移动通信发展简介
- 格式:doc
- 大小:272.50 KB
- 文档页数:30
移动通信的发展移动通信的发展移动通信是指通过无线电波传输信息的通信方式,它已成为现代社会的重要组成部分。
随着技术的不断进步和市场需求的不断增长,移动通信在过去几十年中取得了巨大的发展。
本文将介绍移动通信的发展历程,探讨现代移动通信的技术和应用,以及未来的发展趋势。
1. 移动通信的起源移动通信起源于20世纪初,当时的通信方式主要是有线电报和固定方式。
直到20世纪50年代,第一代移动通信系统出现了。
它使用了模拟信号传输技术,通信质量较差,容量有限。
然而,这标志着移动通信的开始,并为后来的发展奠定了基础。
2. 移动通信的发展阶段移动通信经历了几个关键的发展阶段:2.1 第一代移动通信第一代移动通信系统主要使用了模拟信号传输技术,比如NMT (Nordic Mobile Telephone)和AMPS(Advanced Mobile Phone System)。
这些系统的主要特点是通信质量差,信号容易受到干扰,通信能力有限。
2.2 第二代移动通信第二代移动通信系统采用了数字信号传输技术,代表性的标准有GSM(Global System for Mobile Communications)和CDMA (Code Division Multiple Access)。
这些系统提供了更好的通信质量和容量,并引入了更多的功能,比如短信、彩信和互联网接入。
2.3 第三代移动通信第三代移动通信系统引入了更先进的技术,如WCDMA (Wideband Code Division Multiple Access)和CDMA2000。
这些系统实现了更高的数据传输速度和更丰富的数据服务,为移动互联网的兴起打下了基础。
2.4 第四代移动通信第四代移动通信系统采用了LTE(Long Term Evolution)技术,提供了更快的数据传输速度和更低的延迟。
它为高清视频、在线游戏和移动支付等应用提供了更好的支持。
2.5 第五代移动通信目前,第五代移动通信系统正在全球范围内部署。
移动通信发展史及未来趋势移动通信发展史及未来趋势1. 移动通信的起源移动通信起源于20世纪70年代末80年代初,当时的移动通信主要是指无线方式通信。
第一代移动通信系统开始在1981年投入使用,最初的系统是使用模拟技术的1G(第一代)移动通信系统,如美国的AMPS和欧洲的NMT。
2. 第一代移动通信技术第一代移动通信技术采用了模拟信号传输技术,通话质量较差,容量低,在20世纪90年代初逐渐被数字技术取代。
第一代移动通信技术最大的特点是移动性,用户可以随时随地进行通信。
3. 第二代移动通信技术第二代移动通信技术于20世纪90年代中期开始出现,使用的是数字技术,主要采用CDMA、GSM和TDMA等技术标准。
第二代移动通信技术提供了更好的通话质量、更高的容量和更多的业务功能,如短信和数据传输。
4. 第三代移动通信技术第三代移动通信技术(3G)于2000年左右开始商用化。
3G技术采用了宽带无线接入技术,提供了更高的数据传输速率和更多的业务功能,如视频通话和移动互联网访问。
3G技术的商用化推动了移动通信业务的进一步发展。
5. 第四代移动通信技术第四代移动通信技术(4G)在2009年开始商用化。
4G技术使用了全IP网络架构和OFDMA多址接入技术,提供了更高的数据传输速率和更低的时延,支持更丰富的多媒体业务和应用。
4G技术的商用化推动了移动宽带应用的普及。
6. 第五代移动通信技术第五代移动通信技术(5G)是当前移动通信技术的最新阶段,主要特点是更高的数据传输速率、更低的时延和更多连接数。
5G技术的商用化将推动移动互联网的应用进一步扩展,促进物联网和智能城市的发展。
7. 移动通信的未来趋势移动通信的未来趋势可以总结为以下几个方面:- 增加连接数:随着物联网和智能设备的快速发展,未来移动通信系统需要支持大规模连接和海量数据传输。
- 提高速率和容量:随着高清视频、虚拟现实和增强现实等业务的普及,未来移动通信系统需要提供更高的数据传输速率和更大的容量。
