阶段知能检测(7)—立体几何 shi
- 格式:doc
- 大小:392.00 KB
- 文档页数:7
立体测试题及答案一、单项选择题(每题2分,共10题)1. 下列哪个选项是立体几何中的基本元素?A. 点B. 线C. 面D. 体答案:D2. 空间中两条直线的位置关系有几种?A. 1种B. 2种C. 3种D. 4种答案:C3. 一个立方体有多少个顶点?A. 6B. 8C. 12D. 14答案:B4. 一个正四面体有多少条棱?A. 6B. 8C. 12D. 16答案:A5. 空间直角坐标系中,点(1,2,3)到原点的距离是多少?A. 1B. 2C. 3D. √14答案:D6. 一个球体的表面积公式是?A. 4πr²B. 2πr²C. πr²D. 4πr³答案:A7. 空间中两个平面的位置关系有哪些?A. 平行B. 相交C. 重合D. 以上都是答案:D8. 一个圆柱体的体积公式是?A. πr²hB. 2πrhC. πr²D. πr³答案:A9. 空间中一个点到一个平面的距离公式是?A. |Ax + By + Cz + D| / √(A² + B² + C²)B. |Ax + By + Cz - D| / √(A² + B² + C²)C. |Ax + By + Cz + D| / √(A² + B²)D. |Ax + By + Cz - D| / √(A² + B²)答案:B10. 空间中一个点到一条直线的距离公式是?A. |Ax + By + Cz + D| / √(A² + B² + C²)B. |Ax + By + Cz - D| / √(A² + B² + C²)C. |(Ax + By + Cz + D) / (A² + B² + C²)| * √(A² + B²)D. |(Ax + By + Cz - D) / (A² + B² + C²)| * √(A² + B²)答案:D二、多项选择题(每题3分,共5题)1. 空间中两个平面相交,它们的交线是?A. 直线B. 曲线C. 点D. 面答案:A2. 空间中一个点到一个平面的距离公式中,A、B、C、D分别代表什么?A. 平面方程的系数B. 平面方程的常数项C. 点的坐标D. 点到平面的距离答案:A, B3. 空间直角坐标系中,点(1,2,3)到点(4,5,6)的距离公式是?A. √((4-1)² + (5-2)² + (6-3)²)B. √((1-4)² + (2-5)² + (3-6)²)C. √((4-1)² + (5-2)² + (6-3)²)D. √((1-4)² + (2-5)² + (3-6)²)答案:A, B4. 空间中一个点到一条直线的距离公式中,A、B、C、D分别代表什么?A. 直线方程的系数B. 直线方程的常数项C. 点的坐标D. 点到直线的距离答案:A, C5. 空间中一个平面的方程可以表示为?A. Ax + By + Cz + D = 0B. Ax + By + Cz = DC. Ax + By + Cz + D = ED. Ax + By + Cz = 0答案:A, D结束语:以上是立体测试题及答案的全部内容,希望对你有所帮助。
单元质检卷七 空间向量与立体几何(时间:100分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020河北沧州一中月考)下列说法正确的是( )A.棱柱的各个侧面都是平行四边形B.底面是矩形的四棱柱是长方体C.有一个面为多边形,其余各面都是三角形的几何体是棱锥D.直角三角形绕其一边所在直线旋转一周形成的几何体是圆锥2.(2020辽宁大连高三模拟)已知两条不同的直线l ,m 和一个平面α,下列说法正确的是( ) A.若l ⊥m ,m ∥α,则l ⊥α B.若l ⊥m ,l ⊥α,则m ∥α C.若l ⊥α,m ∥α,则l ⊥mD.若l ∥α,m ∥α,则l ∥m3.(2020广东高三一模(理))已知直三棱柱ABC-A 1B 1C 1的体积为V ,若P ,Q 分别在AA 1,CC 1上,且AP=13AA 1,CQ=13CC 1,则四棱锥B-APQC 的体积是( ) A.16VB.29VC.13VD.79V4.(2020宁夏六盘山高级中学高三模拟)对于不同的直线m ,n 和平面α,β,α⊥β的一个充分条件是( ) A.m ⊥n ,m ∥α,n ∥β B.m ⊥n ,α∩β=m ,n ⊂α C.m ∥n ,n ⊥β,m ⊂α D.m ∥n ,m ⊥α,n ⊥β5.(2020河北博野中学高三开学考试)如图,在棱长为4的正方体ABCD-A 1B 1C 1D 1中,E 为D 1C 1的中点.过点B 1,E ,A 的平面截该正方体所得的截面周长为( ) A.6√2+4√5 B.4√2+2√5 C.5√2+3√5D.8√2+4√56.(2020山东日照五莲丶潍坊安丘、潍坊诸城、临沂兰山高三6月模拟)唐朝的狩猎景象浮雕银杯如图1所示.其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R ,酒杯内壁表面积为143πR 2,设酒杯上部分(圆柱)的体积为V 1,下部分(半球)的体积为V 2,则V1V 2=( )A.2B.32C.1 D.347.(2020全国2,理10)已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1 D.√328.(2020山东泰安第二中学月考)菱形ABCD的边长为2,现将△ACD沿对角线AC折起使平面ACD'⊥平面ACB,则此时所成空间四面体体积的最大值为()A.16√327B.5√39C.1D.√34二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.在正四面体A-BCD中,E,F,G分别是BC,CD,DB的中点,下面四个结论中正确的是()A.BC∥平面AGFB.EG⊥平面ABFC.平面AEF⊥平面BCDD.平面ABF⊥平面BCD10.如图,已知圆锥的顶点为S,底面圆O的两条直径分别为AB和CD,且AB⊥CD,若平面SAD∩平面SBC=l,则以下结论正确的是()A.AD∥平面SBCB.l∥ADC.若E是底面圆周上的动点,则△SAE的最大面积等于△SAB的面积D.l与平面SCD所成角的大小为45°11.(2020河南洛阳高三模拟)如图,已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,F为棱AA1上的点,且满足A1F∶FA=1∶2,点F,B,E,G,H为过三点B,E,F的平面BMN与正方体ABCD-A1B1C1D1的棱的交点,则下列说法正确的是()A.HF∥BEB.三棱锥B1-BMN的体积为6C.直线MN与平面A1B1BA的夹角是45°D.D1G∶GC1=1∶3.则下列结论正确12.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=√22的是()A.三棱锥A-BEF的体积为定值B.当E向D1运动时,二面角A-EF-B逐渐变小C.EF在平面ABB1A1内的射影长为12D.当E与D1重合时,异面直线AE与BF所成的角为π4三、填空题:本题共4小题,每小题5分,共20分.13.正三棱锥P-ABC中,PA⊥平面ABC,∠ACB=90°,且PA=AC=BC=a,则异面直线PB与AC所成角的正切值等于.14.(2020辽宁高三二模(理))已知一个圆柱的侧面积等于表面积的一半,且其轴截面的周长是18,则该圆柱的体积是.15.(2020福建福州高三期末)《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的鳖臑P-ABC中,PA⊥平面ABC,∠ACB=90°,CA=4,PA=2,D为AB中点,E为△PAC内的动点(含边界),且PC⊥DE.①当E在AC上时,AE=;②点E的轨迹的长度为.16.(2020新高考全国1,16)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,√5为半径的球面与侧面BCC1B1的交线长为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图,已知正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM=AN=1.(1)证明:M,N,C,D1四点共面;(2)求几何体AMN-DD1C的体积.18.(12分)(2020广西南宁二中高三月考)如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;时,试确定点E的位置.(2)点E是线段DB上的一动点,当二面角E-AM-D大小为π319.(12分)(2020全国高三二模(文))如图,扇形AOB的圆心角为90°,半径为2,四边形SOBC为正方形,平⏜于点M,交OA于点N.面SOBC⊥平面AOB,过直线SC作平面SCMN交AB(1)求证:MN ∥OB ;(2)求三棱锥S-MON 体积的最大值. 20.(12分)(2020四川宜宾叙州第二中学高三一模(理))如图,已知三棱柱ABC-A 1B 1C 1中,侧棱与底面垂直,且AA 1=AB=AC=2,AB ⊥AC ,M ,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上,且A 1P ⃗⃗⃗⃗⃗⃗⃗ =λPB 1⃗⃗⃗⃗⃗⃗⃗ . (1)求证:不论λ取何值,总有AM ⊥PN ;(2)当λ=1时,求平面PMN 与平面ABC 夹角的余弦值. 21.(12分)(2020山东高三联考三模)已知直三棱柱ABC-A 1B 1C 1,AB=AC=AA 1=1,M ,N ,P 分别为A 1C 1,AB 1,BB 1的中点,且AP ⊥MN. (1)求证:MN ∥平面B 1BCC 1; (2)求∠BAC ;(3)求二面角A 1-PN-M 的余弦值.22.(12分)(2020重庆沙坪坝南开中学高三月考)如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAB⊥底面ABCD,E为PC上的点,且BE⊥平面APC.(1)求证:平面PAD⊥平面PBC;(2)当三棱锥P-ABC体积最大时,求二面角B-AC-P的余弦值.参考答案单元质检卷七空间向量与立体几何1.A对于A,根据棱柱的性质可知,棱柱的各个侧面都是平行四边形,故A正确;对于B,底面是矩形,若侧棱不垂直于底面,这时的四棱柱是斜四棱柱,不是长方体,只有底面是矩形的直四棱柱才是长方体,故B错误;对于C,有一个面为多边形,其余各面都是三角形的几何体不一定是棱锥,只有其余各面是有一个公共顶点的三角形的几何体,才是棱锥,故C错误;对于D,直角三角形绕其一条直角边所在直线旋转一周形成的几何体是圆锥,如果绕着它的斜边旋转一周,形成的几何体则是两个具有共同底面的圆锥,故D错误.故选A.2.C对选项A,如图所示,在长方体中,满足l⊥m,m∥α,此时不满足l⊥α,故A错误;对选项B,如图所示,在长方体中,满足l ⊥m ,l ⊥α,此时不满足m ∥α,故B 错误; 对选项C,若l ⊥α,m ∥α,则l ⊥m ,故C 正确. 对选项D,如图所示,在长方体中,满足l ∥α,m ∥α,不满足l ∥m ,故D 错误.故选C . 3.B 在棱BB 1上取一点H ,使BH=13BB 1,连接PH ,QH ,由题意S △PHQ =S △ABC ,BH ⊥平面PHQ ,所以V B-PHQ =13S △PHQ ·BH=13S △ABC ·13BB 1=19V ,V ABC-PHQ =S △ABC ·BH=13S △ABC ·BB 1=13V ,所以V B-APQC =V ABC-PHQ -V B-PHQ =13V-19V=29V.故选B .4.C A 选项中,根据m ⊥n ,m ∥α,n ∥β,得到α⊥β或α∥β,所以A 错误;B 选项中,m ⊥n ,α∩β=m ,n ⊂α,不一定得到α⊥β,所以B 错误;C 选项中,因为m ∥n ,n ⊥β,所以m ⊥β, 又m ⊂α,从而得到α⊥β,所以C 正确;D 选项中,根据m ∥n ,m ⊥α,所以n ⊥α,而n ⊥β,所以得到α∥β,所以D 错误.故选C . 5.A 如图,取DD 1的中点F ,连接AF ,EF ,显然EF ∥AB 1,则四边形AB 1EF 为所求的截面. 因为D 1E=C 1E=2,所以B 1E=√22+42=2√5,AB 1=√42+42=4√2,EF=√22+22=2√2,AF=√42+22=2√5,所以截面的周长为6√2+4√5.6.A 设酒杯上部分(圆柱)的高为h ,球的半径为R ,则酒杯下部分(半球)的表面积为2πR 2,酒杯内壁表面积为143πR 2,得圆柱侧面积为143πR 2-2πR 2=83πR 2,酒杯上部分(圆柱)的表面积为2πR ×h=83πR 2,解得h=43R ,酒杯下部分(半球)的体积V 2=12×43π×R 3=23πR 3,酒杯上部分(圆柱)的体积V 1=πR 2×43R=43πR 3,所以V 1V 2=43πR 323πR 3=2.故选A .7.C 设等边三角形ABC 的边长为a ,球O 的半径为R ,△ABC 的外接圆的半径为r ,则S △ABC =√34a 2=9√34,S 球O =4πR 2=16π,解得a=3,R=2.故r=23×√32a=√3.设O 到平面ABC 的距离为d ,则d 2+r 2=R 2,故d=√R 2-r 2=√4-3=1.故选C . 8.A 设AC 的中点为O ,因为D'C=D'A ,所以D'O ⊥AC.又因为平面ACD'⊥平面ACB ,平面ACD'∩平面ACB=AC ,所以D'O ⊥平面ABC ,设∠ABC=∠ADC=α,α∈(0,π),在△ACD 中,DO=AD cos α2=2cos α2,由题意可知D'O=DO=2cos α2,S △ABC =12×2×2sin α=2sin α,V D'-ABC =13S △ABC ×D'O=43sin αcos α2=83sin α2cos 2α2=83sin α21-sin 2α20<α2<π2.设t=sin α2,则V D'-ABC =83(t-t 3),且0<t<1,所以V'D'-ABC =83(1-3t 2),所以当0<t<√33时,V'D'-ABC >0,当√33<t<1时,V'D'-ABC <0,所以当t=√33时,V D'-ABC 取得最大值16√327,所以四面体D'ABC 体积的最大值为16√327.故选A .9.ABD ∵F ,G 分别是CD ,DB 的中点,∴GF ∥BC ,则BC ∥平面AGF ,故A 正确;∵E ,F ,G 分别是BC ,CD ,DB 的中点,∴CD ⊥AF ,CD ⊥BF ,AF ∩BF=F ,即CD ⊥平面ABF ,∵EG ∥CD , ∴EG ⊥平面ABF ,故B 正确; ∵CD ⊥平面ABF ,CD ⊂平面BCD ,∴平面ABF ⊥平面BCD ,故D 正确,C 错误.故选ABD .10.ABD 由AB 和CD 是圆O 的直径,且AB ⊥CD ,得四边形ABCD 为正方形,则AD ∥BC.BC ⊂平面SBC ,从而AD ∥平面SBC ,故A 正确;又因为AD ⊂平面SAD ,且平面SAD ∩平面SBC=l ,所以l ∥AD ,故B 正确; 因为S △SAE =12SA·SE sin ∠ASE ,当∠ASB 为钝角时,(S △SAE )max >S △SAB , 当∠ASB 为锐角或直角时,(S △SAE )max =S △SAB ,故C 不正确;由l ∥AD ,得l 与平面SCD 所成的角等于AD 与平面SCD 所成的角,即为∠ADO ,又因为∠ADO=45°,故D 正确.故选ABD .11.AD 对于A 选项,由于平面ADD 1A 1∥平面BCC 1B 1,而平面BMN 与这两个平面分别交于HF 和BE ,根据面面平行的性质定理可知HF ∥BE ,故A 正确;由于A 1F ∶FA=1∶2,而E 是CC 1的中点,故MA 1=1,C 1N=2.对于B 选项,V B 1-BMN =V B -M N B 1=13×12×MB 1×NB 1×BB 1=13×12×3×4×2=4,故B 错误;对于C 选项,由于B 1N ⊥平面A 1B 1BA ,所以直线MN 与平面A 1B 1BA 所成的角为∠NMB 1,且tan ∠NMB 1=B 1N B 1M =43≠1,故C 错误;对于D 选项,可知D 1G=12,GC 1=32,故D 正确. 综上可知,正确的为AD,故选AD .12.AC 连接BD ,AC ,交于点O ,由正方体性质知BDD 1B 1是矩形,∴S △BEF =12EF·BB 1=12×√22×1=√24,由正方体性质知AO ⊥平面BDD 1B 1,∴AO 是点A 到平面BDD 1B 1的距离,即AO=√22,∴V A-BEF =13S △BEF ×AO=13×√24×√22=112,∴V A-BEF 是定值,故A 正确;连接A 1C 1与B 1D 1交于点M ,连接AD 1,AB 1,由正方体性质知AD 1=AB 1,M 是B 1D 1中点,∴AM ⊥EF ,又BB 1⊥EF ,BB 1∥AA 1,∴二面角A-EF-B 的平面角即为∠A 1AM ,在直角三角形AA 1M 中,tan ∠MAA 1=√22为定值,故B 不正确;如图,作FH ⊥A 1B 1,EG ⊥A 1B 1,FT ⊥EG ,垂足分别为点H ,G ,T.在直角三角形EFT 中,FT=cos45°×EF=√22×√22=12,∴HG=FT=12,故C 正确;当E 与D 1重合时,F 与M 重合,连接AC 与BD 交于点R ,连接D 1R ,D 1R ∥BM ,异面直线AE 与BF 所成的角,即为直线AD 1与D 1R 所成的角,在△AD 1R 中,AD 1=√2,D 1R=MB=√BB 12+MB 12=√62,AR=√22, 由余弦定理得cos ∠AD 1R=√32,则∠AD 1R=π6,故D 不正确,故选AC .13.√2 如图所示将此三棱锥补成正方体DBCA-D 1B 1C 1P ,则PB 与AC 所成的角的大小即此正方体体对角线PB 与棱BD 所成角的大小,在Rt △PDB 中,tan ∠DBP=PD DB=√2,∴异面直线PB 与AC 所成角的正切值为√2.14.27π 设圆柱的底面圆的半径为r ,高为h.由题意可得{2πrℎ2πr 2+2πrℎ=12,2(2r +ℎ)=18,解得r=h=3,则该圆柱的体积是πr 2h=27π. 15.①2 ②2√55①当E 在AC 上时,因为PA ⊥平面ABC ,故PA ⊥DE ,又PC ⊥DE ,故DE ⊥平面PAC.故DE ⊥AC.又∠ACB=90°,D 为AB 中点,故DE ∥BC ,所以E 为AC 中点.故AE=12AC=2. ②取AC 中点F ,则由①知DF ⊥平面PAC ,故PC ⊥DF ,又PC ⊥DE ,设平面DEF ∩PC=G ,则有PC ⊥平面DGF.故点E 的轨迹为线段FG.又此时CF=2,故sin ∠PCA=√22+42=√55.所以FG=CF·sin ∠PCA=2√55. 16.√22π 如图所示,∵∠B 1C 1D 1=∠B 1A 1D 1=∠BAD=60°,且B 1C 1=C 1D 1,∴△B 1C 1D 1为等边三角形. ∴B 1D 1=2.