﹣2D.﹣3二、填空题(共6小题,每题3分,共18分)13.(3分)在函数y=中,自变量x的取值范围是.14.(3分)1,2,3,4,5的方差为.15.(3分)已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+3x1x2+x22的值是.16.(3分)若函数y=,则当函数值y=8时,自变量x的值等于.17.(3分)一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax+b≥kx的解集为.18.(3分)二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如表:x﹣1013y﹣1353给出了结论:①二次函数y=ax2+bx+c有最大值,最大值为5;②ac<0;③x>1时,y 的值随x值的增大而减小;④3是方程ax2+(b﹣1)x+c=0的一个根;⑤当﹣1<x<3时,ax2+(b﹣1)x+c>0,则其中正确结论是.三、解答题(共66分)19.(8分)选择适当方法解一元二次方程:(1)(x﹣5)2﹣36=0;(2)2x2+4x﹣5=0.20.(6分)已知:y与x+2成正比例,且x=﹣4时,y=﹣2.(1)求y与x之间的函数表达式;(2)点P1(m,y1),P2(m﹣2,y2)在(1)中所得函数图象上,比较y1与y2的大小.21.(8分)2021年是中国共产党建党100周年,某校开展了全校教师学习党史活动并进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:抽取七年级教师的竞赛成绩(单位:分):6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10.七八年级教师竞赛成绩统计表年级七年级八年级平均数8.58.5中位数a9众数8b优秀率45%55%根据以上信息,解答下列问题:(1)填空:a=,b=;(2)估计该校七年级120名教师中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级教师学习党史的竞赛成绩谁更优异.22.(8分)已知二次函数y=ax2+bx+c的图象顶点坐标为(1,4),且经过点C(3,0).(1)求该二次函数的解析式;(2)当x取何值时,y随x的增大而减小?(3)当y≤﹣x+3时,直接写出x的取值范围.23.(8分)中秋节前夕,某代理商从厂家购进某品牌月饼的A、B两种礼盒,已知购进A 种月饼3盒、B种月饼2盒共650元,购进4盒A种月饼比购进3盒B种多用300元.(1)求A、B两种月饼礼盒的进价;(2)若该代理商购进该品牌的这两种礼盒月饼资金不超过8600元,购进盒数共70盒,销售时,销售一盒A种礼盒月饼可获利100元,销售一盒B种礼盒月饼可获利80元,并全部售完,请求出获利最多的进货方案以及最大利润.24.(8分)某水晶厂生产的水晶工艺品非常畅销,某网店专门销售这种工艺品.成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天工艺品的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该工艺品销售单价的范围.25.(10分)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为零.例如,图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x﹣1,y=x2﹣2有没有不变值?如果有,请写出其不变长度;(2)函数y=x2﹣bx﹣1且﹣2≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2﹣4x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤5,求m的取值范围.26.(10分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于A(﹣2,0)、B(1,0)两点,与y轴交于点C.(1)试求抛物线的解析式;(2)作直线AC,点E为线段AC上一动点,过点E作DE⊥AC,交抛物线于点D,交y 轴于点F,请问在点E的移动过程中DE是否存在最大值,如果有,求出此时点D的坐标,如果没有,请说明理由;(3)在(2)的条件下,点N是x轴上的一个动点,点M是坐标平面内的一点,是否存在这样的点N,使得以D、F、M、N四点组成的四边形是矩形?如果存在,请求出点N 的坐标;如果不存在,请说明理由.。
数 学 试 卷(一)总分:120分 时量:120分钟一、选择题(本大题共10个小题,每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.二次函数22(1)3y x =++的顶点坐标是( )A .(﹣1,﹣3)B .(﹣1,3)C .(1,﹣3)D .(1,3)3.用配方法解方程2890x x -+=,变形后的结果正确的是( )A .2(4)7x -=B .2(4)7x -=-C .2(4)25x -=D .2(4)25x -=-4.已知关于x 的方程2610x x m -+-=没有实数根,则m 的取值范围是( )A .10m <B .10m =C .10m >D .10m ≥5.如图,将△ABC 绕着点A 逆时针旋转65°,得到△AED ,若∠E =35°,AD ∥BC ,则下列结论不正确的是( )A .AC AD =B .80BAC ∠=︒ C .BC AE =D .65D ∠=︒ 6.如图,在⊙O 中,CD 是⊙O 上的一条弦,直径AB ⊥CD ,连接AC 、OD ,∠A =26°,则∠D 的度数是( )A .26°B .38°C .52°D .64° 7.如图,P A ,PB 是⊙O 的切线,A ,B 是切点,点C 为⊙O 上一点,若∠P =40°则∠ACB 的度数为( )A .70°B .50°C .20°D .40°8.如图,AB 是圆O 的直径,D 是BA 延长线上一点,DC 与圆O 相切于点C ,连接BC ,20ABC ∠=︒,则BDC ∠的度数为( )A .50︒B .45︒C .40︒D .35︒9.《九章算术》被尊为古代数学“群经之首”,其卷九勾股定理篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深CD 等于1寸,锯道AB 长1尺,则圆形木材的直径是( )(1尺10=寸) A .12寸 B .13寸 C .24寸D .26寸(第5题) (第6题) (第7题)10.已知二次函数y =x 2﹣2x +3,关于该函数在﹣2≤x ≤2的取值范围内,下列说法正确的是( )A .有最大值11,有最小值3B .