中国移动通信发展历程及个人感悟摘要:一、中国移动通信发展简介1.发展阶段概述2.重要事件及里程碑二、个人感悟1.通信技术的变革与社会进步2.我国通信产业的崛起3.5G时代展望正文:在中国移动通信发展历程中,我们可以看到科技的飞速发展和我国通信产业的崛起。
从20世纪90年代初开始,中国移动通信走过了几个重要阶段,逐步实现了从1G到4G的技术更迭,如今我们已经迈入5G时代。
在1G时代,我国通信业还处于初级阶段,主要以模拟技术为主。
随着2001年我国加入WTO,通信市场逐步开放,中国移动通信迎来了快速发展期。
2G时代,我国自主品牌的手机和通信设备开始崛起,全球市场份额不断提高。
在此期间,通信运营商之间的竞争也日益激烈,推动了通信技术的不断创新。
进入3G时代,我国通信业迎来了全球最大的市场规模。
政府加大对通信产业的支持力度,运营商纷纷加大投资,我国通信技术逐渐走向世界前沿。
4G 时代的到来进一步推动了移动互联网的繁荣,智能终端设备不断普及,通信产业链日趋完善。
如今,我们已经迈入5G时代。
5G技术的高速、低时延、大连接等特点将为通信产业带来前所未有的发展机遇。
我国政府高度重视5G发展,加快部署基础设施建设,推动产业链上下游企业加大研发投入。
5G时代的到来将不仅改变人们的通信方式,还将对工业互联网、智能家居、无人驾驶等领域产生深远影响。
作为一名职业写手,我深感通信技术的变革对我国社会经济发展的重要作用。
从2G时代的自主品牌崛起,到5G时代的全球领先,我国通信产业在国际舞台上的地位日益提高。
展望未来,我相信我国通信产业将继续引领全球技术发展,为人类带来更美好的生活。
在这个变革的时代,我们不仅要珍惜当下,还要努力把握未来。
作为一名职业写手,我将关注我国通信产业的发展,记录这个伟大的时代。
移动通信的发展移动通信的发展1. 引言移动通信是指通过无线传输技术实现的通信方式,以满足人们在任何时间、任何地点进行沟通和信息交换的需求。
自20世纪初以来,移动通信得到了飞速发展,不断推动社会的进步与发展。
本文将从移动通信的起源、技术发展、应用前景等方面进行探讨。
2. 移动通信的起源移动通信的起源可以追溯到20世纪初的无线电通信技术。
当时,人们开始尝试利用无线电波进行远距离通信,从而实现移动通信的初步实现。
随着技术的进步,无线电通信逐渐成熟,并在二战期间得到了广泛应用,为移动通信的发展奠定了基础。
3. 移动通信技术的发展3.1 第一代移动通信技术(1G)1980年代,第一代移动通信技术(1G)开始进入商用阶段。
1G技术主要采用模拟信号传输,通信质量较差,并且容量有限。
然而,1G技术的出现标志着移动通信的起步,为后续技术的发展奠定了基础。
3.2 第二代移动通信技术(2G)1990年代,第二代移动通信技术(2G)逐渐兴起。
2G技术采用数字信号传输,提高了通信质量和通信容量,并引入了短信业务,使人们可以更加方便地发送文字信息。
此外,2G技术还支持数据传输,催生了移动互联网的发展。
3.3 第三代移动通信技术(3G)21世纪初,第三代移动通信技术(3G)出现,进一步提升了通信速度和通信容量。
3G技术拥有更广泛的覆盖范围,支持高速数据传输和视频通话等功能。
在3G时代,移动互联网开始蓬勃发展,人们的通信和信息交流方式发生了革命性的变化。
3.4 第四代移动通信技术(4G)2010年代初,第四代移动通信技术(4G)逐渐商用。
4G技术具有更高的传输速度和更低的延迟,为人们提供了更加流畅的通信体验。
同时,4G技术还支持更多的应用场景,如高清视频传输、在线游戏等,为移动通信的应用潜力打开了新的大门。
3.5 第五代移动通信技术(5G)目前,第五代移动通信技术(5G)正在逐步发展与推广。
5G技术以其超高速率、超低时延和海量连接的特点,将为社会带来全新的变革。
移动通信的发展移动通信的发展1. 移动通信的起源移动通信是指通过无线技术实现的在移动状态下进行通信的一种通信方式。
它的起源可以追溯到19世纪末的无线电技术的出现。
当时,人们通过无线电波进行了第一次远距离的通信实验,并成功传输了人声。