设点O 1是B 1C 1的中点,则O 1D 1=√3,易证D 1O 1⊥平面BCC 1B 1,设P 是球面与侧面BCC 1B 1交线上任意一点,连接O 1P ,则O 1D 1⊥O 1P ,∴D 1P 2=D 1O 12+O 1P 2,即5=3+O 1P 2,∴O 1P=√2.即P 在以O 1为圆心,以√2为半径的圆上.取BB 1,CC 1的中点分别为E ,F ,则B 1E=C 1F=O 1B 1=O 1C 1=1,EF=2, ∴O 1E=O 1F=√2,O 1E 2+O 1F 2=EF 2=4,∴∠EO 1F=90°, ∴交线EPF⏜=14×2√2×π=√22π. 17.(1)证明∵A 1D 1∥AD ,A 1D 1=AD ,又BC ∥AD ,BC=AD ,∴A 1D 1∥BC ,且A 1D 1=BC ,连接A 1B ,则四边形A 1BCD 1是平行四边形,所以A 1B ∥D 1C.在△ABA 1中,AM=AN=1,AA 1=AB=3,所以AM AA 1=ANAB ,所以MN ∥A 1B ,所以MN ∥D 1C ,所以M ,N ,C ,D 1四点共面. (2)解因为平面ABB 1A 1∥平面DCC 1D 1,又M ,N ,C ,D 1四点共面,所以平面AMN ∥平面DD 1C , 延长CN 与DA 相交于点P ,因为AN ∥DC , 所以AN DC=PA PD,即13=PAPA+3,解得PA=32,同理延长D 1M 与DA 相交于点Q ,可得QA=32,所以点P 与点Q 重合,所以D 1M ,DA ,CN 三线相交于一点,所以几何体AMN-DD 1C 是一个三棱台,所以V AMN -DD 1C =13×12+√12×92+92×3=132. 18.解取AM 的中点O ,AB 的中点N ,则ON ,OA ,OD 两两垂直,以O 为原点建立如图所示的空间直角坐标系,则A (√22,0,0),B -√22,√2,0,M -√22,0,0,D 0,0,√22.(1)证明:由于AD ⃗⃗⃗⃗⃗ =-√22,0,√22,BM ⃗⃗⃗⃗⃗⃗ =(0,-√2,0),则AD ⃗⃗⃗⃗⃗ ·BM ⃗⃗⃗⃗⃗⃗ =0,故AD ⃗⃗⃗⃗⃗ ⊥BM ⃗⃗⃗⃗⃗⃗ ,即AD ⊥BM.(2)解:设存在满足条件的点E ,并设DE ⃗⃗⃗⃗⃗ =N DB ⃗⃗⃗⃗⃗⃗ ,λ∈(0,1],DB⃗⃗⃗⃗⃗⃗ =-√22,√2,-√22,则DE ⃗⃗⃗⃗⃗ =λ-√22,√2,-√22,则点E 的坐标为-√22N ,√2N ,√22−√22N ,λ∈(0,1].易得平面ADM 的法向量可以取n 1=(0,1,0),设平面AME 的法向量为n 2=(x ,y ,z ),则AM ⃗⃗⃗⃗⃗⃗ =(-√2,0,0),AE ⃗⃗⃗⃗⃗ =-√22N -√22,√2N ,√22−√22N ,则{n 2·AM ⃗⃗⃗⃗⃗⃗ =0,n 2·AE ⃗⃗⃗⃗⃗ =0,所以{-√2x =0,(-√22λ-√22)x +√2λy +(√22-√22λ)z =0,故n 2=(0,λ-1,2λ). cos <n 1,n 2>=n 1·n 2|n 1||n 2|=√(λ-1)+4λ2,由于二面角E-AM-D 大小为π3, 故cos π3=√(λ-1)+4λ2=12,由于λ∈(0,1],故解得λ=2√3-3或-2√3-3(舍去). 故当E 位于线段DB 之间,且DE DB=2√3-3时,二面角E-AM-D 大小为π3.19.(1)证明因为SC ∥OB ,SC ⊂平面SCMN ,OB ⊄平面SCMN ,所以OB ∥平面SCMN.又OB ⊂平面AOB ,平面SCMN ∩平面AOB=MN ,所以MN ∥OB. (2)解因为平面SOBC ⊥平面AOB ,平面SOBC ∩平面AOB=OB ,SO ⊥OB ,所以SO ⊥平面AOB ,即线段SO 的长就是三棱锥S-MON 的高. 因为OA ⊥OB ,MN ∥OB , 所以MN ⊥OA.设ON=x (0<x<2),则MN=√4-x 2,所以三棱锥S-MON 的体积为V=13SO ·12ON·MN=13×2×12×x ×√4-x 2=13x ×√4-x 2=13√4x 2-x 4=13√4-(x 2-2)2.所以,当x=√2时,三棱锥S-MON 体积有最大值,V max =23.20.解以点A 为坐标原点,以AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A-xyz ,A 1(0,0,2),B 1(2,0,2),M (0,2,1),N (1,1,0),则A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,0,0),AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),AN ⃗⃗⃗⃗⃗⃗ =(1,1,0).(1)证明:∵A 1P ⃗⃗⃗⃗⃗⃗⃗ =N PB 1⃗⃗⃗⃗⃗⃗⃗ =λ(A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ −A 1P ⃗⃗⃗⃗⃗⃗⃗ ), ∴A 1P ⃗⃗⃗⃗⃗⃗⃗ =λ1+λA 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2λ1+λ,0,0), ∵AP ⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +A 1P ⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)+2λ1+λ,0,0=2λ1+λ,0,2,PN ⃗⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗⃗⃗ −AP ⃗⃗⃗⃗⃗ =(1,1,0)-(2λ1+λ,0,2)=1-λ1+λ,1,-2.∵AM⃗⃗⃗⃗⃗⃗ =(0,2,1),∴AM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ =0+2-2=0,即AM ⃗⃗⃗⃗⃗⃗ ⊥PN ⃗⃗⃗⃗⃗⃗ ,因此,无论λ取何值,都有AM ⊥PN.(2)解:当λ=1时,P (1,0,2),PN⃗⃗⃗⃗⃗⃗ =(0,1,-2),PM ⃗⃗⃗⃗⃗⃗ =(-1,2,-1), 而平面ABC 的法向量n =(0,0,1),设平面PMN 的法向量为m =(x ,y ,z ),则{m ·PM⃗⃗⃗⃗⃗⃗ =0,m ·PN ⃗⃗⃗⃗⃗⃗ =0,∴{-x +2y -z =0,y -2z =0,则m =(3,2,1),设平面PMN 与平面ABC 的夹角为θ,则cos θ=|m ·n ||m ||n |=√1414. 因此,平面PMN 与平面ABC 的夹角的余弦值是√1414. 21.(1)证明取B 1C 1的中点Q ,连接MQ ,NP ,PQ ,则MQ ∥A 1B 1,且MQ=12A 1B 1,PN ∥AB ,且PN=12AB ,又AB ∥A 1B 1,AB=A 1B 1,所以PN ∥MQ ,且PN=MQ , 所以PNMQ 为平行四边形,所以MN ∥PQ. 又MN ⊄平面B 1BCC 1,PQ ⊂平面B 1BCC 1, 所以MN ∥平面B 1BCC 1. (2)解设AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c ,∠BAC=θ,由已知可得,|a |=|b |=|c |=1,且a ·c =b ·c =0,则AP ⃗⃗⃗⃗⃗ =a +12c ,NM ⃗⃗⃗⃗⃗⃗⃗ =PQ ⃗⃗⃗⃗⃗ =12BB 1⃗⃗⃗⃗⃗⃗⃗ +12B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12c +12b -12a ,因为AP ⊥MN ,所以AP ⃗⃗⃗⃗⃗ ·NM ⃗⃗⃗⃗⃗⃗⃗ =a +12c 12c +12b -12a =12a ·b -12a 2+14c 2=12cos θ-14=0, 所以cos θ=12,即∠BAC=60°.(3)解在平面ABC 内过点A 做射线l 垂直于AB ,易知AB ,l ,AA 1两两垂直,建立如图所示的空间直角坐标系A-xyz ,则P 1,0,12,M14,√34,1,N12,0,12,n 1=(0,1,0)为平面A 1PN 的一个法向量,MN ⃗⃗⃗⃗⃗⃗⃗ =14,-√34,-12,PN⃗⃗⃗⃗⃗⃗ =-12,0,0.设n 2=(x ,y ,z )为平面PMN 的一个法向量,则{n 2·MN ⃗⃗⃗⃗⃗⃗⃗ =0,n 2·PN ⃗⃗⃗⃗⃗⃗ =0,所以{14x -√34y -12z =0,-12x =0,令y=1,则n 2=0,1,-√32,则cos <n 1,n 2>=n 1·n 2|n 1||n 2|=11×√74=2√77,由图知二面角A 1-PN-M 的平面角是锐角,所以二面角A 1-PN-M 的余弦值为2√77. 22.(1)证明∵侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD=AB ,四边形ABCD 为正方形,∴BC ⊥AB ,∴BC ⊥平面PAB ,又AP ⊂平面PAB ,∴AP ⊥BC ,又BE ⊥平面APC ,AP ⊂平面PAC ,∴AP ⊥BE ,∵BC ∩BE=B ,BC ,BE 在平面PBC 中,∴AP ⊥平面PBC ,又AP ⊂平面PAD , ∴平面PAD ⊥平面PBC.(2)解V P-ABC =V C-APB =13×12×PA ×PB ×BC=13×PA ×PB ,求三棱锥P-ABC 体积的最大值,只需求PA ×PB 的最大值.令PA=x ,PB=y ,由(1)知,PA ⊥PB ,∴x 2+y 2=4, 而V P-ABC =13xy ≤13×x 2+y 22=23,当且仅当x=y=√2,即PA=PB=√2时,V P-ABC 的最大值为23.如图所示,分别取线段AB ,CD 中点O ,F ,连接OP ,OF ,以点O 为坐标原点,以OP ,OB 和OF 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系O-xyz. 由已知A (0,-1,0),C (0,1,2),P (1,0,0),∴AP ⃗⃗⃗⃗⃗ =(1,1,0),AC ⃗⃗⃗⃗⃗ =(0,2,2), 令平面PAC 的一个法向量n =(x ,y ,z ),则{n ·AP⃗⃗⃗⃗⃗ =0,n ·AC ⃗⃗⃗⃗⃗ =0,∴{x +y =0,2y +2z =0, ∴n =(1,-1,1).易知平面ABC 的一个法向量m =(1,0,0),设二面角B-AC-P 的平面角为θ,由图知θ为锐角, 则cos θ=|n ·m |n ||m ||=|√3=√33.。
《立体几何》测试及答案(时间:120分钟满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1 .已知平而。
内的一条直线1及平而£,则'3_L £”是“ a_L £”的()A.充分必要条件B.充分不必要条件C.必要不充分条件 D,既不充分也不必要条件 解析根据直线与平面垂直的判定定理,由lu "”可证得“a_L £”,即充分性是 成立的.反之由“ a 工B,k a”不一定得到“AL £”,即必要性不成立.所以是 “。
J_ £ ”的充分不必要条件.故选B.答案B72 .已知圆锥的顶点为凡母线州,所所成角的余弦值为石,以与圆锥底面所成角为45° ,若 O △为5的面积为5仃,则该圆锥的侧面积为() A. 40(72 +1) nB. 40^2 HC.8(4i5 + 5) nD. 8710 n解析设。
为圆锥底而圆的圆心,设底而圆的半径为r.以与圆锥底而所成角为45° ,即/80=45°.所以以=小厂7 7母线闩1,所所成角的余弦值为5即cosN 川沙=小 o o 由 S^=^PA • j^sinZJj^=|x2?X^^=5J15. A?=40, , 2 o v故 S 秘侧=n r • PA — n r • \[2r=y[2 n y = 4(h/2 n .答案B3 .如图,在正四棱柱物/一儿RG 〃中,底而边长为2,直线。
乙与平而月以所成角的正弦值 为今则该正四棱柱的高为()贝I] sinN 川哈、= 7、J15 S 8A. 2B. 3C. 4D. 5解析以〃为坐标系原点,DA, DC 、弧所在直线分别为x, y, z 轴建立空间直角坐标系。
一 xyz,如图所示,设正四棱柱的高为方,则。
(0, 0,0),月(2, 0, 0),。
(0, 2, 0), 〃(0, 0, 血,4(0, 2,a ),五=(0, 0,方),赤=(-2, 2, 0),遨=(0, -2,方).设平而月曲的法n • m —2乂+2%=0,向量为〃=(%,必,%),则j —令二=2,则必=方,&=方,A=(/b h,.n •速=-2%+方冬=0, 2)为平面月四的一个法向量.又直线CG 与平面月8所成角的正弦值为所以cos " CG )答案C4 .设三棱柱 四。
[时间120分钟,满分150分]一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·济宁一模)已知m,n是空间两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是A.若α∥β,m⊂α,n⊂β,则m∥n B.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊂β,α⊥β,则m⊥αD.若m⊥β,m∥α,则α⊥β解析根据线面垂直的判定和性质可知,D正确.答案D2.(2013·课标全国Ⅱ)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为解析结合已知条件画出图形,然后按照要求作出正视图.根据已知条件作出图形:四面体C1-A1DB,标出各个点的坐标如图(1)所示,可以看出正视图是正方形,如图(2)所示.故选A.答案A3.在空间中,不同的直线m,n,l,不同的平面α,β,则下列命题正确的是A.m∥α,n∥α,则m∥n B.m∥α,m∥β,则α∥βC.m⊥l,n⊥l,则m∥n D.m⊥α,m⊥β,则α∥β答案D4.(2013·大兴一模)已知平面α,β,直线m,n,下列命题中不正确的是A.若m⊥α,m⊥β,则α∥βB.若m∥n,m⊥α,则n⊥αC.若m∥α,α∩β=n,则m∥n D.若m⊥α,m⊂β,则α⊥β解析C中,当m∥α时,m只和过m平面与β的交线平行,所以C不正确.答案C5.(2013·滨州模拟)一个几何体的三视图如图所示,则该几何体的体积为A.1解析由三视图可知,该几何体是四棱锥,以俯视图为底,高为1,俯视图的面积为1×1=1,所以四棱锥的体积为13×1×1=13,选B.答案B6.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内的三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面垂直解析A不正确,满足条件的直线可能相交也可能异面;B不正确,当两个平面相交时也满足条件;由线面平行的性质定理可知C正确;D不正确,垂直于同一个平面的两个平面可能平行,也可能相交.答案C7.某几何体的三视图如图所示,则该几何体的表面积为πB .22πC .(22+1)πD .(22+2)π解析 由三视图可知该几何体是两个高相等、底面完全重合的圆锥,圆锥的底面半径为1,高为1,则该几何体的表面积为2×πrl =2×π×1×2=22π.答案 B8.设m ,n 是不同的直线,α,β,γ是不同的平面,有以下四个命题: ① ⎭⎬⎫α∥βα∥γ⇒β∥γ;② ⎭⎬⎫α⊥βm ∥α⇒m ⊥β; ③⎭⎬⎫m ⊥αm ∥β⇒α⊥β;④⎭⎬⎫m ∥n n ⊂α⇒m ∥α. 其中真命题的是 A .①③B .①④C .②③D .②④解析 ①正确,平行于同一平面的两平面平行;②中m 可能在平面β内,也可能m ∥β,m ⊥β,③正确.④中可能m ⊂α.答案 A9.(2013·临汾模拟)若某几何体的三视图是如图所示的三个直角三角形,则该几何体的外接球的表面积为A .10πB .50πC .25πD .100π解析 由三视图可知该几何体为三棱锥,并且在同一顶点上的三条棱两两垂直,且棱长分别为3、4、5,故该几何体的外接球也就是棱长分别为3、4、5长方体的外接球,则该外接球的半径R =1232+42+52=522,所以S =4πR 2=50π.答案 B10.(2013·太原模拟)几何体ABCDEP 的三视图如图,其中正视图为直角梯形,侧视图为直角三角形,俯视图为正方形,则下列结论中不成立的是A .BD ∥平面PCEB .AE ⊥平面PBC C .平面BCE ∥平面ADPD .CE ∥DP解析 由三视图可知,该几何体的底面是正方形,且棱EB 和PA 都与底面ABCD 垂直.若CE ∥DP ,则CE 在平面PDA 上的射影和DP 平行,这和几何体的侧视图矛盾,故选项D 不成立.答案 D11.若底面边长为a 的正四棱锥的全面积与棱长为a 为正方体的全面积相等,那么这个正四棱锥的侧棱与底面所成角的余弦值为解析 由题意知正四棱锥的每个侧面面积为54a 2.设正四棱锥的侧棱长为x ,则正四棱锥的斜高h ′=x 2-a 24,所以有12x2-a24·a=54a2,解得x=262a.所以正四棱锥的侧棱与底面所有角的余弦值为22a262a=1313.答案C12.如图所示,正方体ABCD-A1B1C1D1中,E、F分别是正方形ADD1A1和ABCD的中心,G是CC1的中点,设GF、C1E与AB所成的角分别是α、β,则α+β等于A.120°B.60°C.75°D.90°解析选BC的中点M,连接FM、MG,则∠GFM为GF与AB所成的角;连接ED1,则∠EC1D1为C1E与AB所成的角.计算出MF,MG,ED1的长度可知C1D1D1E=MGMF,故Rt△GMF∽Rt△C1ED,∴∠GFM+∠EC1D1=90°.选D.答案D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.将边长为2的正方形沿对角线AC折起,以A,B,C,D为顶点的三棱锥的体积最大值等于________.解析如图所示,设O是正方形ABCD的对角线AC和BD的交点,AH是点A到平面BCD的距离,因为S△BCD=2,所以当AH最大时,所求三棱锥的体积就最大,由图可知当点H与点O重合时,AH最大,此时AH=AO=2,则三棱锥的体积最大值为V=13×2×2=223.答案22314.(2013·扬州模拟)正四面体ABCD 中,AO ⊥平面BCD ,垂足为O ,设M 是线段AO 上一点,且∠BMC 是直角,则AMMO 的值为________.解析 如图所示,设正四面体ABCD 的棱长为2,由条件知O 是正三角形BCD 的重心,所以BO =CO =233,AD =22-⎝ ⎛⎭⎪⎫2332=263.设MO =x ,则CM 2=BM 2=x 2+43.又因为∠BMC 是直角,所以BC 2=CM 2+BM 2, 即4=2⎝ ⎛⎭⎪⎫x 2+43,解得x =63,∴MO =63,即MO =12AO , 故AMMO =1. 