有最大值11,有最小值2C .有最大值3,有最小值2D .有最大值3,有最小值1二、填空题(本大题共6个小题,每小题3分,共18分)11.已知点P (4,﹣3)和点Q (x ,y )关于原点对称,则x +y = .12.将抛物线2(2)3y x =+-先向右平移1个单位长度,再向下平移2个单位长度后所得抛物线的解析式为 .13.已知a ,b 是一元二次方程2420x x -+=的两根,则a +b = .14.如图,AB 是⊙O 的直径,且CD ⊥AB 于E ,若AE =1,∠D =30°,则AB = .15.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,∠ADC =130°,连接AC ,则∠BAC 的度数为 .16.如图,半圆的圆心与坐标原点重合,半圆的半径1,直线l 的解析式为y x t =+.若直线l 与半圆只有一个交点,则t 的取值范围是 .三、解答题(共72分)17.(6分)计算:011(3.14)1()2π--+.18.(6分)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (1,0)-,B (4,1)-,C (2,2)-.(1)直接写出点B 关于点C 对称的点B ′的坐标: ;(2)请画出△ABC 关于点O 成中心对称的△A 1B 1C 1;(3)画出△ABC 绕原点O 逆时针旋转90°后得到的△A 2B 2C 2.(第15题) (第16题)(第8题) (第9题) (第14题)19.(6分)如图,AB 是O 的弦,P 是O 上一个动点(不与A ,B 重合),过O 作OC AP ⊥于点C ,OD BP ⊥于点D .(1)试判断CD 与AB 的数量和位置关系?并说明理由;(2)若45B ∠=︒,4AP =,则O 的半径为 .(直接写出答案)20.(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为 ,图①中m 的值是 ;(2)请补全条形统计图;(3)写出本次调查获取的样本数据的平均数是 ,众数是 ,中位数是 ;(4)根据统计数据,求该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h 的人数.21.(8分)如图,在四边形ABCD 中,AB ∥DC ,AB =AD ,对角线AC 、BD 交于O ,AC 平分∠BAD .(1)求证:四边形ABCD 是菱形;(2)过点C 作CE ⊥AB 交AB 的延长线于点E ,连接OE ,若AB =2√5,BD =4,求OE 的长.22.(9分)某超市经销一种商品,每千克成本为30元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如表所示:(1)求y (千克)与x (元/千克)之间的函数表达式;(2)若商店按销售单价不低于成本价,且不高于60元的价格销售,要使销售该商品每天获得的利润为800元,求每天的销售量应为多少千克?23.(9分)如图,以AB 为直径的O 经过ABC ∆的顶点C ,AE ,BE 分别平分BAC ∠和ABC ∠,AE 的延长线交O 于点D ,连接BD 、CD .(1)求证:BD CD =(2)判断BDE ∆的形状,并说明理由;(3)若10AB =,8BC =,求BD 的长.24.(10分)如图,AB 是O 的直径,点P 在O 上,且PA PB =,点M 是O 外一点,MB 与O 相切于点B ,连接OM ,过点A 作//AC OM 交O 于点C ,连接BC 交OM 于点D .(1)求证:MC 是O 的切线;(2)若20AB =,16BC =,连接PC ,求PC 的长;(3)试探究AC 、BC 与PC 之间的数量关系,并说明理由.25.(10分)在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A (﹣1,0)、B (A 在B 的左边),与y 轴交于C ,且OB =4OA .(1)求抛物线的解析式;(2)如图1,直线y x =交抛物线于D 、E 两点,点F 在抛物线上,且在直线DE 下方,若以F 为圆心作⊙F ,当⊙F 与直线DE 相切时,求⊙F 最大半径r 及此时F 坐标;(3)如图2,M 是抛物线上一点,连接AM 交y 轴于G ,作AM 关于x 轴对称的直线交抛物线于N ,连接AN 、MN ,点K 是MN 的中点,若G 、K 的纵坐标分别是t 、n .直接写出t ,n 的数量关系.。
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)1.如图,直线AB 、BC 、CD 分别与⊙O 相切于E 、F 、G,且AB ∥CD,若BO=6cm,OC=8cm 则BE+CG 的长等于( )A .13B .12C .11D .102.下列命题中,①直径是圆中最长的弦;②长度相等的两条弧是等弧;③半径相等的两个圆是等圆;④半径不是弧,半圆包括它所对的直径,其中正确的个数是( )A .1B .2C .3D .43.如图,⊙O 的半径为6,直径CD 过弦EF 的中点G ,若∠EOD =60°,则弦CF 的长等于( )A .6B .63C .33D .94.下列方程属于一元二次方程的是( )A .20x =B .()()23121x y -=-C .2310ax x -+=D .2110x x ++= 5.已知如图:为估计池塘的宽度BC ,在池塘的一侧取一点A ,再分别取AB 、AC 的中点D 、E ,测得DE 的长度为20米,则池塘的宽BC 的长为( )A .30米B .60米C .40米D .25米 6.已知O 的直径是8,直线l 与O 有两个交点,则圆心O 到直线l 的距离d 满足( )A .04<<dB .04d ≤<C .04<≤dD .04≤≤d 7.下列各点在抛物线244y x x =-+上的是( )A .()0,4B .()3,1-C .()2,3--D .17,24⎛⎫-- ⎪⎝⎭ 8.将0.000102用科学记数法表示为( )A .41.0210-⨯B .510210-⨯.C .410210-⨯.D .310210-⨯9.如图,AD 是△ABC 的中线,点E 在AD 上,AD =4DE ,连接BE 并延长交AC 于点F ,则AF :FC 的值是( )A .3:2B .4:3C .2:1D .2:310.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB =120°,半径OA 为3m ,那么花圃的面积为( )A .6πm 2B .3πm 2C .2πm 2D .πm 2二、填空题(每小题3分,共24分)11.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.12.