随着无线电技术的发展和应用,移动无线通信也得到了快速的发展。
2. 移动通信的发展历程2.1 第一代移动通信第一代移动通信主要采用模拟信号传输技术,其中最典型的是AMPS(模拟蜂窝系统)。
该系统于1983年在美国首次商用,并在随后的几年内逐渐在世界范围内推广。
2.2 第二代移动通信第二代移动通信主要采用数字信号传输技术,其中最典型的是GSM(全球移动通信系统)。
该系统于1991年在芬兰首次商用,具有更高的通信质量和更多的附加业务功能。
2.3 第三代移动通信第三代移动通信标志着移动通信进入了宽带时代,主要采用CDMA2000、WCDMA和TD-SCDMA等技术标准。
这一代移动通信系统实现了高速数据传输和多媒体业务的支持,为移动互联网的发展奠定了基础。
2.4 第四代移动通信第四代移动通信采用LTE(长期演进)技术标准,实现了更高的传输速率和更低的时延。
它为移动宽带应用提供了更好的支持,也为5G技术的发展铺平了道路。
2.5 第五代移动通信第五代移动通信即5G,是当前移动通信领域的热门话题。
它采用更高的频率、更大的带宽和更先进的调制解调技术,具备更高的传输速率和更低的时延。
5G技术被认为将为物联网、车联网等新兴领域的发展提供强大的支持。
3. 移动通信的应用领域移动通信的应用范围非常广泛,涵盖了个人通信、商务通信、公共安全通信等多个领域。
随着移动通信技术的不断发展,其应用领域也在不断扩大。
在个人通信方面,移动通信提供了便捷、实时的语音通话和短信服务,使得人们可以随时随地与他人进行沟通。
移动通信也实现了移动互联网的普及,使得人们可以通过方式进行上网、社交、购物等各种活动。
在商务通信方面,移动通信为企业提供了便捷的通信工具,使得企业员工可以随时与同事、客户进行沟通。
移动通信的发展综述第一点:移动通信的历史发展移动通信的发展可以追溯到20世纪50年代,当时的主要技术是第一代模拟移动电话系统(1G)。
这一代系统的代表是美国的AMPS(Advanced Mobile Phone System)系统,它于1983年开始商业运营。
1G技术的主要特点是模拟信号传输,信道数量有限,通话质量较差,且无法提供数据服务。
随着技术的进步,第二代移动通信技术(2G)应运而生。
2G技术采用数字信号传输,提高了通话质量和安全性,同时也支持数据传输。
这一代技术的代表是GSM(Global System for Mobile Communications)系统,它于1991年开始商业运营。
2G时代的数据传输速度较慢,最高可达9.6kbps。
为了满足日益增长的数据传输需求,第三代移动通信技术(3G)在2001年开始商业运营。
3G技术采用更高的频率和更先进的调制技术,数据传输速度大大提高,最高可达2.4Mbps。
这一代技术的代表是WCDMA(Wideband Code Division Multiple Access)和CDMA2000。
随着互联网和移动通信的深度融合,第四代移动通信技术(4G)应运而生。
4G 技术在2009年开始商业运营,其数据传输速度更高,最高可达100Mbps。
4G技术的广泛应用,使得智能手机、平板电脑等移动设备成为人们日常生活的重要组成部分。
目前,第五代移动通信技术(5G)正在全球范围内推广。
5G技术具有更高的数据传输速度,最高可达10Gbps,延迟更低,网络容量更大。
5G技术将进一步推动物联网、自动驾驶、远程医疗等行业的发展。
第二点:我国移动通信的发展现状与展望我国移动通信的发展始于20世纪80年代,经历了1G、2G、3G、4G四个时代,目前正在向5G时代迈进。
我国移动通信市场具有庞大的用户规模,截至2021年6月,我国移动电话用户总数达到13.6亿。
在1G时代,我国主要采用AMPS系统,建设了第一代移动通信网络。
简述移动通信的发展历程一、移动通信的起源移动通信的起源可以追溯到20世纪40年代末,当时美国和欧洲的军队开始使用无线电进行通信。
1950年代初期,第一台商用移动电话系统诞生在美国,但由于成本高昂、技术落后等原因并未得到普及。