答案 115.如图,四边形ABCD 为菱形,四边形CEFB 为正方形,平面ABCD ⊥平面CEFB ,CE =1,∠AED =30°,则异面直线BC 与AE 所成的角的大小为________.解析 由题意,正方形和菱形的边长均为1. 又面ABCD ⊥平面CEFB ,所以CE ⊥平面ABCD ,于是CE ⊥CD ,从而DE = 2.在△ADE 中,AD =1,DE =2,∠AED =30°, 由正弦定理得AD sin ∠AED =DEsin ∠EAD,所以sin ∠EAD =DE ·sin ∠AED AD =22, 故∠EAD =45°.又BC ∥AD ,所以异面直线BC 与AE 所成角为∠EAD ,即45°. 答案 45°16.设l ,m ,n 表示不同的直线,α、β、γ表示不同的平面,给出下列四个命题:①若m ∥l ,且m ⊥α,则l ⊥α;②若m ∥l ,且m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ;④若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ∥β,则l ∥m .其中正确命题的个数为________.解析 ①正确.②中当直线l ⊂α时,不成立.③中,还有可能相交于一点,不成立.④正确,故有2个正确的命题.答案 2三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)(2013·济南模拟)如图,斜三棱柱A 1B 1C 1-ABC 中,侧面AA 1C 1C ⊥底面ABC ,底面ABC 是边长为2的等边三角形,侧面AA 1C 1C 是菱形,∠A 1AC =60°,E 、F 分别是A 1C 1、AB 的中点.(1)求证:EC ⊥平面ABC ; (2)求三棱锥A 1-EFC 的体积.解析 (1)证明 在平面AA 1C 1C 内,作A 1O ⊥AC ,O 为垂足. 因为∠A 1AC =60°,所以AO =12AA 1=12AC , 即O 为AC 的中点,所以OC 綊A 1E . 因而EC 綊A 1O .因为侧面AA 1C 1C ⊥底面ABC ,交线为AC ,A 1O ⊥AC , 所以A 1O ⊥底面ABC ,所以EC ⊥底面ABC .(5分)(2)F 到平面A 1EC 的距离等于B 点到平面A 1EC 距离BO 的一半,而BO =3,所以VA1-EFC=VF-A1EC=13S△A1EC·12BO=13·12A1E·EC·32=13·12·3·32=14.(10分)18.(12分)如图,直三棱柱ABC-A1B1C1中,△ABC是等边三角形,D是BC的中点.(1)求证:直线A1D⊥B1C1;(2)判断A1B与平面ADC1的位置关系,并证明你的结论.解析(1)证明在直三棱柱ABC-A1B1C1中,AA1⊥面ABC,所以AA1⊥BC.在等边△ABC中,D是BC中点,所以AD⊥BC.因为在平面A1AD中,A1A∩AD=A,所以BC⊥面A1AD.又因为A1D⊂面A1AD,所以,A1D⊥BC.(3分)在直三棱柱ABC-A1B1C1中,四边形BCC1B1是平行四边形,所以B1C1∥BC,所以A1D⊥B1C1.(6分)(2)在直三棱柱ABC-A1B1C1中,四边形ACC1A1是平行四边形,在平行四边形ACC1A1中连接A1C,交于AC1点O,连接DO.则O为A1C中点.在三角形A1CB中,D为BC中点,O为A1C中点,故DO∥A1B.(10分)因为DO⊂平面DAC1,A1B⊄平面DAC1,所以A1B∥面ADC1,故A1B与面ADC1平行.(12分)19.(12分)(2013·门头沟区一模)如图,已知平面α,β,且α∩β=AB,PC⊥α,PD⊥β,C,D 是垂足.(1)求证:AB⊥平面PCD;(2)若PC=PD=1,CD=2,试判断平面α与平面β是否垂直,并证明你的结论.解析(1)证明因为PC⊥α,AB⊂α,所以PC⊥AB.同理PD⊥AB.又PC∩PD=P,故AB⊥平面PCD.(5分)(2)平面α与平面β垂直.(6分)证明设AB与平面PCD的交点为H,连接CH、DH.因为PC⊥α,所以PC⊥CH.在△PCD中,PC=PD=1,CD=2,所以CD2=PC2+PD2=2,即∠CPD=90°.在平面四边形PCHD中,PC⊥PD,PC⊥CH,所以PD∥CH.(10分)又PD⊥β,所以CH⊥β,所以平面α⊥平面β.(12分)20.(12分)如图,直三棱柱ABC-A1B1C1中,△ABC是等边三角形,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)若AB=BB1=2,求A1D与平面AC1D所成角的正弦值.解析(1)证明因为三棱柱ABC-A1B1C1是直三棱柱,所以四边形A1ACC1是矩形.连接A1C交AC1于O,则O是A1C的中点.又D是BC的中点,所以在△ADC1中,OD∥A1B.(3分)因为A1B⊄平面ADC1,OD⊂平面ADC1,所以A1B∥平面ADC1.(5分)(2)因为△ABC是等边三角形,D是BC的中点,所以AD⊥BC.以D为原点,建立如图所示空间坐标系D-xyz.由已知AB =BB 1=2,得D (0,0,0),A (3,0,0),A 1(3,0,2),C 1(0,-1,2).(6分) 则DA →=(3,0,0),DC 1→=(0,-1,2),设平面ADC 1的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·DA →=0n ·DC 1→=0,得到⎩⎨⎧3x =0-y +2z =0,令z =1,则x =0,y =2, 所以n =(0,2,1).(8分)又DA 1→=(3,0,2),得n ·DA 1→=0×3+2×0+1×2=2, 所以cos 〈DA 1→,n 〉=25×7=23535. 设A 1D 与平面ADC 1所成角为θ,则sin θ=|cos 〈DA 1→,n 〉|=23535,(11分) 所以A 1D 与平面ADC 1所成角的正弦值为23535.(12分)21.(12分)(2013·南京模拟)如图,在直角梯形ABCP 中,AP ∥BC ,AP ⊥AB ,AB =BC =12AP =2,D 是AP 的中点,E 、F 、G 分别为PC 、PD 、CB 的中点,将△PCD 沿CD 折起,使得PD ⊥平面ABCD .(1)求证:平面PCD ⊥平面PAD ;(2)求面GEF 与面EFD 所成锐二面角的大小. 解析 (1)证明 ∵PD ⊥平面ABCD ,∴PD ⊥CD .∵CD ⊥AD ,∴CD ⊥平面PAD .∵CD ⊂平面PCD ,∴平面PCD ⊥平面PAD .(5分)(2)如图以D 为原点,以DA→,DC →,DP →为方向向量建立空间直角坐标系D -xyz .则有关点及向量的坐标为G (1,2,0),E (0,1,1),F (0,0,1),EF →=(0,-1,0),EG →=(1,1,-1).(7分)设平面EFG 的法向量为n =(x ,y ,z ),∴⎩⎪⎨⎪⎧ n ·EF →=0n ·EG →=0⇒⎩⎨⎧ -y =0x +y -z =0⇒⎩⎨⎧x =z y =0. 取n =(1,0,1)平面EFG 的一个法向量.(10分)∵DA→=(1,0,0)为平面EFD 的法向量, ∴cos 〈DA →,n 〉=DA →·n |DA →|·|n |=22. ∴面GEF 与面EFD 所成锐二面角的大小为45°.(12分)22.(12分)(2013·朝阳一模)如图,在四棱锥P -ABCD 中,平面PAC ⊥平面ABCD ,且PA ⊥AC ,PA =AD =2.四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1,点E ,F 分别为侧棱PB ,PC 上的点,且PE PB =PF PC =λ.(1)求证:EF ∥平面PAD ;(2)当λ=12时,求异面直线BF 与CD 所成角的余弦值;(3)是否存在实数λ,使得平面AFD ⊥平面PCD 若存在,试求出λ的值;若不存在,请说明理由.解析 (1)证明 由已知,PE PB =PF PC =λ,所以EF ∥BC .因为BC ∥AD ,所以EF ∥AD .而EF ⊄平面PAD ,AD ⊂平面PAD ,所以EF ∥平面PAD .(4分)(2)因为平面ABCD ⊥平面PAC ,平面ABCD ∩平面PAC =AC ,且PA ⊥AC ,所以PA ⊥平面ABCD ,所以PA ⊥AB ,PA ⊥AD .又因为AB ⊥AD ,所以PA ,AB ,AD 两两垂直.如图所示,建立空间直角坐标系,因为AB =BC =1,PA =AD =2,所以A (0,0,0),B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).当λ=12时,F 为PC 中点,所以F ⎝ ⎛⎭⎪⎫12,12,1, 所以BF →=⎝ ⎛⎭⎪⎫-12,12,1,CD →=(-1,1,0). 设异面直线BF 与CD 所成的角为θ,所以cos θ=|cos 〈BF →,CD →〉|=⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫-12,12,1·-1,1,014+14+1×2=33, 所以异面直线BF 与CD 所成角的余弦值为33.(8分)(3)设F (x 0,y 0,z 0),则PF →=(x 0,y 0,z 0-2), PC→=(1,1,-2). 由已知PF →=λPC →,所以(x 0,y 0,z 0-2)=λ(1,1,-2), 所以⎩⎨⎧ x 0=λ,y 0=λ,z 0=2-2λ.所以AF→=(λ,λ,2-2λ). 设平面AFD 的一个法向量为n 1=(x 1,y 1,z 1).因为AD →=(0,2,0),所以⎩⎪⎨⎪⎧ n 1·AF →=0,n 1·AD →=0. 即⎩⎨⎧ λx 1+λy 1+2-2λz 1=0,2y 1=0.令z 1=λ,得n 1=(2λ-2,0,λ).设平面PCD 的一个法向量为n 2=(x 2,y 2,z 2).因为PD→=(0,2,-2),CD →=(-1,1,0), 所以⎩⎪⎨⎪⎧ n 2·PD →=0,n 2·CD →=0.即⎩⎨⎧2y 2-2z 2=0,-x 2+y 2=0. 令x 2=1,则n 2=(1,1,1).若平面AFD ⊥平面PCD ,则n 1·n 2=0,所以(2λ-2)+λ=0,解得λ=23.所以当λ=23时,平面AFD ⊥平面PCD .(12分)]。
2024最新立体几何知识点归纳立体几何是数学中的一个分支,主要研究空间中的点、直线、平面以及它们之间的关系。
下面是2024年最新的一些立体几何知识点的归纳:1.点、直线和平面的基本性质:点是空间中没有大小的.直线是由无数个点无限延伸而成的,直线上的任意两点可以确定一条直线.平面是由无数个点组成的,其中任意三点不在同一条直线上.2.垂直和平行:在空间中,直线或平面可以相互关系,其中垂直是指两条直线或平面相互垂直于其他直线或平面,平行是指两条直线或平面在空间中保持恒定的距离和方向.3.立体角:在空间中,两条相交直线所围成的角称为立体角,立体角的度量单位是弧度.它是一个三维的角度,可以用来描述空间中的物体在不同角度下的相对位置.4.体积和表面积:体积是指物体所占据的空间的大小,可以通过计算物体所包围的空间的体积得到.表面积是指物体外部的曲面的总面积.计算物体的体积和表面积是进行几何计算的重要内容之一.5.球体和圆锥体:球体是由半径相等的所有点组成的空间几何体,圆锥体是由一个圆和这个圆上的一个点出发的所有直线段组成的几何体.计算球体和圆锥体的体积和表面积是应用立体几何的重要内容之一.6.平行四边形和正方体:平行四边形是一个具有平行的对边的四边形,正方体是一个具有相等的边长和直角的立方体.计算平行四边形和正方体的面积和体积是立体几何的应用之一.7.相似与全等:相似是指两个图形在形状上相似,但是尺寸不同.全等是指两个图形在形状和尺寸上完全相同.利用相似与全等的性质可以解决一些几何问题.8.中点定理和切线定理:中点定理是指连接一条三角形两边中点的线段平行于第三边,并且长度等于第三边的一半.切线定理是指一条直线与一个圆相切于点A的切线,那么切线上的切点与圆心A、切点、圆心连线的夹角是直角.9.三视图和投影:三视图是指一个立体物体从不同方向观察到的投影,包括正视图、侧视图和俯视图.投影是指立体物体在一个平面上的投影,可以通过投影图来描述对象在不同角度下的位置和形状.10.空间几何的应用:立体几何的应用广泛,包括建筑设计、工程测量、机械制图等领域.运用立体几何的知识可以帮助解决实际问题,提高设计和测量的精确度.这些是2024年最新的一些立体几何知识点的归纳,掌握这些知识可以帮助我们更好地理解和应用立体几何.当然,立体几何是一个广阔而深奥的领域,还有很多其他的知识点和应用等待我们进一步探究和学习.。
第七章立体几何阶段检测试题时间:120分钟分值:150分一、选择题(每小题5分,共60分)1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析:根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案:B2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:由BC綊AD,AD綊A1D1知,BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1C,EF∩D1C=F,则A1B与EF相交.答案:A3.(2017·嘉兴月考)对于空间的两条直线m,n和一个平面α,下列命题中的真命题是( )A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n解析:对A,直线m,n可能平行、异面或相交,故选项A错误;对B,直线m与n可能平行,也可能异面,故选项B错误;对C,m与n垂直而非平行,故选项C错误;对D,垂直于同一平面的两直线平行,故选项D正确.答案:D4.设P是异面直线a,b外的一点,则过点P与a,b都平行的平面()A.有且只有一个B.恰有两个C.不存在或只有一个D.有无数个解析:过点P作a1∥a,b1∥b,若过a1,b1的平面不经过a,b,则存在一个平面同时与a,b平行;若过a,b1的平面经过a或b,则不存在这样的平面同时与a,b平行.1答案:C5.若平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面解析:由平面α∥平面β知,直线AC与BD无公共点,则直线AC∥直线BD的充要条件是A,B,C,D四点共面.答案:D6.已知a,b为两条不同的直线,α,β为两个不同的平面,且a⊥α,b⊥β,则下列命题中的假命题是()A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a,b相交,则α,β相交D.若α,β相交,则a,b相交解析:若α,β相交,则a,b可能相交,也可能异面,故D为假命题.答案:D7.一个几何体的侧视图和俯视图如图所示,若该几何体的体积为错误!,则它的正视图为()解析:由几何体的侧视图和俯视图,可知几何体为组合体,由几何体的体积为错误!,可知上方为棱锥,下方为正方体.由俯视图可得,棱锥顶点在底面上的射影为正方形一边上的中点,顶点到正方体上底面的距离为1,所以选B.答案:B8.已知一个几何体的三视图如图所示,则该几何体的体积为()A.27-错误!B.18-错误!C.27-3πD.18-3π解析:由几何体的三视图可知该几何体可以看成是底面是梯形的四棱柱挖去了半个圆柱,所以所求体积为错误!×(2+4)×2×3-错误!π×12×3=18-错误!。
第七篇 第7节一、选择题1.若直线l 的方向向量为a ,平面α的法向量为n ,有可能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)解析:若l ∥α,则a·n =0. 而选项A 中a·n =-2. 选项B 中a·n =1+5=6. 选项C 中a·n =-1, 选项D 中a·n =-3+3=0, 故选D. 答案:D2.直线l 的方向向量s =(-1,1,1),平面α的法向量为n =(2,x 2+x ,-x ),若直线l ∥平面α,则x 的值为( )A .-2B .- 2C . 2D .±2解析:线面平行时,直线的方向向量垂直于平面的法向量, 故-1×2+1×(x 2+x )+1×(-x )=0,解得x =±2. 答案:D3.如图所示,正方体ABCDA 1B 1C 1D 1中,E 、F 分别在A 1D 、AC 上,且A 1E =23A 1D ,AF =13AC ,则( )A .EF 至多与A 1D ,AC 之一垂直B .EF ⊥A 1D ,EF ⊥AC C .EF 与BD 1相交 D .EF 与BD 1异面解析:以D 点为坐标原点,以DA 、DC 、DD1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体棱长为1,则A 1(1,0,1),D (0,0,0), A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫13,0,13,F ⎝⎛⎭⎫23,13,0, B (1,1,0),D 1(0,0,1),A 1D →=(-1,0,-1),AC →=(-1,1,0), EF →=⎝⎛⎭⎫13,13,-13,BD 1→=(-1,-1,1), EF →=-13BD 1→,A 1D →·EF →=AC →·EF →=0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC .故选B. 答案:B4.如图所示,ABCDA 1B 1C 1D 1是棱长为6的正方体,E 、F 分别是棱AB 、BC 上的动点,且AE =BF .当A 1、E 、F 、C 1共面时,平面A 1DE 与平面C 1DF 所成锐二面角的余弦值为( )A .32B .12C .15D .265解析:以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,易知当E (6,3,0)、F (3,6,0)时,A 1、E 、F 、C 1共面,设平面A 1DE 的法向量为n 1=(a ,b ,c ),依题意得⎩⎪⎨⎪⎧n 1·DE →=6a +3b =0,n 1·DA 1→=6a +6c =0,可取n 1=(-1,2,1),同理可得平面C 1DF 的一个法向量为n 2=(2,-1,1),故平面A 1DE 与平面C 1DF 所成锐二面角的余弦值为|n 1·n 2||n 1|·|n 2|=12.故选B. 答案:B5.在正三棱柱ABCA 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成的角的正弦值为( )A .64B .-64C .104D .-104解析:取AC 中点E ,连接BE ,则BE ⊥AC , 如图所示,建立空间直角坐标系B -xyz , 则A ⎝⎛⎭⎫32,12,0,D (0,0,1),则AD →=⎝⎛⎭⎫-32,-12,1.