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.13.二次函数y =2(x ﹣1)2+3的图象的顶点坐标是_________14.在矩形ABCD 中,AB 6=,BC 8=,ABD 绕B 点顺时针旋转90到BEF ,连接DF ,则DF =________.15.如图,Rt ABC ∆中,90ACB ∠=︒,4AC =,将斜边AB 绕点A 逆时针旋转90︒至AB ',连接B C ',则AB C '∆的面积为_______.16.若关于x 的一元二次方程()2k 1x 4x 10-++=有两个不相等的实数根,则k 的取值范围是______. 17.如图,圆O 是一个油罐的截面图,已知圆O 的直径为5m ,油的最大深度4CD =m (CD AB ⊥),则油面宽度AB 为__________m .18.已知线段a =4 cm ,b =9 cm ,则线段a ,b 的比例中项为_________cm .三、解答题(共66分)19.(10分)解方程:x 2﹣6x ﹣7=1.20.(6分)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.21.(6分)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:四边形BDFG为菱形;(2)若AG=13,CF=6,求四边形BDFG的周长.22.(8分)在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率是________;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)23.(8分)如图,将▱ABCD的边AB延长至点E,使BE=AB,连接DE、EC、BD、DE交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.24.(8分)已知实数a 满足20a a +=,求()()2212121121a a a a a a a +++-÷+--+的值. 25.(10分)已知关于x 的一元二次方程()222110k x k x +-+=. (1)若方程有实数根,求k 的取值范围;(2)若方程的两个实数根的倒数的平方和等于14,求k 的值.26.(10分)已知,CD 为⊙O 的直径,过点D 的弦DE ∥半径OA ,若60D ∠=︒.求C ∠的度数.参考答案一、选择题(每小题3分,共30分)1、D【解析】根据切线长定理得:BE=BF ,CF=CG ,∠OBF=∠OBE ,∠OCF=∠OCG ;∵AB ∥CD ,∴∠ABC+∠BCD=180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°,∵OB=6cm ,OC=8cm ,∴BC=10cm ,∴BE+CG=BC=10cm ,故选D.【点睛】本题主要考查了切线长定理,涉及到平行线的性质、勾股定理等,求得BC 的长是解题的关键.2、C【分析】根据弦、弧、等弧的定义即可求解.【详解】解:①直径是圆中最长的弦,真命题;②在等圆或同圆中,长度相等的两条弧是等弧,假命题;③半径相等的两个圆是等圆,真命题;④半径是圆心与圆上一点之间的线段,不是弧,半圆包括它所对的直径,真命题.故选:C.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).3、B【分析】连接DF,根据垂径定理得到DE DF=,得到∠DCF=12∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF,∵直径CD过弦EF的中点G,∴DE DF=,∴∠DCF=12∠EOD=30°,∵CD是⊙O的直径,∴∠CFD=90°,∴CF=CD•cos∠DCF=12×3=3,故选B.【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.4、A【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【详解】解:A、20x=该方程符合一元二次方程的定义,符合题意;B、该方程属于二元二次方程,不符合题意;C、当a=1时,该方程不是一元二次方程,不符合题意;D、该方程不是整式方程,不是一元二次方程,不符合题意.故选:A.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.5、C【分析】根据三角形中位线定理可得DE=12BC,代入数据可得答案.【详解】解:∵线段AB,AC的中点为D,E,∴DE=12 BC,∵DE=20米,∴BC=40米,故选:C.【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.6、B【分析】先求出圆的半径,再根据直线与圆的位置关系与d和r的大小关系即可得出结论.【详解】解:∵O的直径是8∴O的半径是4∵直线l与O有两个交点∴0≤d<4(注:当直线l过圆心O时,d=0)故选B.【点睛】此题考查的是根据圆与直线的位置关系求圆心O到直线l的距离d的取值范围,掌握直线与圆的位置关系与d和r的大小关系是解决此题的关键.7、A【分析】确定点是否在抛物线上,分别把x=0 , 3,-2,12-代入244y x x=-+中计算出对应的函数值,再进行判断即可.【详解】解:当0x =时,204044y =-⨯+=,当3x =时,234341y =-⨯+= ,当2x =-时,()()2242416y =--⨯-+=, 当12x =-时,2112344224y x ⎛⎫⎛⎫=--⨯-+= ⎪ ⎪⎝⎭⎝⎭, 所以点()0, 4在抛物线244y x x =-+上. 故选:A .8、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000102=1.02×10−4, 故答案为:41.0210-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1⩽|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.9、A【分析】过点D 作DG ∥AC, 根据平行线分线段成比例定理,得FC=1DG ,AF=3DG ,因此得到AF :FC 的值.【详解】解:过点D 作DG ∥AC ,与BF 交于点G .∵AD=4DE ,∴AE=3DE ,∵AD 是△ABC 的中线,∴12BD BC = ∵DG ∥AC ∴33AF AE DE DG DE DE ===,即AF=3DG12DG BD FC BC ==,即FC=1DG , ∴AF :FC=3DG :1DG=3:1.故选:A .