二、模拟时代20世纪70年代至90年代初期是模拟时代。
1979年,日本推出了第一个商用无线电话系统,标志着移动通信进入商业化阶段。
此后,各国相继建设自己的无线电话网络。
1983年,北欧五国共同制定了全球首个数字蜂窝网络标准——NMT(Nordic Mobile Telephone),开创了数字时代。
三、数字时代20世纪90年代至今是数字时代。
1991年,欧洲制定了全球第一个数字蜂窝标准——GSM(Global System for Mobile Communications),GSM标准采用TDMA技术(时间分割多址),大大提高了频率利用率和通话质量。
1998年,中国正式启动CDMA网络建设,并在2002年开始商用运营。
四、3G时代2000年至2010年是3G时代。
2001年10月,韩国率先推出世界上第一个商用3G网络。
2003年,日本推出了WCDMA(宽带码分多址)技术,并在2006年开始商用运营。
2009年,中国正式启动TD-SCDMA网络建设,并于2010年商用运营。
五、4G时代2010年至今是4G时代。
2012年,中国正式启动LTE网络建设,并于2013年12月28日开始商用运营。
4G技术采用OFDMA技术(正交频分复用),大大提高了数据传输速率和网络容量。
六、5G时代目前,全球正在积极推进5G技术的研究和发展。
5G技术将采用更高频段的毫米波,提供更高的数据传输速率和更低的延迟,将为物联网、智能家居等新兴应用带来更加广阔的发展空间。
七、未来展望未来移动通信技术将继续向着高速、低延迟、大容量、智能化方向发展。
同时,随着5G时代的到来,移动通信将与云计算、人工智能等新兴技术深度融合,为人类社会带来更加广阔的发展空间。
移动通信发展概述第一点:移动通信技术的历史演进自20世纪80年代以来,移动通信技术经历了翻天覆地的变化。
从第一代移动通信技术(1G)到当前的第五代移动通信技术(5G),每一次技术的迭代都为人们的生活带来了前所未有的便利。
1G时代,模拟通信技术主导了市场,语音通信质量较差,且信号容易受到干扰。
随着技术的不断发展,2G时代带来了数字通信,语音质量得到了显著提升,同时也支持了简单的数据服务,如短信。
进入3G时代,移动通信技术开始支持更高速度的数据传输,使得视频通话和移动互联网成为可能。
4G时代进一步提升了网络速度,使得高清视频流媒体和复杂的在线应用程序运行流畅。
5G技术,作为最新的移动通信技术,正引领我们进入一个全新的智能时代。
它通过更高的数据传输速度、更低的延迟以及更广的连接能力,为物联网、自动驾驶、远程医疗等前沿技术提供了坚实的基础。
5G网络的高密度连接能力,也使得大规模机器通信变得可能,将进一步推动产业互联网的发展。
第二点:移动通信技术的未来趋势随着移动通信技术的不断进步,未来的发展趋势也日益明朗。
首先,网络速度和连接质量将持续提升,为用户提供更加极致的通信体验。
5G网络的普及,将使得高清视频通话、大规模在线游戏、虚拟现实等应用更加流畅。
其次,物联网技术将与移动通信技术深度融合,使得各种设备、物品都能够实现智能互联。
这将极大地改变人们的生活方式,让家庭、办公室、城市等各个场景都变得更加智能化。
例如,智能家居系统可以通过移动通信网络实现远程控制,智能交通系统可以通过实时数据传输提高道路通行效率。
再者,移动通信技术将助力新兴技术的发展,如人工智能、边缘计算等。
通过高速、低延迟的网络连接,人工智能算法可以更加高效地处理大量数据,实现更智能的决策。
边缘计算则可以让数据处理更加靠近数据源头,降低延迟,提高响应速度。
总的来说,未来的移动通信技术将更加智能化、个性化,为人们的生活、工作带来更多便利。
同时,也将推动各行各业的数字化转型,为社会经济发展注入新的活力。