∵平面ABC ⊥平面AA 1C 1C , 平面ABC ∩平面AA 1C 1C =AC , BE ⊥AC ,∴BE ⊥平面AA 1C 1C ,∴BE →=⎝⎛⎭⎫32,0,0为平面AA 1C 1C 的一个法向量,∴cos 〈AD →,BE →〉=-64,设AD 与平面AA 1C 1C 所成的角为α, 则sin α=|cos 〈AD →,BE →〉|=64.故选A. 答案:A6.(2013年高考大纲卷)已知在正四棱柱ABCDA 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值是( )A .23B .33C .23D .13解析:建立如图所示的空间直角坐标系,设AA 1=2AB =2,则B (1,1,0),C (0,1,0), D (0,0,0),C 1(0,1,2),故DB →=(1,1,0),DC 1→=(0,1,2),DC →=(0,1,0). 设平面BDC 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB →=0,n ·DC 1→=0,得⎩⎪⎨⎪⎧x +y =0,y +2z =0,令z =1,则y =-2,x =2,所以平面BDC 1的一个法向量为n =(2,-2,1). 设直线CD 与平面BDC 1所成的角为θ, 则sin θ=|cos 〈n ,DC →〉|=n ·DC →|n |·|DC →|=23.故选A.答案:A 二、填空题7.平面α的一个法向量n =(0,1,-1),如果直线l ⊥平面α,则直线l 的单位方向向量是________.解析:直线l 的方向向量平行于平面α的法向量, 故直线l 的单位方向向量是±n|n |=±0,22,-22.答案:0,22,-22或0,-22,228.如图所示,正方体ABCDA 1B 1C 1D 1的棱长为1,E 是A 1B 1上的点,则点E 到平面ABC 1D 1的距离是________.解:法一 以点D 为坐标原点,DA ,DC ,DD1所在射线为x ,y ,z 轴,建立如图所示空间直角坐标系,设点E (1,a,1)(0≤a ≤1), 连接D 1E , 则D 1E →=(1,a,0).连接A 1D ,易知A 1D ⊥平面ABC 1D 1,则DA 1→=(1,0,1)为平面ABC 1D 1的一个法向量. ∴点E 到平面ABC 1D 1的距离是d =|D 1E →·DA 1→||DA 1→|=22.法二 点E 到平面ABC 1D 1的距离,即B 1到BC 1的距离,易得点B 1到BC 1的距离为22. 答案:229.(2014合肥月考)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角CABD 的余弦值为33,M 、N 分别是AC 、BC 的中点,则EM 、AN 所成角的余弦值等于________.解析:过C 点作CO ⊥平面ABDE ,垂足为O ,取AB 中点F ,连接CF 、OF ,则∠CFO 为二面角CABD 的平面角,设AB =1,则CF =32, OF =CF ·cos ∠CFO =12,OC =22,则O 为正方形ABDE 的中心, 如图所示建立直角坐标系Oxyz , 则E ⎝⎛⎭⎫0,-22,0, M ⎝⎛⎭⎫24,0,24,A ⎝⎛⎭⎫22,0,0,N ⎝⎛⎭⎫0,24,24, EM →=⎝⎛⎭⎫24,22,24,AN →=⎝⎛⎭⎫-22,24,24,cos 〈EM →,AN →〉=EM →·AN →|EM →||AN →|=16.答案:1610.空间中两个有一条公共边AD 的正方形ABCD 与ADEF ,设M ,N 分别是BD ,AE 的中点,给出如下命题:①AD ⊥MN ;②MN ∥平面CDE ;③MN ∥CE ;④MN ,CE 异面.则所有的正确命题为________.解析:如图设AB →=a ,AD →=b ,AF →=c ,则|a |=|c |且a ·b =c ·b =0.MN →=AN →-AM →=12(b +c )-12(a +b )=12(c -a ),MN →·AD →=12(c -a )·b =12(c ·b-a ·b )=0,故AD ⊥MN ;CE →=c -a =2MN →,故MN ∥CE ,故MN ∥平面CDE ,故②③正确;③正确时④一定不正确.答案:①②③ 三、解答题11.(2014陕西西安五校三模)如图,在长方体ABCDA 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上.(1)求异面直线D 1E 与A 1D 所成的角;(2)若二面角D 1ECD 的大小为45°,求点B 到平面D 1EC 的距离. 解:建立如图所示的空间直角坐标系.(1)由A 1(1,0,1),得 DA 1→=(1,0,1),设E (1,a,0),又D 1(0,0,1),则D 1E →=(1,a ,-1). ∵DA 1→·D 1E →=1+0-1=0,∴DA 1→⊥D 1E →,则异面直线D 1E 与A 1D 所成的角为90°. (2)m =(0,0,1)为平面DEC 的法向量, 设n =(x ,y ,z )为平面CED 1的法向量,则 cos 〈m ,n 〉=|m·n||m||n|=|z |x 2+y 2+z 2=cos 45°=22, ∴z 2=x 2+y 2①由C (0,2,0),得D 1C →=(0,2,-1), 则n ⊥D 1C →, 即n ·D 1C →=0, ∴2y -z =0②由①、②,可取n =(3,1,2), 又CB →=(1,0,0),所以点B 到平面D 1EC 的距离d =|CB →·n ||n |=322=64.12.(2014福建厦门联考)如图所示,在三棱锥P ABC 中,AB =BC =6,平面P AC ⊥平面ABC ,PD ⊥AC 于点D ,AD =1,CD =3,PD = 3.(1)证明△PBC 为直角三角形;(2)求直线P A 与平面PBC 所成角的正弦值.(1)证明:以点E (AC 中点)为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图所示的空间直角坐标系Exyz ,则B (2,0,0),C (0,2,0),P (0,-1,3).于是BP →=(-2,-1,3),BC →=(-2,2,0). 因为BP →·BC →=(-2,-1,3)·(-2,2,0)=0, 所以BP →⊥BC →,所以BP ⊥BC .所以△PBC 为直角三角形. (2)解:由(1)可得,A (0,-2,0).于是AP →=(0,1,3),PB →=(2,1,-3),PC →=(0,3,-3). 设平面PBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PB →=0,n ·PC →=0.即⎩⎪⎨⎪⎧2x +y -3z =0,3y -3z =0.取y =1,则z =3,x = 2.所以平面PBC 的一个法向量为n =(2,1,3). 设直线AP 与平面PBC 所成的角为θ, 则sin θ=|cos 〈AP →,n 〉|=|AP →·n ||AP →||n |=42×6=63.所以直线AP 与平面PBC 所成角的正弦值为63.。
数学立体几何单元测试题目:数学立体几何单元测试正文:题一:计算立方体的体积和表面积。
(10分)解答:立方体是一种特殊的几何体,其六个面都是正方形,每条边长度相等。
设立方体的边长为a,则其体积V为a³,表面积S为6a²。
根据给定条件,我们可以进行如下计算:已知边长a=4cm,则立方体的体积V=4³=64cm³,表面积S=6×4²=96cm²。
题二:判断以下四个几何体是否为正多面体,并说明理由。
(10分)解答:正多面体是指各个面都是正多边形且顶点都相同的几何体。
根据这个定义,我们来判断以下四个几何体是否为正多面体:1. 正方体正方体的六个面都是正方形,并且顶点相同,因此它是正多面体。
2. 正六面体正六面体的六个面都是正六边形,并且顶点相同,因此它是正多面体。
3. 正四面体正四面体的四个面都是正三角形,并且顶点相同,因此它是正多面体。
4. 正二十面体正二十面体的二十个面都是正五边形,并且顶点相同,因此它是正多面体。
综上所述,正方体、正六面体、正四面体和正二十面体都是正多面体。
题三:计算圆柱的体积和表面积,要求保留一位小数。
(10分)解答:圆柱是一种特殊的立体几何体,其底面为圆形,侧面为矩形。
设圆柱的底面半径为r,高度为h,则其体积V为πr²h,表面积S为2πrh+2πr²。
根据给定条件,我们可以进行如下计算:已知底面半径r=5cm,高度h=10cm,则圆柱的体积V=3.14×5²×10=785cm³,表面积S=2×3.14×5×10+2×3.14×5²=471cm²。
题四:根据给定条件,判断以下陈述的真假。
(10分)解答:1. 球体的体积公式是V=4/3πr³,其中r为半径。
(正确)2. 圆锥的侧面积公式是S=πrl,其中r为底面半径,l为斜高。
高中数学中的立体几何测量方法立体几何是数学中的一个重要分支,它研究空间中的图形、体积等性质。
在高中数学中,学生将接触到各种立体几何的测量方法,包括表面积、体积、长度等。
本文将介绍一些高中数学中常用的立体几何测量方法,帮助学生更好地理解和应用这些知识。
一、立体图形的表面积立体图形的表面积是指该图形所有面的面积之和。
常见的立体图形包括正方体、长方体、圆柱体、圆锥体和球体。
下面我们分别介绍这些图形的表面积计算方法。
1. 正方体的表面积正方体由六个相等的正方形组成,每个正方形的边长为a。
那么正方体的表面积S就是所有正方形的面积之和,即S = 6a²。
2. 长方体的表面积长方体由六个矩形面组成,分别有两个长方形和四个正方形。
设长方体的长、宽、高分别为a、b、c。
那么长方体的表面积S就等于前后两个矩形面的面积之和再加上左右两个矩形面的面积之和再加上上下两个矩形面的面积之和。
即S = 2ab+ 2ac + 2bc。
3. 圆柱体的表面积圆柱体由一个底面和一个绕底面圆周运动的矩形侧面构成。
设底面的半径为r,高为h。
那么圆柱体的表面积S等于底面的面积加上侧面的面积,即S = 2πr² +2πrh。
4. 圆锥体的表面积圆锥体由一个底面和一个从底面上一点到顶点的弧面构成。
设底面的半径为r,侧面的高为l。
那么圆锥体的表面积S等于底面的面积加上侧面的面积,即S = πr² + πrl。
5. 球体的表面积球体的表面积是指球面的面积。
设球体的半径为r。
那么球体的表面积S等于4πr²。
二、立体图形的体积立体图形的体积是指该图形所占据的空间大小。
与表面积不同,体积是一个三维概念。
下面我们将依次介绍常见立体图形的体积计算方法。
1. 正方体的体积正方体的体积V等于底面的面积乘以高度,即V = a³。
2. 长方体的体积长方体的体积V等于底面的面积乘以高度,即V = abc。
3. 圆柱体的体积圆柱体的体积V等于底面的面积乘以高度,即V = πr²h。
第1篇一、引言智力测试是衡量个体智力水平的一种方式,它可以帮助我们了解一个人的思维能力、学习能力和适应环境的能力。
SHL(Shell-Hartree-Lewis)智力测试是一种广泛应用于企业招聘和职业发展的测试,它旨在评估应聘者的逻辑推理、数学能力、空间想象、语言理解和记忆力等智力维度。
以下是一篇2500字以上的SHL智力测试题详解与示例,帮助您更好地了解这一测试。
二、SHL智力测试题详解1. 逻辑推理题题目示例:一个班级有9位同学,其中6人参加语文竞赛,5人参加数学竞赛,3人同时参加了两个竞赛。
请问这个班级至少有多少人参加了竞赛?解题思路:要找出至少参加了竞赛的人数,我们可以先计算出没有参加任何竞赛的人数。
没有参加语文竞赛的有3人,没有参加数学竞赛的有4人,但没有参加任何竞赛的人数最多是3+4=7人。
所以,至少有9-7=2人参加了竞赛。
答案:2人2. 数学能力题题目示例:一个数字序列为2,4,8,16,32,下一个数字是什么?解题思路:观察数字序列,可以发现每个数字都是前一个数字的2倍。
因此,下一个数字是32×2=64。
答案:643. 空间想象题题目示例:下面是一个立方体的视图,请判断以下哪个选项是正确的?A. 正面视图B. 侧面视图C. 上面视图D. 下面视图解题思路:根据立方体的视图,我们可以判断出这个立方体的上面视图应该是一个正方形,而选项C显示的是一个正方形,因此答案是C。
答案:C4. 语言理解题题目示例:下列哪句话的意思与其他三句不同?A. 他今天没有去上班。
B. 他今天没有去公司。
C. 他今天没有去办公室。
D. 他今天没有去工作场所。
解题思路:选项A、B、C都在描述他今天没有去某个地方工作,而选项D则是直接描述他没有去工作场所,与其他选项相比,D选项的意思不同。
答案:D5. 记忆力题题目示例:请将以下数字按照顺序排列:3,8,1,6,2,7,4,5解题思路:观察数字序列,可以发现这是一个奇偶数交替的序列。
小学一年级几何测题认识立体和平面形的特征几何学是学习形状、大小、相对位置以及其他属性的一门学科。
在小学一年级的几何学中,认识立体和平面形的特征是一个重要的学习内容。
首先,我们来认识一下立体形。
在几何学中,立体形指的是具有三个维度(即长、宽、高)的物体。
它们常常是实心的,我们可以用手触摸到它们的表面。
立体形具有许多不同的特征,下面我将依次介绍。
第一,立体形的表面通常是曲面。
曲面可以是平滑的,也可以是粗糙的,取决于物体的材质。
例如,一个篮球就是一个立体形,它的表面是光滑的。
第二,立体形通常有体积。
体积是指立体形所占的空间大小。
我们可以用单位体积来衡量一个物体的大小。
例如,一个铅笔盒的体积可以用毫升来表示,而一个房间的体积可以用立方米来表示。
第三,立体形常常由多个平面形组成。
平面形是指具有两个维度(即长和宽)的形状。
它们通常是二维的,例如正方形、长方形和圆形都属于平面形。
当多个平面形相互连接时,就形成了一个立体形。
接下来,让我们来认识一下平面形。
平面形是指没有厚度,只有长度和宽度的形状。
它们只存在于纸上或者其他平面物体上,不具有第三个维度。
平面形有一些独特的特征,下面我将逐一介绍。
首先,平面形的边界通常由直线来构成。
直线是指两个点之间最短的路径。
一条直线可以连接平面形的两个点,在平面上形成一条边。
例如,在一个正方形上,你可以看到四条直线形成了四个边。
其次,平面形常常有一些特定的内部结构。
例如,一个圆形由一个圆心和一条半径组成。
圆心是指圆的中心点,半径是指从圆心到圆上任意一点的距离。
圆形是一个非常特殊的平面形,它的每个内部点到圆心的距离都相等。
最后,平面形的面积是一个重要的属性。
面积是指平面形所占的空间大小。
我们可以用单位面积来衡量一个平面形的大小。
例如,一个正方形的面积可以用平方厘米来表示,而一个三角形的面积可以用平方米来表示。
通过以上内容的学习,我们可以更好地认识立体形和平面形的特征。
立体形具有曲面、体积和由平面形组成等特点,而平面形具有直线边界、特定的内部结构和面积等特点。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年山西省高中数学人教B 版 必修四-立体几何初步-同步测试(7)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1.如图所示,直观图四边形是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A. B. C.D.13242. 四棱锥中,底面是平行四边形,,,若平面,则的值为 ( )A. B. C. D. 3. 如图,在直三棱柱 中,底面为直角三角形,,,,点 是线段上一动点,则的最小值是( )A. B. C. D.通过圆台侧面上一点可以做出无数条母线直角三角形绕其一边所在直线旋转一周得到的几何体是圆锥圆柱的上底面下底面互相平行五棱锥只有五条棱4. 下列说法正确的是( )A. B. C. D. 与平面所成的角为四面体的体积为5. 如图,四边形ABCD 中,AB=AD=CD=1,,.将四边形ABCD 沿对角线BD 折成四面体,使平面平面BCD ,则下列结论正确的是A.B. C. D. 23456. 在正方体中,是棱的中点,是侧面内的动点,且平面, 记与平面所成的角为,下列说法正确的是个数是( )①点F 的轨迹是一条线段②与不可能平行③与是异面直线④⑤当与不重合时,平面不可能与平面平行A. B. C. D. 17. 如图,是利用斜二测画法画出的(为直角)的直观图,的面积为,图中,过点作轴于点,则的长为()A. B. C. D.8. 如图所示,在三棱台中,点D 在A 1B 1上,且AA 1∥BD ,点M 是△A 1B 1C 1内的一个动点,且有平面BDM ∥平面A 1C ,则动点M 的轨迹是()平面直线线段,但只含1个端点圆A. B. C. D. 9. 一个圆锥的侧面展开图是一个半圆,则该圆锥的内切球的表面积和圆锥的侧面积的比为( )A.B.C.D.10. 三棱锥 中, 且 , 是边长为 的等边三角形,则该三棱锥外接球的表面积为()A.B. C. D.32311. 已知球O 的半径为2,三棱锥P -ABC 四个顶点都在球O 上,球心O 在平面ABC 内,△ABC 是正三角形,则三棱锥P -ABC 的最大体积为( )A. B. C.D. 13. 在棱长为1的正方体中,为底面的中心, , , 为线段的中点,则下列命题中正确的序号为 .①与共面;②三棱锥的体积跟的取值无关;③当时,过三点的平面截正方体所得截面的周长为;④时,.14. 如图,正方形BCDE 的边长为a ,已知AB= BC ,将△ABE 沿边BE 折起,折起后A 点在平面BCDE 上的射影为D 点,则翻折后的几何体中有如下描述:① AB 与DE 所成角的正切值是 ;②AB ∥CE③V B ﹣ACE 体积是 a 3;④平面ABC ⊥平面ADC .其中正确的有 .(填写你认为正确的序号)15. 已知长方体的体积为40,外接球表面积为,,,点在线段上运动(含端点位置),记直线与平面的所成角为,则的取值范围为.16. 如图,AB是的直径,PA垂直于所在的平面,C是圆周上不同于A,B的任意一点,,三棱锥P-ABC体积的最大值为,则当△PBC的面积最大时,线段AC的长度为.17. 如图,在四棱锥中,底面是正方形,,.(1) 若平面平面,证明:;(2) 若面⊥面,求四棱锥的侧面积.18. 如图,正方体中,(1) 求证:平面;(2) 求直线与平面所成角的正弦值.19. 如图,空间四边形ABCD中,每条边的长度和两条对角线的长度都等于1,M、N分别是AB、AD的中点,计算•.20.如图所示,在直三棱柱ABC﹣A1B1C1中,D点为棱AB的中点.(1) 求证:AC1∥平面B1CD;(2) 若AB=AC=2,BC=BB1=2 ,求二面角B1﹣CD﹣B的余弦值;(3) 若AC1, BA1, CB1两两垂直,求证:此三棱柱为正三棱柱.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.13.14.15.16.(1)(2)(1)(2)19.20.(1)(2)(3)。