【点睛】本题考查了平行线分线段成比例定理,正确作出辅助线充分利用对应线段成比例的性质是解题的关键. 10、B【分析】利用扇形的面积公式计算即可.【详解】解:∵扇形花圃的圆心角∠AOB =120°,半径OA 为3cm ,∴花圃的面积为21203360π⨯=3π, 故选:B .【点睛】本题考查扇形的面积,解题的关键是记住扇形的面积公式.二、填空题(每小题3分,共24分)11、-3【解析】分析:由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.详解:过点P 做PE ⊥y 轴于点E ,∵四边形ABCD 为平行四边形∴AB=CD又∵BD ⊥x 轴∴ABDO 为矩形∴AB=DO∴S 矩形ABDO =S ▱ABCD =6∵P 为对角线交点,PE ⊥y 轴∴四边形PDOE 为矩形面积为3即DO•EO=3∴设P 点坐标为(x ,y )k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k 的几何意义以及平行四边形的性质.12、()2561x -=31.1【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解. 【详解】根据题意,得:()2561x -=31.1故答案为:()2561x -=31.1.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的.13、(1,3) 【解析】首先知二次函数的顶点坐标根据顶点式y=a(x+b 2a )2+244ac b a -,知顶点坐标是(-b 2a ,244ac b a -),把已知代入就可求出顶点坐标.【详解】解:y=ax 2+bx+c ,配方得y=a(x+b 2a)2+244ac b a -, 顶点坐标是(-b 2a ,244ac b a -), ∵y=2(x-1)2+3,∴二次函数y=2(x-1)2+3的图象的顶点坐标是 (1,3).【点睛】解此题的关键是知二次函数y=ax 2+bx+c 的顶点坐标是(-b 2a ,244ac b a -),和转化形式y=a(x+b 2a )2+244ac b a -,代入即可.14、【分析】根据勾股定理求出BD ,再根据等腰直角三角形的性质,BD 计算即可.【详解】解:∵四边形ABCD 是矩形,∴AD=BC=8,∠A=90°,∵AB=6,∴BD=22AB AD +=2268+=10,∵△BEF 是由△ABD 旋转得到,∴△BDF 是等腰直角三角形,∴DF=2BD=102,故答案为102.【点睛】本题考查旋转的性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用勾股定理解决问题,属于中考常考题型. 15、8【分析】过点B'作B'E ⊥AC 于点E ,由题意可证△ABC ≌△B'AE ,可得AC=B'E=4,即可求△AB'C 的面积.【详解】解:如图:过点B'作B'E ⊥AC 于点E∵旋转 ∴AB=AB',∠BAB'=90°∴∠BAC+∠B'AC=90°,且∠B'AC+∠AB'E=90°∴∠BAC=∠AB'E ,且∠AEB'=∠ACB=90°,AB=AB'∴△ABC ≌△B'AE (AAS )∴AC=B'E=4∴S △AB'C= '11448.22AC B E •=⨯⨯= 故答案为:8.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,利用旋转的性质解决问题是本题的关键.16、k <5且k ≠1.【解析】试题解析:∵关于x 的一元二次方程()21410k x x -++=有两个不相等的实数根,()2104410.k k -≠⎧∴⎨∆=-->⎩解得:5k <且1k ≠.故答案为5k <且1k ≠.17、1【分析】连接OA ,先求出OA 和OD ,再根据勾股定理和垂径定理即可求出AD 和AB .【详解】解:连接OA∵圆O 的直径为5m ,油的最大深度4CD =m∴OA=OC=52m ∴OD=CD -OC=32m ∵CD AB ⊥根据勾股定理可得:222OA OD m ∴AB=2AD=1m故答案为:1.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.18、6【分析】设比例中项为c ,得到关于c 的方程即可解答.【详解】设比例中项为c ,由题意得: 2c ab =, ∴24936c ,∴c 1=6,c 2=-6(不合题意,舍去)故填6.【点睛】此题考查线段成比例,理解比例中项的含义即可正确解答.三、解答题(共66分)19、x 2=7,x 2=﹣2.【解析】观察原方程,可运用二次三项式的因式分解法进行求解.【详解】原方程可化为:(x﹣7)(x+2)=2,x﹣7=2或x+2=2;解得:x2=7,x2=﹣2.20、(1)50(2)条形统计图见解析,57.6°(3)292天【分析】(1)根据扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,即可得出被抽取的总天数.(2)利用轻微污染天数是50-32-8-3-1-1=5天;表示优的圆心角度数是850⨯360°=57.6°,即可得出答案.(3)利用样本中优和良的天数所占比例得出一年(365天)达到优和良的总天数即可【详解】(1)∵扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天).(2)轻微污染天数是50﹣32﹣8﹣3﹣1﹣1=5天.因此补全条形统计图如图所示:;扇形统计图中表示优的圆心角度数是850⨯360°=57.6°.(3)∵样本中优和良的天数分别为:8,32,∴一年(365天)达到优和良的总天数为:8+3250×365=292(天).因此,估计该市一年达到优和良的总天数为292天.21、(1)证明见解析;(2)1.【分析】(1)由BD=FG,BD//FG可得四边形BDFG是平行四边形,根据CE⊥BD可得∠CFA=∠CED=90°,根据直角三角形斜边中线的性质可得BD=DF=12AC,即可证得结论;(2)设GF=x,则AF=13﹣x,AC=2x,利用勾股定理列方程可求出x的值,进而可得答案.【详解】(1)∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,BD//AG,∴∠CFA=∠CED=90°,∵点D 是AC 中点,∴DF =12AC , ∵∠ABC =90°,BD 为AC 的中线, ∴BD =12AC , ∴BD =DF ,∴平行四边形BGFD 是菱形.(2)设GF =x ,则AF =13﹣x ,AC =2x ,∵在Rt △ACF 中,∠CFA =90°,∴AF 2+CF 2=AC 2,即(13﹣x )2+62=(2x )2,解得:x =5,x =﹣413(舍去), ∵四边形BDFG 是菱形,∴四边形BDFG 的周长=4GF =1.