人教版立体几何多选题单元自检题学能测试试题一、立体几何多选题1.如图,正方体1111ABCD A B C D -的棱长为3,点E ,F 分别在1CC ,1BB 上,12C E EC →→=,12BF FB →→=.动点M 在侧面11ADD A 内(包含边界)运动,且满足直线//BM 平面1D EF ,则( )A .过1D ,E ,F 的平面截正方体所得截面为等腰梯形B .三棱锥1D EFM -的体积为定值C .动点M 10D .过B ,E ,M 的平面截正方体所得截面面积的最小值为10【答案】BCD 【分析】由题做出过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,进而计算即可排除A 选项;根据//BM平面1D EF ,由等体积转化法得1111D EFM M D EF B D EF D BEFV V V V ----===即可得B 选项正确;取1AA 靠近1A 点的三等分点H , 1DD 靠近D 点的三等分点I ,易知M 的轨迹为线段HI 10,故C 选项正确;过M 点做BE 的平行线交1AA 于P ,交1DD 于O ,连接,BP OE ,易知过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,进而得当H 位于点I 时,截面面积最小,为四边形ABEI 的面积,且面积为310S AB BE =⋅= 【详解】解:对于A 选项,如图,取BF 中点G ,连接1A G ,由点E ,F 分别在1CC ,1BB 上,12C E EC →→=,12BF FB →→=,故四边形11A D EG 为平行四边形,故11//AGD E ,由于在11A B G △,F 为1B G 中点,当N 为11A B 中点时,有11////NF A G D E ,故过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,此时22133532D N ⎛⎫=+= ⎪⎝⎭,223110EF =+=,故梯形1D EFN 不是等腰梯形,故A 选项错误;对于B 选项,三棱锥1D EFM -的体积等于三棱锥1M D EF -的体积,由于//BM平面1D EF ,故三棱锥1M D EF -的体积等于三棱锥1B D EF -的体积,三棱锥1B D EF -的体积等于三棱锥1D BEF -的体积,而三棱锥1D BEF -的体积为定值,故B 选项正确; 对于C 选项,取1AA 靠近1A 点的三等分点H , 1DD 靠近D 点的三等分点I ,易知1////HB AG NF ,1//BI D F ,由于1,HI BI I NFD F F ==,故平面//BHI 平面1D EF ,故M 的轨迹为线段HI ,其长度为10,故C 选项正确;对于D 选项,过M 点做BE 的平行线交1AA 于P ,交1DD 于O ,连接,BP OE ,则过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,易知当H 位于点I 时,平行四边形BPOE 边BP 最小,且为AB ,此时截面平行四边形BPOE 的面积最小,为四边形ABEI 的面积,且面积为310S AB BE =⋅=,故D 选项正确; 故选:BCD【点睛】本题解题的关键在于根据题意,依次做出过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,进而讨论AD选项,通过//BM平面1D EF ,并结合等体积转化法得1111D EFM M D EF B D EF D BEF V V V V ----===知B 选项正确,通过构造面面平行得M 的轨迹为线段HI ,进而讨论C 选项,考查回归转化思想和空间思维能力,是中档题.2.在直角梯形ABCD 中,2ABC BCD π∠=∠=,1AB BC ==,2DC =,E 为DC 中点,现将ADE 沿AE 折起,得到一个四棱锥D ABCE -,则下列命题正确的有( )A .在ADE 沿AE 折起的过程中,四棱锥D ABCE -体积的最大值为13B .在ADE 沿AE 折起的过程中,异面直线AD 与BC 所成的角恒为4π C .在ADE 沿AE 折起的过程中,二面角A EC D --的大小为45︒D .在四棱锥D ABCE -中,当D 在EC 上的射影恰好为EC 的中点F 时,DB 与平面ABCE 所成的角的正切为15 【答案】ABD 【分析】对于A ,四棱锥D ABCE -的底面面积是固定值,要使得体积最大,需要平面DAE ⊥平面ABCE ,此时DE CE ⊥,可求得1133D ABCE ABCE V S DE -=⋅=可判断A ;对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC所成角,由翻折前可知4DAE π∠=可判断B ;对于C ,利用线面垂直的判定定理,结合翻折前可知AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的在大小为2π判断C ;对于D ,利用线面垂直的判定定理可知DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,15tan 5DF DBF BF ∠==,可判断D 正确;【详解】对于A ,ADE 沿AE 折起得到四棱锥D ABCE -,由四棱锥底面面积是固定值,要使得体积最大,需要四棱锥的高最大,即平面DAE ⊥平面ABCE ,此时DE CE ⊥,由已知得1DE =,则111111333D ABCE ABCE V S DE -=⋅=⨯⨯⨯=,故A 正确; 对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC 所成角,又1AB BC ==,2DC =,E 为DC 中点,可知4DAE π∠=,即异面直线AD 与BC 所成的角恒为4π,故B 正确; 对于C,由翻折前知,,AE EC AE ED ⊥⊥,且ECED E =,则AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的大小为2π,故C 错误; 对于D ,如图连接,DF BF ,由C 选项知,AE ⊥平面DEC ,又DF ⊂平面DEC ,则AE DF ⊥,又由已知得EC DF ⊥,且EC AE E ⋂=,则DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,222222113122152tan 5511122DE CE DFDBF BFBC CE ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∠=====⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以DB 与平面ABCE 所成的角的正切为15,故D 正确; 故选:ABD 【点睛】关键点睛:本题考查立体几何综合问题,求体积,求线线角,线面角,面面角,解题的关键要熟悉几种角的定义,通过平移法找到线线角,通过证垂直找到线面角和面面角,再结合三角形求出角,考查了学生的逻辑推理能力,转化能力与运算求解能力,属于难题.3.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为30︒C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为2D .设正方体棱长为1,则过点E ,F ,A 5【答案】AC 【分析】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;【详解】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=1tan 3023︒<=,所以B 错误; 平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11111tan B C B FC C F ∠==22,所以C 正确;因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为6,故D 错误. 故选:AC.【点睛】本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.4.在长方体1111ABCD A B C D -中,AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a,a ⎡∈⎣,()Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,22R λλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,2D R λλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,222212440AR AC λλλλλ⋅=--⋅--=-+-+=, 14λ=,此时113313022224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则44,,333R ⎛⎫ ⎪ ⎪⎝⎭,142,,333D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.5.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( ) A .四边形1BFD E 不一定是平行四边形 B .平面α分正方体所得两部分的体积相等 C .平面α与平面1DBB 不可能垂直 D .四边形1BFD E 面积的最大值为2 【答案】BD 【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积最大,且最大值为2,可判断D 正确. 【详解】 如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误; 对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确; 对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥, 又1BD BB B ⋂=,所以AC ⊥平面1BB D , 当E 、F 分别为棱11,AA CC 的中点时, 有//AC EF ,则EF ⊥平面1BB D , 又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD , 当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值, 此时1212S D E BE =⋅=⋅=,故D 正确; 故选:BD. 【点睛】本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.6.M ,N 分别为菱形ABCD 的边BC ,CD 的中点,将菱形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,下列结论正确的有( )A .MN ∥平面ABDB .异面直线AC 与MN 所成的角为定值C .在二面角D AC B --逐渐变小的过程中,三棱锥D ABC -外接球的半径先变小后变大D .若存在某个位置,使得直线AD 与直线BC 垂直,则ABC ∠的取值范围是0,2π⎛⎫⎪⎝⎭【答案】ABD 【分析】利用线面平行的判定即可判断选项A ;利用线面垂直的判定求出异面直线AC 与MN 所成的角即可判断选项B ;借助极限状态,当平面DAC 与平面ABC 重合时,三棱锥D ABC -外接球即是以ABC∆外接圆圆心为球心,外接圆的半径为球的半径,当二面角D AC B --逐渐变大时,利用空间想象能力进行分析即可判断选项C;过A 作AH BC ⊥,垂足为H ,分ABC ∠为锐角、直角、钝角三种情况分别进行分析判断即可判断选项D. 【详解】对于选项A:因为M ,N 分别为菱形ABCD 的边BC ,CD 的中点,所以MN 为BCD ∆的中位线,所以//MN BD ,因为MN ⊄平面ABD ,BD ⊂平面ABD ,所以MN ∥平面ABD ,故选项A 正确;对于选项B :取AC 的中点O ,连接,DO BO ,作图如下:则,AC DO AC BO ⊥⊥,BO DO O =,由线面垂直的判定知,AC ⊥平面BOD ,所以AC BD ⊥,因为//MN BD ,所以AC MN ⊥,即异面直线AC 与MN 所成的角为定值90,故选项B 正确;对于选项C:借助极限状态,当平面DAC 与平面ABC 重合时,三棱锥D ABC -外接球即是以ABC ∆外接圆圆心为球心,外接圆的半径为球的半径,当二面角D AC B --逐渐变大时,球心离开平面ABC ,但是球心在底面的投影仍然是ABC ∆外接圆圆心,故二面角D AC B --逐渐变小的过程中,三棱锥D ABC -外接球的半径不可能先变小后变大, 故选项C 错误;对于选项D:过A 作AH BC ⊥,垂足为H ,若ABC ∠为锐角,H 在线段BC 上;若ABC ∠为直角,H 与B 重合;若ABC ∠为钝角,H 在线段BC 的延长线上;若存在某个位置,使得直线AD 与直线BC 垂直,因为AH BC ⊥,所以CB ⊥平面AHD ,由线面垂直的性质知,CB HD ⊥,若ABC ∠为直角,H 与B 重合,所以CB BD ⊥,在CBD ∆中,因为CB CD =, 所以CB BD ⊥不可能成立,即ABC ∠为直角不可能成立;若ABC ∠为钝角,H 在线段BC 的延长线上,则在原平面图菱形ABCD 中,DCB ∠为锐角,由于立体图中DB DO OB <+,所以立体图中DCB ∠一定比原平面图中更小,,所以DCB ∠为锐角,CB HD ⊥,故点H 在线段BC 与H 在线段BC 的延长线上矛盾,因此ABC ∠不可能为钝角;综上可知,ABC ∠的取值范围是0,2π⎛⎫⎪⎝⎭.故选项D 正确;故选:ABD 【点睛】本题考查异面垂直、线面平行与线面垂直的判定、多面体的外接球问题;考查空间想象能力和逻辑推理能力;借助极限状态和反证法思想的运用是求解本题的关键;属于综合型强、难度大型试题.7.如图,已知矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则ADE ∆在翻折过程中,下列说法正确的是( )A .线段BM 的长是定值B .存在某个位置,使1DE AC ⊥ C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面1A DE 【答案】AC 【分析】取CD 中点F ,连接BF ,MF ,根据面面平行的判定定理可得平面//BMF 平面1A DE ,由面面平行的性质定理可知//BM 平面1A DE ,可判断D ;在BFM ∆中,利用余弦定理可求得BM a =为定值,可判断A 和C ;假设1DE A C ⊥,由线面垂直的判定定理可得DE ⊥平面1A CE ,由线面垂直的性质定理可知1DE A E ⊥,与11DA A E ⊥矛盾,可判断B . 【详解】解:取CD 的中点F ,连接BF ,MF ,∵M ,F 分别为1A C 、CD 中点, ∴1MF A D ∥,∵1A D ⊂平面1A DE ,MF ⊄平面1A DE , ∴MF 平面1A DE , ∵DF BE ∥且DF BE =, ∴四边形BEDF 为平行四边形,∴BF DE ,∵DE ⊂平面1A DE ,BF ⊄平面1A DE , ∴BF ∥平面1A DE , 又BFMF F =,BF 、MF ⊂平面BMF ,∴平面//BMF 平面1A DE , ∵BM ⊂平面BMF , ∴BM ∥平面1A DE ,即D 错误,设22AB AD a ==, 则112MF A D a ==,2BF DE a ==,145A DE MFB ︒∠=∠=, ∴222cos45BM MF BF MF BF a ︒=+-⋅⋅=,即BM 为定值,所以A 正确,∴点M 的轨迹是以B 为圆心,a 为半径的圆,即C 正确, ∵2DE CE a ==,2CD AB a ==,∴222DE CE CD +=,∴DE CE ⊥, 设1DE A C ⊥,∵1A C 、CE ⊂平面1A CE ,1AC CE C =,∴DE ⊥平面1A CE , ∵1A E ⊂平面1A CE ,∴1DE A E ⊥,与11DA A E ⊥矛盾, 所以假设不成立,即B 错误. 故选:AC . 【点睛】本题考查立体几何中的翻折问题,涉及到线段长度的求解、直线与平面位置关系的判定、点的轨迹的求解、反证法的应用等知识点,考查学生的空间立体感和推理论证能力.8.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点 B .平面1D MN 与BC 的交点是BC 的三点分点C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F , 连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==,NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF , ,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=, E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴===N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点, 点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点.做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=, 所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.9.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+ B .若//DE 平面11ABB A ,则动点E 2AC C .异面直线AD 与1BC 6D .若点E 到平面11ACC A 3EB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案.【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002aA ⎛⎫ ⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,102B a b ⎛⎫ ⎪ ⎪⎝⎭,,,102a C b ⎛⎫- ⎪⎝⎭,,,所以12a BC b ⎛⎫=- ⎪ ⎪⎝⎭,,,12a AB b ⎛⎫=- ⎪ ⎪⎝⎭,. ∵11BC AB ⊥,∴110BC AB ⋅=,即222022a a b ⎛⎫⎛⎫--+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得2b a =. 因为//DE 平面11ABB A ,则动点E的轨迹的长度等于1BB =.选项B 正确. 对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,()0,0,0D ,1022a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,1222a BC a ⎛⎫=- ⎪ ⎪⎝⎭,-,,因为2111cos ,||||a BC DA BC DA BC DA a ⎛⎫- ⎪⋅<>===1,BC DA 所成角的余弦值为6C 正确. 对于选项D ,设点E 在底面ABC 的射影为1E ,作1EF 垂直于AC ,垂足为F ,若点E 到平面11ACC A EB ,即有1E F EB =,又因为在1CE F ∆中,112E F E C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD 【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.10.如图,正四棱锥S -BCDE 底面边长与侧棱长均为a ,正三棱锥A -SBE 底面边长与侧棱长均为a ,则下列说法正确的是( )A .AS ⊥CDB .正四棱锥S -BCDE 的外接球半径为22C .正四棱锥S -BCDE 的内切球半径为212a ⎛- ⎝⎭ D .由正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱 【答案】ABD 【分析】取BE 中点H ,证明BE ⊥平面SAH 即可证AS CD ⊥;设底面中心为1O ,有1122O B O S a ==,可求得球半径为22a ;用等体积法求内切球半径即可判断;由////SA DE BC 且==SA DE BC 可知多面体是一个三棱柱.【详解】 如图所示:A 选项:取BE 中点H 连接,AH SH ,正三棱锥A SBE -中,,AH BE SH BE ⊥⊥ 又AHSH H =,所以BE ⊥平面SAH ,则BE AS ⊥,又//BE CD 所以AS CD ⊥ ,故A 正确;B 选项:设底面中心为1O ,球心为O 半径为R ,因为正四棱锥S -BCDE 外接球球心在1O S 上,所以OS OB R ==,因为,正四棱锥S -BCDE 底面边长与侧棱长均为a所以112O B O S ==,由()22211OB O B O S OS =+- 得2222222R a R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得2R =,故B 正确; C 选项:设内切球半径为r ,易求得侧面面积为2213sin 234S a a π=⋅=, 由等体积法得222121134333a a r r =⋅+⋅⋅ 解得624a r = ,故C 错;D 选项:取SE 中点F ,连结AF ,DF ,BF ,则BFD ∠和BFA ∠分别是D SE B --和A SE B --的二面角的平面角,由)22222223321cos 2332aBF DF BDBFD BF DF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===-⋅⎫⎪⎝⎭2222222331cos 2332a AF BF BA AFD AF BF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===⋅⎫⎪⎝⎭,故BFD ∠与BFA ∠互补,所以ASDE 共面,又因为AS AE ED SD ===,则ASDE 为平行四边形,故AS ED BC故正四棱锥S-BCDE与正三棱锥A-SBE拼成的多面体是一个三棱柱,所以////D正确故选:ABD【点睛】求外接球半径的常用方法:(1)补形法:侧面为直角三角形或正四面体或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;(2)利用球的性质:几何体在不同面均对直角的棱必然是球的直径;(3)定义法:到各个顶点距离均相等的点为球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.。
人教版立体几何多选题自检题学能测试试题一、立体几何多选题1.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P =,则满足条件的P 点有且只有一个 B .若12A P =,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 长的最小值为2D .若12A P =且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 长的最大值为2;结合以上条件点P 与B 或D 重合,利用12sin 60A P r =︒,求出63r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.2.如图,直三棱柱11,ABC A B C -,ABC 为等腰直角三角形,AB BC ⊥,且12AC AA ==,E ,F 分别是AC ,11A C 的中点,D ,M 分别是1AA ,1BB 上的两个动点,则( )A .FM 与BD 一定是异面直线B .三棱锥D MEF -的体积为定值14C .直线11B C 与BD 所成角为2π D .若D 为1AA 中点,则四棱锥1D BB FE -55【答案】CD 【分析】A 当特殊情况M 与B 重合有FM 与BD 相交且共面;B 根据线面垂直、面面垂直判定可证面1BEFB ⊥面11ACC A ,可知EMFS、D 到面1BEFB 的距离,可求D EMF V -;C 根据线面垂直的判定及性质即可确定11B C 与BD 所成角;D 由面面垂直、勾股、矩形性质等确定外接球半径,进而求体积,即可判断各项的正误. 【详解】A :当M 与B 重合时,FM 与BD 相交且共面,错误; B :由题意知:BE AC ⊥,AC EF ⊥且BEEF E =,则AC ⊥面1BEFB ,又AC ⊂面11ACC A ,面1BEFB ⋂面11ACC A EF =,所以面1BEFB ⊥面11ACC A ,又1121122EMFSEF BE =⋅⋅=⨯⨯=,D 到面1BEFB 的距离为1h =,所以1133D EMF EMFV h S-=⋅⋅=,错误; C :由AB BC ⊥,1BC B B ⊥,1B BAB B =,所以BC ⊥面11ABB A ,又11//BC B C ,即11B C ⊥面11ABB A ,而BD ⊂面11ABB A ,则11BD B C ⊥,正确;D :由B 中,面1BEFB ⊥面11ACC A ,即面DEF ⊥面1BEFB ,则D 到面1BEFB 的距离为1h =,又D 为1AA 中点,若1,BF EB 交点为O ,G 为EF 中点,连接,,OG GD OD ,则OG GD ⊥,故2252OD OG GD =+=,由矩形的性质知:15OB OE OF OB ====令四棱锥1D BB FE -的外接球半径为R ,则52R =,所以四棱锥1D BB FE -的外接球体积为35435V R ππ==,正确. 故选:CD. 【点睛】关键点点睛:利用线面、面面关系确定几何体的高,结合棱锥体积公式求体积,根据线面垂直、勾股定理及矩形性质确定外接球半径,结合球体体积公式求体积.3.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4πC .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,NQ=2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==,G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==,四边形EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯=,四边形面积是22242=,故截面面积是52 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确.故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.4.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为30︒C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为2D .设正方体棱长为1,则过点E ,F ,A 5 【答案】AC 【分析】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;【详解】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=1tan 3023︒<=,所以B 错误; 平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11111tan B C B FC C F ∠==22,所以C 正确;因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为62,故D 错误. 故选:AC.【点睛】本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.5.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到5tan 5θ=,故D 正确,得到答案.当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确; 若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAM θ∠=∠=,84ππθ<<,则22DAG πθ∠=-,tan tan 22DG OGAG πθθ==⎛⎫- ⎪⎝⎭,化简得到2tan tan 21θθ=,解得5tan θ=,验证满足,故D 正确; 故选:ACD .【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.6.如图,已知矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则ADE ∆在翻折过程中,下列说法正确的是A .线段BM 的长是定值B .存在某个位置,使1DE AC ⊥ C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面1A DE 【答案】AC 【分析】取CD 中点F ,连接BF ,MF ,根据面面平行的判定定理可得平面//BMF 平面1A DE ,由面面平行的性质定理可知//BM 平面1A DE ,可判断D ;在BFM ∆中,利用余弦定理可求得BM a =为定值,可判断A 和C ;假设1DE A C ⊥,由线面垂直的判定定理可得DE ⊥平面1A CE ,由线面垂直的性质定理可知1DE A E ⊥,与11DA A E ⊥矛盾,可判断B . 【详解】解:取CD 的中点F ,连接BF ,MF ,∵M ,F 分别为1A C 、CD 中点, ∴1MF A D ∥,∵1A D ⊂平面1A DE ,MF ⊄平面1A DE , ∴MF 平面1A DE , ∵DF BE ∥且DF BE =, ∴四边形BEDF 为平行四边形, ∴BFDE ,∵DE ⊂平面1A DE ,BF ⊄平面1A DE , ∴BF ∥平面1A DE , 又BFMF F =,BF 、MF ⊂平面BMF ,∴平面//BMF 平面1A DE , ∵BM ⊂平面BMF ,∴BM ∥平面1A DE ,即D 错误,设22AB AD a ==,则112MF A D a ==,BF DE ==,145A DE MFB ︒∠=∠=,∴BM a ==,即BM 为定值,所以A 正确,∴点M 的轨迹是以B 为圆心,a 为半径的圆,即C 正确, ∵DE CE ==,2CD AB a ==, ∴222DE CE CD +=, ∴DE CE ⊥,设1DE A C ⊥,∵1A C 、CE ⊂平面1A CE ,1AC CE C =, ∴DE ⊥平面1A CE ,∵1A E ⊂平面1A CE ,∴1DE A E ⊥,与11DA A E ⊥矛盾,所以假设不成立,即B 错误.故选:AC .【点睛】本题考查立体几何中的翻折问题,涉及到线段长度的求解、直线与平面位置关系的判定、点的轨迹的求解、反证法的应用等知识点,考查学生的空间立体感和推理论证能力.7.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π 【答案】ABD【分析】若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()13PD =,,则1PD =P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为=断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】 如图:∵正四棱柱1111ABCD A B C D -的底面边长为2,∴1122B D =,又侧棱11AA =,∴()2212213DB =+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确; ∵()313PD =∈,,11DD =,则12PD =,即点P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为()22213+=,故C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为2221322122++=,面积为94π,故D 正确.故选:ABD .【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.8.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D DB .1BD ⊥平面1ACBC .1BD 与底面11BCC B 所成角的正切值是2D .过点1A 与异面直线AD 与1CB 成60角的直线有2条【答案】ABD【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D .【详解】 对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥,由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D , 1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥,1AC B C C =,1BD ∴⊥平面1ACB ,故B 正确; 对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =,则1cos ,2DA mDA m DA m y ⋅<>===⋅, 1111cos ,22CB m CB mCB m ⋅<>===⋅, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得1z =-1z =-由已知可得z ≤,所以,1z =-+y =因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确.故选:ABD.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.。
立体几何多选题单元达标自检题学能测试试卷一、立体几何多选题1.已知三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,其长度分别为a ,b ,c .点A在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为A S ,B S ,C S ,D S .在下列所给的命题中,正确的有( ) A .2A BCO D S SS ⋅=; B .3333A B C D S S S S <++;C .若三条侧棱与底面所成的角分别为1α,1β,1γ,则222111sin sin sin 1αβγ++=;D .若点M 是面BCD 内一个动点,且AM 与三条侧棱所成的角分别为2α,2β,2γ,则22cos α+2222cos cos 1βγ+=.【答案】ACD 【分析】由Rt O OA '与Rt O AD '相似,得边长关系,进而判断A 正确;当M 与O 重合时,注意线面角与线线角的关系,即可得C 正确;构造长方体,建立直角坐标系,代入夹角公式计算可得D 正确;代入特殊值,可得B 错误. 【详解】由三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,则将三棱锥A BCD -补成长方体ABFC DGHE -,连接DO 并延长交BC 于O ', 则AO BC ⊥.对A :由Rt O OA '与Rt O AD '相似,则2O A O O O D '''=⨯ 又12A S BC O D '=⋅,12BCOS BC O O '=⋅, 22221124DS BC O A BC O A ⎛⎫''=⋅=⋅ ⎪⎝⎭所以2A BCOD S SS ⋅=,故A 正确.对B :当1a b c ===时,33318B C D S S S ===,则33338B C D S S S ++=,而3332288A S ⎛⎫==> ⎪ ⎪⎝⎭,此时3333A B C D S S S S >++,故B 不正确. 对D :分别以AB ,AC ,AD 为x ,y ,z 轴,建立空间直角坐标系.设(),,M x y z ,则(),,AM x y z =,AM =(),0,0AB a =,()0,,0AC b =,()0,0,AD c =所以222222222cos cos cos AM AB AM AC AM AD AM ABAM ACAM ADαβγ⎛⎫⎛⎫⎛⎫⋅⋅⋅++=++ ⎪ ⎪ ⎪ ⎪⎪⎪⋅⋅⋅⎝⎭⎝⎭⎝⎭2222221x y z AMAMAM=++=,所以D 正确.对C :当M 与O 重合时,AO ⊥面BCD ,由D 有222222cos cos cos 1αβγ++=,由各侧棱与底面所成角与侧棱与所AO 成角互为余角,可得C 正确. 故选:ACD.【点睛】关键点睛:本题考查空间线面角、线线角、面积关系的问题,计算角的问题关键是建立空间直角坐标系,写出点的坐标,利用数量积的公式代入计算,解决这道题目还要结合线面角与线线角的关系判断.2.在三棱锥M ABC -中,下列命题正确的是( )A .若1233AD AB AC =+,则3BC BD = B .