【点睛】本题考查菱形的判定与性质及直角三角形斜边中线的性质,熟练掌握直角三角形斜边中线等于斜边一半的性质是解题关键.22、(1)23;(2)见解析,13. 【分析】(1)根据古典概型概率的求法,求摸到红球的概率.(2)利用树状图法列出两次摸球的所有可能的结果,求两次都摸到红球的概率.【详解】(1)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为()P A =m n ,则摸到红球的概率为23. (2)两次摸球的所有可能的结果如下:有树状图可知,共有6种等可能的结果,两次都摸出红球有2种情况,故P (两次都摸处红球)2163==. 【点睛】本题考查古典概型概率的求法和树状图法求概率的方法.23、(1)见解析;(2)见解析【分析】(1)先运用平行四边形的知识得到AB=BE 、BE=DC 、BD=EC ,即可证明△ABD ≌△BEC ;(2)由四边形BECD 为平行四边形可得OD=OE ,OC=OB ,再结合四边形ABCD 为平行四边形得到∠A=∠OCD ,再结合已知条件可得OC=OD ,即BC=ED ;最后根据对角线相等的平行四边形是矩形证明即可.【详解】证明:(1)∵在平行四边形ABCD∴AD=BC ,AB=CD ,AB ∥CD ,即BE ∥CD .又∵AB=BE ,∴BE=DC .∴四边形BECD 为平行四边形.∴BD=EC .在△ABD 与△BEC 中,AB BE BD EC AD BC =⎧⎪=⎨⎪=⎩∴△ABD ≌△BEC(SSS);(2)∵四边形BECD 为平行四边形,∴ OD=OE ,OC=OB ,∵四边形ABCD 为平行四边形,∴∠A=∠BCD .即∠A=∠OCD .又∵∠BOD=2∠A ,∠BOD=∠OCD+∠ODC ,∴∠OCD=∠ODC∴OC=OD .∴OC+OB=OD+OE ,即BC=ED .∴四边形BECD 为矩形.【点睛】本题主要考查了矩形的判定、平行四边形的性质和判定、平行线的性质、全等三角形的性质和判定、三角形的外角性质等知识点,灵活应用相关知识是解答本题的关键.24、()221a +,2.【分析】先根据分式的运算法则把所给代数式化简,然后解一元二次方程20a a +=求出a 的值,把能使分式有意义的值代入化简的结果计算即可. 【详解】解:原式()()()()()211211112a a a a a a a -+=-⋅++-++ ()21111a a a -=-++ ()2111a a a +-+=+ ()221a =+,∵20a a +=,∴a(a+1)=0,∴10a =,21a =-,∵10a +≠,1a ≠-,∴当0a =时,原式2=.【点睛】本题考查了分式的计算和化简,以及一元二次方程的解法,熟练掌握分式的运算法则及一元二次方程的解法是解答本题的关键.25、(1)12k ≤且0k ≠;(2)1k =- 【分析】(1)根据方程有实数根得出()2221484]0k k k ∆=--=-+≥[,且20k ≠解之可得;(2)利用根与系数的关系可用k 表示出221211x x +的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.【详解】解: (1)由于是一元二次方程且有实数根,所以20k ≠,即0k ≠,且()2221484]0k k k ∆=--=-+≥[ ∴12k ≤且0k ≠ (2)设方程的两个根为12x x 、,则1222(1)k x x k -+=-,1221x x k ⋅=∴222222121212222222121212()2114(1)22(42)14x x x x x x k k k k x x x x x x ++-⋅+===--=-+= 整理,得2(2)9k -=解得1215k k =-=,根据(1)中12k ≤且0k ≠,得11k =-. 【点睛】此题主要考查了根的判别式和根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.26、∠C =30°【分析】根据平行线的性质求出∠AOD ,根据圆周角定理解答.【详解】解:∵OA ∥DE ,∴∠AOD=∠D=60°,由圆周角定理得,∠C=12 ∠AOD=30° 【点睛】本题考查的是圆周角定理和平行线的性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.。
湖南省长沙市麓山国际实验学校九年级(上)限时训练数学试卷一、选择题、(本大题共12小题,每小题3分,满分36分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑)1.(3分)计算3×(﹣2)的结果是()A.5 B.﹣5 C.6 D.﹣62.(3分)纳米是一种长度单位,1纳米=10﹣9米.已知某种花粉的直径为35000纳米,则用科学记数法表示该花粉的直径为()A.3.5×10﹣6m B.3.5×10﹣5m C.35×10﹣4m D.3.5×104m3.(3分)下列计算正确的是()A.6a﹣5a=1 B.(a2)3=a5 C.a6÷a3=a2 D.a2•a3=a54.(3分)函数y=的自变量x的取值范围是()A.x>﹣3 B.x<﹣3 C.x≠﹣3 D.x≥﹣35.(3分)下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中学生的视力情况D.为保证“神舟7号”的成功发射,对其零部件进行普查检查6.(3分)分式方程的解是()A.﹣3 B.2 C.3 D.﹣27.(3分)由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是()A.B.C.D.8.(3分)观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n﹣4 D.4n9.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对10.(3分)若一个圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是()A.40°B.80°C.120°D.150°11.(3分)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.﹣2﹣ B.﹣1﹣C.﹣2+D.1+12.(3分)如图所示是二次函数y=﹣x2+2的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为与其最接近的值是()A.4 B.C.2πD.8二、填空题(本大题共6小题,每小题3分,满分18分.请将答案填写在答题卷相应题号的位置)13.(3分)因式分解:a3﹣4a=.14.