若G 为ABC 的重心,则111333MG MA MB MC =++C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确;对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1822PQ ∴==,故D 错误. 故选:BC 【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.3.在直角梯形ABCD 中,2ABC BCD π∠=∠=,1AB BC ==,2DC =,E 为DC 中点,现将ADE 沿AE 折起,得到一个四棱锥D ABCE -,则下列命题正确的有( ) A .在ADE 沿AE 折起的过程中,四棱锥D ABCE -体积的最大值为13B .在ADE 沿AE 折起的过程中,异面直线AD 与BC 所成的角恒为4π C .在ADE 沿AE 折起的过程中,二面角A EC D --的大小为45︒D .在四棱锥D ABCE -中,当D 在EC 上的射影恰好为EC 的中点F 时,DB 与平面ABCE 所成的角的正切为155【答案】ABD 【分析】对于A ,四棱锥D ABCE -的底面面积是固定值,要使得体积最大,需要平面DAE ⊥平面ABCE ,此时DE CE ⊥,可求得1133D ABCE ABCE V S DE -=⋅=可判断A ;对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC所成角,由翻折前可知4DAE π∠=可判断B ;对于C ,利用线面垂直的判定定理,结合翻折前可知AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的在大小为2π判断C ;对于D ,利用线面垂直的判定定理可知DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,15tan DF DBF BF ∠==,可判断D 正确;【详解】对于A ,ADE 沿AE 折起得到四棱锥D ABCE -,由四棱锥底面面积是固定值,要使得体积最大,需要四棱锥的高最大,即平面DAE ⊥平面ABCE ,此时DE CE ⊥,由已知得1DE =,则111111333D ABCE ABCE V SDE -=⋅=⨯⨯⨯=,故A 正确; 对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC 所成角,又1AB BC ==,2DC =,E 为DC 中点,可知4DAE π∠=,即异面直线AD 与BC 所成的角恒为4π,故B 正确; 对于C ,由翻折前知,,AE EC AE ED ⊥⊥,且ECED E =,则AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的大小为2π,故C 错误; 对于D ,如图连接,DF BF ,由C 选项知,AE ⊥平面DEC ,又DF ⊂平面DEC ,则AE DF ⊥,又由已知得EC DF ⊥,且EC AE E ⋂=,则DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,222222113122152tan 511122DE CE DFDBF BFBC CE ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∠=====⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭DB 与平面ABCE 所成的角的正切为155,故D 正确; 故选:ABD 【点睛】关键点睛:本题考查立体几何综合问题,求体积,求线线角,线面角,面面角,解题的关键要熟悉几种角的定义,通过平移法找到线线角,通过证垂直找到线面角和面面角,再结合三角形求出角,考查了学生的逻辑推理能力,转化能力与运算求解能力,属于难题.4.如图,正方体1111ABCD A B C D -的棱长为3,线段11B D 上有两个动点,E F ,且1EF =,以下结论正确的有( )A .AC BE ⊥B .异面直线,AE BF 所成的角为定值C .点A 到平面BEF 的距离为定值D .三棱锥A BEF -的体积是定值【答案】ACD 【详解】由AC BD ⊥,1AC DD ⊥可证AC ⊥平面11D DBB ,从而AC BE ⊥,故A 正确; 取特例,当E 与1D 重合时,F 是F ',AE 即1AD ,1AD 平行1BC ,异面直线,AE BF '所成的角是1C BF '∠,当F 与1B 重合时,E 是E ',BF 即1BB ,异面直线,AE BF '所成的角是1A AE '∠,可知1C BF '∠与1A AE '∠不相等,故异面直线,AE BF 所成的角不是定值,故B 错误;连结BD 交AC 于O ,又AC ⊥平面11D DBB ,点A 到平面11BDD B 的距离是2=2AO ,也即点A 到平面BEF 的距离是22,故C 正确; 2=2AO 为三棱锥A BEF -的高,又1111224BEF S =⨯⨯=△,故三棱锥A BEF -的体积为112234224⨯⨯=为定值,D 正确. 故选:ACD 【点睛】求空间中点到平面的距离常见方法为: (1)定义法:直接作平面的垂线,求垂线;(2)等体积法:不作垂线,通过等体积法间接求点到面的距离; (3)向量法:计算斜线在平面的法向量上的投影即可.5.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯=,四边形面积是22242=,故截面面积是52 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确. 故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.6.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且2EF =则下列结论正确的是( )A .三棱锥A BEF -的体积为定值B .当E 向1D 运动时,二面角A EF B --逐渐变小C .EF 在平面11ABB A 内的射影长为12D .当E 与1D 重合时,异面直线AE 与BF 所成的角为π4【答案】AC 【分析】对选项分别作图,研究计算可得. 【详解】选项A:连接BD ,由正方体性质知11BDD B 是矩形,1112212224BEF S EF BB ∆∴=⋅=⨯=连接AO 交BD 于点O由正方体性质知AO ⊥平面11BDD B ,所以,AO 是点A 到平面11BDD B 的距离,即22AO =112213312A BEF BEF V S AO -∆∴=⨯==A BEF V -∴是定值.选项B:连接11A C 与11B D 交于点M ,连接11,AD AB , 由正方体性质知11AD AB =,M 是11B D 中点,AM EF ∴⊥ ,又1BB EF ⊥,11//BB AAA EFB ∴--的大小即为AM 与1AA 所成的角,在直角三角形1AA M 中,12tan 2MAA ∠=为定值. 选项C:如图,作1111,,,FH A B EG A B ET EG ⊥⊥⊥ 在直角三角形EFT 中,221cos 452FT EF =⨯=⨯=12HG FT ∴== 选项D:当E 与1D 重合时,F 与M 重合,连接AC 与BD 交于点R ,连接1D R ,1//D R BM 异面直线AE 与BF 所成的角,即为异面直线1AD 与1D R 所成的角, 在三角形1AD R 中,22111132,2AD D R MB BB M B ===+=2AR =由余弦定理得13cos AD R ∠= 故选:AC 【点睛】本题考查空间几何体性质问题.求解思路:关键是弄清(1)点的变化,点与点的重合及点的位置变化;(2)线的变化,应注意其位置关系的变化;(3)长度、角度等几何度量的变化.求空间几何体体积的思路:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法;若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.7.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( ) A .四边形1BFD E 不一定是平行四边形 B .平面α分正方体所得两部分的体积相等 C .平面α与平面1DBB 不可能垂直 D .四边形1BFD E 面积的最大值为2 【答案】BD 【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积最大,且最大值为2,可判断D 正确. 【详解】 如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误; 对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确; 对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥, 又1BD BB B ⋂=,所以AC ⊥平面1BB D ,当E 、F 分别为棱11,AA CC 的中点时, 有//AC EF ,则EF ⊥平面1BB D , 又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD , 当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值, 此时1212S D E BE =⋅=⋅=,故D 正确; 故选:BD. 【点睛】本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.8.如图,已知矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则ADE ∆在翻折过程中,下列说法正确的是( )A .线段BM 的长是定值B .存在某个位置,使1DE AC ⊥ C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面1A DE 【答案】AC 【分析】取CD 中点F ,连接BF ,MF ,根据面面平行的判定定理可得平面//BMF 平面1A DE ,由面面平行的性质定理可知//BM 平面1A DE ,可判断D ;在BFM ∆中,利用余弦定理可求得BM a =为定值,可判断A 和C ;假设1DE A C ⊥,由线面垂直的判定定理可得DE ⊥平面1A CE ,由线面垂直的性质定理可知1DE A E ⊥,与11DA A E ⊥矛盾,可判断B . 【详解】解:取CD 的中点F ,连接BF ,MF ,∵M ,F 分别为1A C 、CD 中点, ∴1MF A D ∥,∵1A D ⊂平面1A DE ,MF ⊄平面1A DE , ∴MF 平面1A DE , ∵DF BE ∥且DF BE =, ∴四边形BEDF 为平行四边形, ∴BFDE ,∵DE ⊂平面1A DE ,BF ⊄平面1A DE , ∴BF ∥平面1A DE , 又BFMF F =,BF 、MF ⊂平面BMF ,∴平面//BMF 平面1A DE , ∵BM ⊂平面BMF , ∴BM ∥平面1A DE ,即D 错误,设22AB AD a ==, 则112MF A D a ==,2BF DE a ==,145A DE MFB ︒∠=∠=, ∴222cos45BM MF BF MF BF a ︒=+-⋅⋅=,即BM 为定值,所以A 正确,∴点M 的轨迹是以B 为圆心,a 为半径的圆,即C 正确, ∵2DE CE a ==,2CD AB a ==,∴222DE CE CD +=,∴DE CE ⊥, 设1DE A C ⊥,∵1A C 、CE ⊂平面1A CE ,1AC CE C =,∴DE ⊥平面1A CE , ∵1A E ⊂平面1A CE ,∴1DE A E ⊥,与11DA A E ⊥矛盾, 所以假设不成立,即B 错误. 故选:AC . 【点睛】本题考查立体几何中的翻折问题,涉及到线段长度的求解、直线与平面位置关系的判定、点的轨迹的求解、反证法的应用等知识点,考查学生的空间立体感和推理论证能力.9.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则( )A .直线BD 1⊥平面A 1C 1DB .三棱锥P ﹣A 1C 1D 的体积为定值C .异面直线AP 与A 1D 所成角的取值范用是[45°,90°] D .直线C 1P 与平面A 1C 1D 6【答案】ABD 【分析】在A 中,推导出A 1C 1⊥BD 1,DC 1⊥BD 1,从而直线BD 1⊥平面A 1C 1D ;在B 中,由B 1C ∥平面 A 1C 1D ,得到P 到平面A 1C 1D 的距离为定值,再由△A 1C 1D 的面积是定值,从而三棱锥P ﹣A 1C 1D 的体积为定值;在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°];在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出直线C 1P 与平面A 1C 1D 6. 【详解】解:在A 中,∵A 1C 1⊥B 1D 1,A 1C 1⊥BB 1,B 1D 1∩BB 1=B 1, ∴A 1C 1⊥平面BB 1D 1,∴A 1C 1⊥BD 1,同理,DC 1⊥BD 1, ∵A 1C 1∩DC 1=C 1,∴直线BD 1⊥平面A 1C 1D ,故A 正确; 在B 中,∵A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,B 1C ⊄平面A 1C 1D , ∴B 1C ∥平面 A 1C 1D ,∵点P 在线段B 1C 上运动,∴P 到平面A 1C 1D 的距离为定值,又△A 1C 1D 的面积是定值,∴三棱锥P ﹣A 1C 1D 的体积为定值,故B 正确; 在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°],故C 错误;在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,P (a ,1,a ),则D (0,0,0),A 1(1,0,1),C 1(0,1,1),1DA =(1,0,1),1DC =(0,1,1),1C P =(a ,0,a ﹣1), 设平面A 1C 1D 的法向量(),,n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x =1,得1,1,1n,∴直线C 1P 与平面A 1C 1D 所成角的正弦值为:11||||||C P n C P n ⋅⋅=22(1)3a a +-⋅=21132()22a ⋅-+, ∴当a =12时,直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为63,故D 正确. 故选:ABD .【点睛】求直线与平面所成的角的一般步骤:(1)、①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解; (2)、用空间向量坐标公式求解.10.如图,已知P 为棱长为1的正方体对角线1BD 上的一点,且()()10,1BP BD λλ=,下面结论中正确结论的有( )A .11A D C P ⊥;B .当1A P PD +取最小值时,23λ=; C .若()0,1λ∈,则7,312APC ππ⎛⎫∠∈⎪⎝⎭; D .若P 为1BD 的中点,四棱锥11P AA D D -的外接球表面积为94π. 【答案】ABD 【分析】以D 为坐标原点建立如图空间直角坐标系,利用向量关系可判断ABC ;根据几何体外接球关系建立方程求出球半径即可判断D. 【详解】以D 为坐标原点建立如图空间直角坐标系, 则()1,1,0B ,()10,0,1D ,设(),,P x y z ,()()10,1BP BD λλ=,1BP BD λ∴=,即()()1,1,1,1,1x y z λ--=--,则可解得()1,1,P λλλ--, 对A ,()()()111,0,1,0,0,0,0,1,1A D C ,()11,0,1A D ∴=--,()11,,1C P λλλ=---,则()()()()11110110A D C P λλλ⋅=-⨯-+⨯-+-⨯-=,则11A D C P ⊥,故A 正确;对B ,()()()()()2222221111111A P PD λλλλλλ+=--+-+--+-+222223422333λλλ⎛⎫=-+=-+ ⎪⎝⎭则当23λ=时,1A P PD +取最小值,故B 正确; 对C ,()()1,0,0,0,1,0A C ,(),1,PA λλλ∴=--,()1,,PC λλλ=--,则222321cos 1321321PA PCAPC PA PC λλλλλλ⋅-∠===--+-+⋅, 01λ<<,则2232123λλ≤-+<,则2111123212λλ-≤-<-+, 即11cos 22APC -≤∠<,则2,33APC ππ⎛⎤∠∈ ⎥⎝⎦,故C 错误; 对于D ,当P 为1BD 中点时,四棱锥11P AA D D -为正四棱锥,设平面11AA D D 的中心为O ,四棱锥11P AA D D -的外接球半径为R ,所以222122R R ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭,解得34R =, 故四棱锥11P AA D D -的外接球表面积为94π,所以D 正确. 故选:ABD. 【点睛】关键点睛:本题考查空间相关量的计算,解题的关键是建立空间直角坐标系,利用向量建立关系进行计算.。