(3分)若m+n=10,mn=24,则m2+n2=.15.(3分)当m满足时,关于x的方程x2﹣4x+m﹣=0有两个不相等的实数根.16.(3分)从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是.17.(3分)如果x2+2(k﹣3)x+16是一个完全平方式,那么k=.18.(3分)四边形ABCD的对角线AC、BD的长分别为m、n,可以证明当AC⊥BD时(如左图),四边形ABCD的面积S=mn,那么当AC、BD所夹的锐角为θ时(如图),四边形ABCD的面积S=.(用含m、n、θ的式子表示)三、解答题(本大题共8小题,满分66分.请认真读题,冷静思考.解答题应写出文字说明、证明过程或演算步骤,请将答案写在答题卷相应题号的位置)19.(6分)计算:|﹣2|+2sin30°﹣(﹣)2+(tan45°)﹣1.20.(6分)先化简,再求值:,其中.21.(8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB 间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).22.(8分)已知,如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG,请探究:(1)线段AE与CG是否相等,请说明理由;(2)求证:△ABE∽△DEH;(3)当点E在何处时,DH的长度最大,最大长度是多少?23.(9分)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=170﹣2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数关系式;(2)求月产量x的范围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?24.(9分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值.25.(10分)对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+,2×1+4),即P′(3,6).(1)点P(﹣1,﹣2)的“2属派生点”P′的坐标为;(2)若点P在x轴的正半轴上,点P的“k属派生点”为P'点,且△OPP′为等腰直角三角形,求k的值;(3)已知点Q为二次函数图象上的一动点,点A在函数(x<0)的图象上,且点A是点B的“属派生点”,当线段B Q最短时,求Q点坐标.26.(10分)如图,已知抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为,设⊙M与y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)若F在抛物线第四象限上,求使四边形OBFC的面积最大时的点F的坐标;(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P 的位置,并求出点P的坐标;若不存在,请说明理由.2015-2016学年湖南省长沙市麓山国际实验学校九年级(上)第五次限时训练数学试卷参考答案与试题解析一、选择题、(本大题共12小题,每小题3分,满分36分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑)1.(3分)(2011•绵阳校级自主招生)计算3×(﹣2)的结果是()A.5 B.﹣5 C.6 D.﹣6【解答】解:3×(﹣2),=﹣(3×2),=﹣6.故选D.【点评】此题主要考查了有理数的乘法,牢记法则即可.2.(3分)(2015秋•长沙校级月考)纳米是一种长度单位,1纳米=10﹣9米.已知某种花粉的直径为35000纳米,则用科学记数法表示该花粉的直径为()A.3.5×10﹣6m B.3.5×10﹣5m C.35×10﹣4m D.3.5×104m【解答】解:35000纳米=35000×10﹣9米=3.5×10﹣5米.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2015•嵊州市一模)下列计算正确的是()A.6a﹣5a=1 B.(a2)3=a5 C.a6÷a3=a2 D.a2•a3=a5【解答】解:A、应为6a﹣5a=a,故本选项错误;B、应为(a2)3=a6,故本选项错误;C、应为a6÷a3=a6﹣3=a3,故本选项错误;D、a2•a3=a5,正确.故选D.【点评】本题考查合并同类项,幂的乘方,同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键.4.(3分)(2009•重庆)函数y=的自变量x的取值范围是()A.x>﹣3 B.x<﹣3 C.x≠﹣3 D.x≥﹣3【解答】解:根据题意得:x+3≠0,解得:x≠﹣3.故选C.【点评】求解析法表示的函数的自变量取值范围时:当函数表达式是分式时,要注意考虑分式的分母不能为0.5.(3分)(2009•重庆)下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中学生的视力情况D.为保证“神舟7号”的成功发射,对其零部件进行普查检查【解答】解:A、调查一批新型节能灯泡的使用寿命,有破坏性,故得用抽查方式,故错误;B、调查长江流域的水污染情况,工作量大,得用抽查方式,故错误;C、调查重庆市初中学生的视力情况,工作量大,得用抽查方式,故错误;D、为保证“神舟7号”的成功发射,对零件全面检查十分重要,故进行普查检查,故正确.故选D.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.6.(3分)(2009•芜湖)分式方程的解是()A.﹣3 B.2 C.3 D.﹣2【解答】解:方程两边都乘x(x﹣2),得5x=3(x﹣2),解得:x=﹣3,检验:当x=﹣3时,(x﹣2)x≠0.∴x=﹣3是原方程的解.故选A.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.7.(3分)(2009•重庆)由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是()A.B.C.D.【解答】解:从左面看可得到第一层为2个正方形,第二层左面有一个正方形.故选A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.8.(3分)(2009•重庆)观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n﹣4 D.4n【解答】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选D.【点评】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.9.(3分)(2015•安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.【点评】本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.10.(3分)(2009•成都)若一个圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是()A.40°B.80°C.120°D.150°【解答】解:圆锥侧面展开图的扇形面积半径为6cm,弧长为4πcm,代入扇形弧长公式l=,即4π=,解得n=120,即扇形圆心角为120度.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.11.(3分)(2010•枣庄)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.﹣2﹣ B.﹣1﹣C.﹣2+D.1+【解答】解:∵对称的两点到对称中心的距离相等,∴CA=AB,|﹣1|+||=1+,∴OC=2+,而C点在原点左侧,∴C表示的数为:﹣2﹣.故选A.【点评】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.12.(3分)(2016秋•沂源县校级月考)如图所示是二次函数y=﹣x2+2的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为与其最接近的值是()A.4 B.C.2πD.8【解答】解:解:函数y=﹣x2+2与y轴交于(0,2)点,与x轴交于(﹣2,0)和(2,0)两点,则三点构成的三角形面积s1=×2×4=4,则以半径为2的半圆的面积为s2=π×22=2π,则阴影部分的面积s有:4<s<2π.因为选项A、C、D均不在S取值范围内.故选:B.【点评】此题主要考二次函数的性质,关键是掌握函数图象与x轴相交时,y的值为0.函数图象与y轴相交时,x的值为0.二、填空题(本大题共6小题,每小题3分,满分18分.请将答案填写在答题卷相应题号的位置)13.(3分)(2014•本溪)因式分解:a3﹣4a=a(a+2)(a﹣2).【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.(3分)(2016•广东模拟)若m+n=10,mn=24,则m2+n2=52.【解答】解:∵m+n=10,mn=24,∴m2+n2=(m+n)2﹣2mn=100﹣48=52.故本题答案为:52.【点评】本题考查了完全平方公式的应用,解此题可用完全平方公式把m+n,mn的值整体代入求解.15.(3分)(2009•芜湖)当m满足m<时,关于x的方程x2﹣4x+m﹣=0有两个不相等的实数根.【解答】解:∵于x的方程x2﹣4x+m﹣=0有两个不相等的实数根,∴△=b2﹣4ac=16﹣4(m﹣)>0,解之得m<.【点评】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16.(3分)(2009•荆门)从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是.【解答】解:由树状图可知共有4×3=12种可能,和为奇数的有8种,所以概率是.【点评】考查概率的概念和求法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2015秋•招远市期末)如果x2+2(k﹣3)x+16是一个完全平方式,那么k=7或﹣1.【解答】解:∵x2+2(k﹣3)x+16是一个完全平方式,∴2(k﹣3)=±8,解得:k=7或﹣1,故答案为:7或﹣1.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18.(3分)(2008•泰安)四边形ABCD的对角线AC、BD的长分别为m、n,可以证明当AC⊥BD时(如左图),四边形ABCD的面积S=mn,那么当AC、BD所夹的锐角为θ时(如图),四边形ABCD的面积S=mnsinθ.(用含m、n、θ的式子表示)【解答】解:如图,设AC、BD交于O点,在①图形中,设BD=m,OA+OC=n,所以S四边形ABCD=S△ABD+S△BDC=m•OC+m•OA=mn;在②图形中,作AE⊥BD于E,CF⊥BD于F,由于AC、BD夹角为θ,所以AE=OA•sinθ,CF=OC•sinθ,∴S四边形ABCD=S△ABD+S△BDC=BD•AE+BD•CF=BD•(AE+CF)=mnsinθ.故填空答案:mnsinθ.【点评】此题比较难,解题时关键要找对思路,即原四边形的高已经发生了变化,只要把高求出来,一切将迎刃而解.三、解答题(本大题共8小题,满分66分.请认真读题,冷静思考.解答题应写出文字说明、证明过程或演算步骤,请将答案写在答题卷相应题号的位置)19.(6分)(2009•安徽)计算:|﹣2|+2sin30°﹣(﹣)2+(tan45°)﹣1.【解答】解:原式=2+1﹣3+1=1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算.20.(6分)(2016•惠东县模拟)先化简,再求值:,其中.【解答】解:,=+,=+1,=,当时,原式===﹣6.【点评】此题主要考查了分式的运算,注意分式运算中分子、分母能因式分解的先因式分解;除法要统一为乘法运算.21.(8分)(2013•泸州)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).【解答】解:(1)过点B作BE⊥AD于点E,∵AB=40m,∠A=30°,∴BE=AB=20m,AE==20m,即点B到AD的距离为20m;(2)在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°,∴DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在Rt△ADC中,∠A=30°,∴DC==(10+10)m.答:塔高CD为(10+10)m.【点评】本题考查了解直角三角形的应用,难度适中,解答本题的关键是根据仰角构造直角三角形并解直角三角形.22.(8分)(2015秋•长沙校级月考)已知,如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG,请探究:(1)线段AE与CG是否相等,请说明理由;(2)求证:△ABE∽△DEH;(3)当点E在何处时,DH的长度最大,最大长度是多少?