第七篇 第1节一、选择题1.(2014山东烟台模拟)如图是底面半径为1,母线长均为2的圆锥和圆柱的组合体,则该组合体的侧(左)视图的面积为( )A .8πB .6πC .4+3D .2+ 3解析:该组合体的侧(左)视图为其中正方形的边长为2,三角形为边长为2的三角形,所以侧(左)视图的面积为 22+12×22×32=4+3,故选C. 答案:C2.(2014山东莱州模拟)一个简单几何体的正(主)视图,侧(左)视图如图所示,则其俯视图不可能为①长方形;②直角三角形;③圆;④椭圆.其中正确的是( )A .①B .②C .③D .④解析:当该几何体的俯视图为圆时,由三视图知,该几何体为圆柱,此时,正(主)视图和侧(左)视图应相同,所以该几何体的俯视图不可能是圆,其余都有可能.故选C.答案:C3.(2014贵州四校期末联考)一个平面图形的面积为S ,其直观图的面积为S ′,则S ∶S ′=( )A .22B . 2C .2D .1解析:直观图在底不变的情况下,高变为原来的12sin π4倍.设平面图形的高为h ,直观图的高为h ′, 则有h ′=h ×12sin π4=24h ,即h =22h ′,所以S ∶S ′=h ∶h ′=2 2.故选A. 答案:A4.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+2B .1+22C.2+22D .1+ 2解析:由题意画出斜二测直观图及还原后原图,由直观图中底角均为45°,腰和上底长度均为1,得下底长为1+2,所以原图上、下底分别为1,1+2,高为2的直角梯形.所以面积S =12(1+2+1)×2=2+ 2.故选A.答案:A5.(2014安庆一中模拟)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )解析:根据正投影的性质,并结合侧视图要求及如图所示,AB 的正投影为A ′B ′,BC 的正投影为B ′C ′,BD ′的正投影为B ′D ′,综上可知侧视图为D 图,故选D.答案:D6.(2014皖南八校联考)一个正方体截去两个角后所得几何体的正(主)视图、俯视图如图所示,则其侧(左)视图为( )解析:根据题中正(主)视图和俯视图,正方体截去的是前面左下方和后面左上方的两个角,所以侧(左)视图为选项C.答案:C二、填空题7.如图所示的Rt△ABC绕着它的斜边AB旋转一周得到的图形是________________.解析:过Rt△ABC的顶点C作线段CD⊥AB,垂足为D,所以Rt△ABC绕着它的斜边AB旋转一周后应得到的是以CD作为底面圆的半径的两个圆锥的组合体.答案:两个圆锥的组合体8.一个几何体的正(主)视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析:显然①②⑤均有可能;当三棱柱放倒时,其正(主)视图可能是三角形,所以③有可能,④不可能.答案:①②③⑤9.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是________(填出所有可能的序号).解析:空间四边形D′OEF在正方体的平面DCC′D′上的投影是①;在平面BCC′B′上的投影是②;在平面ABCD上的投影是③,而不可能出现投影为④的情况.答案:①②③10.(2014山东烟台模拟)如图,三棱柱的侧棱长为2,底面是边长为2的正三角形,AA1⊥面A1B1C1,正(主)视图是边长为2的正方形,俯视图为正三角形,则侧(左)视图的面积为________.解析:因为俯视图为正三角形,所以俯视图的高为3,侧视图为两直角边分别为2、3的矩形,所以侧(左)视图的面积为2 3.答案:2 3三、解答题11.(2014西工大附中模拟)已知四棱锥P-ABCD的三视图如图所示,求此四棱锥的四个侧面的面积中最大值.解:由三视图可知该几何体是如图所示的四棱锥,顶点P 在底面的射影是底面矩形的顶点D .底面矩形边长分别为3,2,△PDC 是直角三角形,直角边为3与2,所以S △PDC =12×2×3=3.△PBC 是直角三角形,直角边长为2,13,三角形的面积为12×2×13=13.△P AB 是直角三角形,直角边长为3,22; 其面积为12×3×22=3 2.△P AD 也是直角三角形,直角边长为2,2,三角形的面积为12×2×2=2.所以四棱锥P -ABCD 的四个侧面中面积最大的是前面三角形的面积,为3 2. 12.三棱锥V -ABC 的底面是正三角形,顶点在底面ABC 上的射影为正△ABC 的中心,其三视图如图所示:(1)画出该三棱锥的直观图; (2)求出侧(左)视图的面积. 解:(1)直观图如图所示.(2)根据三视图间的关系可得BC =23,作AM ⊥BC 于M ,连结VM , 过V 作VO ⊥AM 于O , 过O 作EF ∥BC 交AB , AC 于F 、E ,则△VEF 即侧(左)视图. 由EF BC =23, 得EF =433.又VA =4,AM =(23)2-(3)2=3. 则AO =2,VO =VA 2-AO 2=42-22=2 3. 所以S △VEF =12×433×23=4.即侧(左)视图的面积为4.。
单元检测﹙七﹚——立体几何一、选择题(本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a=(1,1,0),b=(-1,0,3),且k a+b与2a-b垂直,则k的值为()A.125B.1 C.75D.2【解析】k a+b=(k-1,k,3),2a-b=(3,2,-3),由题意,得(k-1)×3+k×2+3×(-3)=0,解得k=12 5.【答案】 A2.某几何体的正视图如图所示,则该几何体的俯视图不可能...的是()【解析】由正视图知,俯视图不可能是圆与内接四边形,C不正确.【答案】 C3.直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为()A.4 B. 3 C.2 3 D.2【解析】由正视图和俯视图知,直三棱柱的侧视图是长为3,宽为2的长方形,故侧视图的面积为2 3.【答案】 C4.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥α,则n∥αD.若n⊥α,n⊥β,则α∥β【解析】A错,两平面也可相交;B错,不符合面面平行的判定定理的条件,需两平面内有两条相交直线互相平行;C错,直线n不一定在平面α外;D由空间想象知垂直于同一直线的两平面平行,命题正确.【答案】 D5.如图所示,平行四边形ABCD中,AB⊥BD,沿BD将△ABD折起,使面ABD⊥面BCD,连结AC,则在四面体ABCD的四个面中,互相垂直的平面的对数为() A.1 B.2 C.3 D.4【解析】AB⊥BD,面ABD⊥面BCD,且交线为BD,则AB⊥面BCD,则面ABC⊥面BCD,同理CD⊥面ABD,则面ACD⊥面ABD,因此共有3对互相垂直的平面.【答案】 C6.(2012·茂名调研)如图,在正方体ABCD—A1B1C1D1中,O是底面正方形ABCD的中心,M是DD1的中点,N是A1B1上的动点,则直线ON,AM的位置关系是()A .平行B .相交C .异面垂直D .异面不垂直【解析】 如图所示,取BC 、AD 的中点E 、F ,分别连结B 1E ,EF ,F A 1,则ON ⊂平面A 1FEB 1.∵AM ⊥A 1F ,AM ⊥A 1B 1,∴AM ⊥平面A 1FEB 1,∴AM ⊥ON .【答案】 C7.如图六棱锥P —ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( )A .PB ⊥ADB .平面P AB ⊥平面PBCC .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45°【解析】 ∵PB 在底面射影为AB ,AB 与AD 不垂直,∴PB 与AD 不垂直,排除A.又BD ⊥AB ,BD ⊥P A ,∴BD ⊥面P AB .但BD 不在面PBC 内,排除B.∵BD ∥AE ,∴BD ∥面P AE ,∴BC 与面P AE 不平行,排除C.又∵PD 与面ABC 所成角为∠PDA ,AD =2AB =P A ,∴∠PDA =45°.【答案】 D8.如图所示,在斜三棱柱ABC —A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在( )A .直线AB 上 B .直线BC 上 C .直线AC 上D .△ABC内部【解析】 由已知易推出平面ABC 1⊥平面ABC ,故C 1在底面上的射影H 在两平面交线AB 上.【答案】 A二、填空题(本大题共6小题,每小题5分,满分30分)9.正方体ABCD —A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为________.【解析】 如图所示,建立空间直角坐标系,且设正方体的棱长为1,∵DB 1⊥平面ACD 1,∴取平面ACD 1的法向量n =DB 1→=(1,1,1), 又BB 1→=DD 1→=(0,0,1), 若设BB 1与平面ACD 1所成角为θ,则sin θ=|cos 〈n ,DD 1〉|=|n ·DD 1→||n |·|DD 1→|=33,∴cos θ=1-sin 2θ=63. 【答案】 6310.(2011·广东高考改编)如图所示,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为________.【解析】 该几何体为一个斜棱柱,其直观图如图所示,由题知该几何体的底面是边长为3的正方形,高为3,故V =3×3×3=9 3.【答案】 9 311.已知直线l ,m ,平面α,β且l ⊥α,m ⊂β,给出四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β.其中真命题的个数是________.【解析】 命题①,由l ⊥α,α∥β得l ⊥β,∴l ⊥m ,故①对.命题②,l ⊥mD /⇒l ⊥β,则l ⊥mD /⇒α∥β,故命题②错误.命题③,当α⊥β时,l 与m 也可能相交或异面,故③错误.命题④,由l ⊥α,l ∥m 得m ⊥α,∴α⊥β,故④正确.【答案】 212.(2011·辽宁高考)三棱锥P —ABC 中,P A ⊥底面ABC ,P A =3,底面ABC 是边长为2的正三角形,则三棱锥P —ABC 的体积等于________.【解析】 ∵P A ⊥底面ABC ,∴P A 为三棱锥P —ABC 的高,且P A =3,∵底面ABC 为正三角形且边长为2,∴底面面积为12×22×sin 60°=3,∴V P —ABC =13×3×3= 3.【答案】 313.如图所示,过正方形ABCD 的顶点A ,引P A ⊥平面ABCD .若P A =BA ,则平面ABP 和平面CDP 所成的二面角的大小是________【解析】 建立如图所示的空间直角坐标系,不难求出平面APB与平面PCD 的法向量n 1=(0,1,0),n 2=(0,1,1),故平面ABP 与平面CDP 所成二面角的余弦值为|n 1·n 2||n 1||n 2|=22,故所求的二面角的大小是45°.【答案】 45°14.如图所示,在直三棱柱ABC —A 1B 1C 1中,底面是∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .【解析】 由已知得B 1D ⊥平面AC 1,又CF ⊂平面AC 1,∴B 1D ⊥CF ,故若CF ⊥平面B 1DF ,则必有CF ⊥DF .设AF =x (0<x <3a ),则CF 2=x 2+4a 2,DF 2=a 2+(3a -x )2,又CD 2=a 2+9a 2=10a 2,∴10a 2=x 2+4a 2+a 2+(3a -x )2,解得x =a 或2a .【答案】 a 或2a三、解答题(本大题共6小题,满分80分.解答时需写出文字说明、证明过程和演算步骤)15.(本小题满分12分)如图,在四棱锥P —ABCD 中,PD 垂直于底面ABCD ,底面ABCD 是直角梯形,DC ∥AB ,∠BAD =90°,且AB =2AD =2DC =2PD=4(单位:cm),E 为P A 的中点.(1)证明:DE ∥平面PBC ;(2)证明:DE ⊥平面P AB .【证明】 (1)如图所示,设PB 的中点为F ,连结EF 、CF ,则EF ∥AB ,DC ∥AB ,∴EF ∥DC ,且EF =DC =12AB ,故四边形CDEF 为平行四边形,可得DE ∥CF ,DE ⊄平面PBC ,CF ⊂平面PBC ,故DE ∥平面PBC .(2)PD 垂直于底面ABCD ,AB ⊂平面ABCD ,∴AB ⊥PD ,又AB ⊥AD ,PD ∩AD =D ,∴AB ⊥平面P AD ,ED ⊂平面P AD ,故ED ⊥AB ,又PD =AD ,E 为P A 中点,故ED ⊥P A .P A ∩AB =A ,∴DE ⊥平面P AB .16.(本小题满分13分)(2012·湛江质检)如图所示,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,CA =CB =CD =BD =2,AB =AD = 2.(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值;【解】 (1)证明 连结OC .∵BO =DO ,AB =AD ,∴AO ⊥BD .∵BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC 中,由已知可得AO =1,CO = 3.又AC =2,∴AO 2+CO 2=AC 2.∴∠AOC =90°,即AO ⊥OC .又AO ⊥BD ,BD ∩OC =O ,∴AO ⊥平面BCD .(2)以O 为原点,如图建立空间直角坐标系,则B (1,0,0),D (-1,0,0),C (0,3,0),A (0,0,1),E (12,32,0),BA→=(-1,0,1),CD →=(-1,-3,0).∴cos 〈BA →,CD →〉=BA →·CD →|BA→||CD →|=24. ∴异面直线AB 与CD 所成角的余弦值为24.17.(本小题满分13分)(2011·课标全国卷)如图,四棱锥P —ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:P A ⊥BD ;(2)若PD =AD ,求二面角A —PB —C 的余弦值.【解】 (1)证明 因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD .从而BD 2+AD 2=AB 2,故BD ⊥AD .又PD ⊥底面ABCD ,可得BD ⊥PD .所以BD ⊥平面P AD ,故P A ⊥BD .(2)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴,建立空间直角坐标系D —xyz .则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1).AB →=(-1,3,0),PB →=(0,3,-1),BC →=(-1,0,0).设平面P AB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AB →=0,n ·PB →=0.即⎩⎨⎧-x +3y =0,3y -z =0. 因此可取n =(3,1,3).设平面PBC 的法向量为m ,则⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0. 可取m =(0,-1,-3).cos 〈m ,n 〉=-427=-277. 故二面角A —PB —C 的余弦值为-277.18.(本小题满分14分)(2012·佛山模拟)如图,P A ⊥平面ABCD ,ABCD 是矩形,P A =AB =1,AD =3,点F 是PB 的中点,点E 在边BC 上移动.(1)求三棱锥E —P AD 的体积;(2)当点E 为BC 的中点时,试判断EF 与平面P AC 的位置关系,并说明理由;(3)证明:无论点E 在边BC 的何处,都有PE ⊥AF .【解】 (1)∵V E —P AD =V P —ADE ,又P A =1,S △ADE =12AD ·AB =32,∴V E -P AB =13P A ·S △ADE =13×1×32=36.(2)当点E 为BC 的中点时,EF 与平面P AC 平行.∵在△PBC 中,E 、F 分别为BC 、PB 的中点,∴EF ∥PC ,又EF ⊄平面P AC ,PC ⊂平面P AC ,∴EF ∥平面P AC .(3)证明 ∵P A ⊥平面ABCD ,BE ⊂平面ABCD ,∴BE ⊥P A ,又BE ⊥AB ,AB ∩P A =A ,∴BE ⊥平面P AB .又AF ⊂平面P AB ,∴AF ⊥BE .又P A =AB =1,点F 是PB 的中点,∴PB ⊥AF ,又∵PB ∩BE =B ,∴AF ⊥平面PBE .∵PE ⊂平面PBE ,∴AF ⊥PE .19.(本小题满分14分)(2011·江西高考)如图,在△ABC中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC交AC 于点D ,现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′—PBCD 的体积最大时,求P A 的长.(2)若点P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE .【解】 (1)令P A =x (0<x <2),则A ′P =PD =x ,BP =2-x .因为A ′P ⊥PD ,且平面A ′PD ⊥平面PBCD ,故A ′P ⊥平面PBCD .∴V A ′—PBCD =13Sh =16(2-x )·(2+x )x =16(4x -x 3).令f (x )=16(4x -x 3),由f ′(x )=16(4-3x 2)=0,得x =233. 当x ∈(0,233)时,f ′(x )>0,f (x )单调递增;当x ∈(233,2)时,f ′(x )<0,f (x )单调递减.所以当x =233时,f (x )取得最大值.故当V A ′—PBCD 最大时,P A =233.(2)证明 设F 为A ′B 的中点,如图所示,连结PF ,FE ,则有EF 綊12BC ,PD 綊12BC .所以EF 綊PD .所以四边形EFPD 为平行四边形.所以DE ∥PF .又A ′P =PB ,所以PF ⊥A ′B ,故DE ⊥A ′B .20.(本小题满分14分)(2011·湖南高考)如图,在圆锥PO中,已知PO =2,⊙O 的直径AB =2,C 是AB 的中点,D 为AC 的中点.(1)证明:平面POD ⊥平面P AC ;(2)求二面角B —P A —C 的余弦值.【解】 (1)证明 如图所示,以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D (-12,12,0).设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量,由n 1·OD →=0,n 1·OP →=0,得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0. 所以z 1=0,x 1=y 1.取y 1=1,得n 1=(1,1,0).设n 2=(x 2,y 2,z 2)是平面P AC 的一个法向量,由n 2·P A →=0,n 2·PC →=0, 得⎩⎨⎧-x 2-2z 2=0,y 2-2z 2=0.所以x 2=-2z 2,y 2=2z 2,取z 2=1, 得n 2=(-2,2,1).因为n 1·n 2=(1,1,0)·(-2,2,1)=0,所以n 1⊥n 2. 从而平面POD ⊥平面P AC .(2)因为y 轴⊥平面P AB ,所以平面P AB 的一个法向量为n 3=(0,1,0). 由(1)知,平面P AC 的一个法向量为n 2=(-2,2,1). 设向量n 2和n 3的夹角为θ,则cos θ=n 2·n 3|n 2|·|n 3|=25=105. 由图可知,二面角B —P A —C 的平面角与θ相等.所以二面角B —P A —C 的余弦值为105.。