【解答】(1)解:AE=CG,理由如下:∵四边形ABCD,BEFG都为正方形,∴AB=BC,BE=BG,∠ABE=∠CBG,在△ABE和△CBG中∴△ABE≌△CBG,∴AE=CG(2)证明:∵四边形ABCD,EFGB都为正方形,∴∠AEB+DEF=90°∵∠DEF+DHE=90°,∴∠AEB=DHE,∵∠A=∠D∴△ABE∽△DEH(3)设DH=y,AE=x,则DE=1﹣x,∵△ABE∽△DEH,∴,∴,∴y=﹣x2+x=﹣(x﹣)2+,∴当x=时,y max=,∴当点E在AD的中点时,DH的最大值为.【点评】此题是相似的综合题,主要考查正方形的性质和三角形全等和相似,解本题的关键是有全等和相似得到线段的关系.23.(9分)(2010•荆州)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=170﹣2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数关系式;(2)求月产量x的范围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?【解答】解:(1)设函数关系式为y2=kx+b,把坐标(30,1400)(40,1700)代入,解得:∴函数关系式y2=30x+500;(2)依题意得:,解得:25≤x≤40;(3)∵W=x•y1﹣y2=x(170﹣2x)﹣(500+30x)=﹣2x2+140x﹣500∴W=﹣2(x﹣35)2+1950∵25<35<40,∴当x=35时,W最大=1950答:当月产量为35件时,利润最大,最大利润是1950万元.【点评】本题考查了函数关系式及其最大值的求解,同时还有自变量取值范围的求解.24.(9分)(2010•兰州)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴.∴BM2=MN•MC.又∵AB是⊙O的直径,,∴∠AMB=90°,AM=BM.∵AB=4,∴BM=2.∴MN•MC=BM2=8.【点评】此题主要考查圆的切线的判定及圆周角定理的运用和相似三角形的判定和性质的应用.25.(10分)(2015秋•长沙校级月考)对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+,2×1+4),即P′(3,6).(1)点P(﹣1,﹣2)的“2属派生点”P′的坐标为(﹣2,﹣4);(2)若点P在x轴的正半轴上,点P的“k属派生点”为P'点,且△OPP′为等腰直角三角形,求k的值;(3)已知点Q为二次函数图象上的一动点,点A在函数(x<0)的图象上,且点A是点B的“属派生点”,当线段B Q最短时,求Q点坐标.【解答】解:(1)P(﹣1,﹣2)的“2属派生点”是(﹣1+,﹣2×1﹣2)即(﹣2,﹣4),故答案是:(﹣2,﹣4);(2)P的“k属派生点”为P'点的坐标是(﹣1﹣,﹣k﹣2),当P'在第四象限,且OP=OP'时,P'的坐标是(2,﹣1),﹣1﹣=2,解得:k=﹣,此时﹣k﹣2=﹣时,不符合条件;当P'在第二象限时,P'的坐标是(﹣2,1),若﹣1﹣=﹣2,解得:k=2,此时﹣k﹣2=﹣4≠1,故不符合条件;当P是直角顶点时,若OP=PP',此时P'即把(2,﹣1)左平移1个单位长度,向下平移2个单位长度,则P'的坐标是(1,﹣3).则当﹣1﹣=1时,k=﹣1,此时﹣k﹣2=﹣3,满足条件;同理,当P的坐标是(﹣3,﹣1),若﹣1﹣=﹣3时,k=1,此时﹣k﹣2=﹣1,此时满足条件.总之,k=±1;(3)设B(a,b),∵B的“属派生点”是A,∴A(,)∵点A还在反比例函数的图象上,∴.∴.∵,∴.∴.∴B在直线l:上.设直线l的平行线为①∵点Q在直线②图象上联立①②得,由题意△=0 时BQ最短,此时点Q的坐标为.【点评】本题考查了反比例函数与二次函数的综合应用,正确理解题目中的新的定义,以及PQ最短的条件是关键.26.(10分)(2015秋•长沙校级月考)如图,已知抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为,设⊙M与y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)若F在抛物线第四象限上,求使四边形OBFC的面积最大时的点F的坐标;(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P 的位置,并求出点P的坐标;若不存在,请说明理由.【解答】解:(1)如图1,,由题意可知C(0,﹣3),∴抛物线的解析式为y=ax2﹣2ax﹣3(a>0),过M作MN⊥y轴于N,连结CM,则MN=1,∴CN=2,于是m=﹣1.同理可求得B(3,0),∴a×32﹣2﹣2a×3﹣3=0,得a=1,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图2,,由B(3,0),C(0,﹣3)得BC的解析式为y=x﹣3,E点在BC上,F在抛物线上,设F(m,m2﹣2m﹣3),E(m,m﹣3),EF=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,S△BCF最大时,S OBCF最大.S△BCF=EF•x B=(﹣m2+3m)×3=﹣(m﹣)2+,当m=时,S△BCF最大=,m=,m2﹣2m﹣3=﹣3﹣3=﹣,即F(,﹣);(3)当y=0时,x2﹣2x﹣3=0,解得x=﹣1,x=3,即A(﹣1,0),B(3,0),y=(x﹣1)2﹣4,即E(1,﹣4).由勾股定理得AC=,BC=3,CE=,①显然Rt△COA∽Rt△BCE,此时点P1(0,0),②过A作AP2⊥AC交y正半轴于P2,如图3,由Rt△CAP2∽Rt△BCE,得,=,即=,AP2=,OP2==,P2(0,)③过C作CP3⊥AC交x正半轴于P3,如图4,由Rt△P3CA∽Rt△BCE,得=,即=,CP3=.OP3==9,P3(9,0),故在坐标轴上存在三个点P1(0,0),P2(0,),P3(9,0),使得以P、A、C为顶点的三角形与BCE相似.【点评】本题考查了二次函数综合题,利用勾股定理得出B点坐标是解题关键;利用三角形的面积得出二次函数得出二次函数的性质是解题关键;利用相似三角形的性质得出P点坐标是解题关键,要分类讨论,以防遗漏.参与本试卷答题和审题的老师有:sd2011;gbl210;110397;天马行空;zhjh;lhz6918;shuiyu;zhangCF;lanchong;137-hui;hbxglhl;心若在;xiu;733599;郝老师;蓝月梦;lanyan;sks;Liuzhx;lf2-9;caicl;星月相随;Linaliu;张超。