第一章GSM (2)1.1简介 (2)1.2 GSM系统的主要规格参数 (4)1.3主要技术 (5)第二章3G (9)2.1 简介 (9)2.2 IMT-2000的主要技术要求 (9)2.3 WCDMA系统: (10)2.3.1 WCDMA系统可实现的基本技术参数: (11)2.4 TD-SCDMA: (11)2.4.1 TD-SCDMA与WCDMA基本参数比较: (11)2.4.2 TD-SCDMA与WCDMA关键技术: (12)2.5 CDMA2000 (13)2.5.1 CDMA2000的无线接口参数: (13)2.5.2 CDMA2000关键技术: (14)第三章LTE (16)3.1 简介 (16)3.2 LTE主要技术特点: (16)3.3 LTE 核心技术 (17)3.4 LTE技术优势 (19)3.5 LTE 技术的市场前景与挑战 (20)第四章WLAN (21)4.1 简介 (21)4.2 WLAN主要技术 (21)4.3 WLAN技术指标 (23)4.4 WLAN市场应用 (25)第五章WiMAX: (27)5.1 简介 (27)5.2 WiMAX中的先进技术 (27)5.3 WiMAX与Wi-Fi、3G比较 (29)5.4 WiMAX主要技术参数 (29)5.5 WiMAX的现状、应用及发展 (29)第一章GSM(Global System For Mobile Communications ):1.1简介:是由欧洲电信标准化协会(ETSI)提出的第二代数字蜂窝移动通信系统标准。
经过多年的发展,GSM目前包括了GSM900,DCS1800,和PCS1900三个不同频段的系统,用户遍及欧洲、亚洲、非洲、美洲、大洋洲的130多个国家和地区。
自90年代中期投入商用以来,GSM标准的设备占据当前全球蜂窝移动通信设备市场80%以上。
所有用户可以在签署了"漫游协定"移动电话运营商之间自由漫游。
可以说,GSM是目前世界上使用最广、用户数最多、发展最成功的无线系统标准。
GSM系统采用FDD双工方式,采用TDMA/FDMA多址接入方式,以语音业务为主,也支持无线的数据业务。
GSM系统网络构成如下图所示:一般整个系统可分成四个部分:(1)移动台MS(Mobi1e Station):如手机、传真机等用户实际所使用的设备。
MS包括存储用户个人信息的SIM卡和实现移动通信物理设备(ME)两部分。
SIM卡上存储用户特有的个人信息,包括实现鉴权和加密的信息、享有的业务类型等。
物理设备是实现通信功能的设备,这部分设备对所有用户都是相同的,可以是手持机、车载机等。
没有SIM卡,GSM移动台就不能接受网络服务。
(2)基站子系统BSS (Base Station System):为移动台MS和陆地交换设备提供无线连接的部分。
基站系统BSS包括基站控制器BSC和基站收发信机BTS、XCDR(编解码器)三部分。
每个BSS包括多个BSC,BSC经过一个专用线路或微波链路连接到MSC。
一般情况下,一个BSC可以控制多个BTS。
BSC与BTS之间的接口叫做Abis接口,BSC与MSC之间的接口叫做A接口。
基站控制器BSC主要完成:(1)接口管理(2)BTS与BSC之间的地面信道管理(3)无线参数及无线资源管理(4)无线链路测量与话务量管理(5)控制小区切换(6)支持呼叫控制(7)操作与维护等功能。
基站收发信机BTS是服务于蜂窝小区的无线收发信设备,实现BTS与MS空中接口的功能。
BTS主要分为基带单元、载频单元与控制单元三部分。
XCDR(编解码器):XCDR被用做编解来自与移动台的信号,使信号能够在陆地链路中有效的传输。
由于它经常放在MSC一边,所以,常称为RXCDR。
BSS)(3)网络子系统(NSS):网络交换系统包含了GSM网络的主要交换功能,它同时也包括用户数据和移动网管理所需的数据库,其主要的功能是管理GSM网络和其余通信网络之间的通信。
NSS主要由移动业务交换中心(MSC),访问用户位置寄存器(VLR),归属用户位置寄存器(HLR),鉴权中心(AUC),移动设备识别寄存器(EIR)等几部分组成。
MSC是整个GSM网络的核心,完成或参与NSS的全部功能,协调与控制整个GSM中BSS,OSS的各个功能实体。
MSC提供各种接口,如与BSC的接口,与内部各功能实体的接口,与PSTN、ISDN、PSPDN、PLMN等其他通信网络的接口,并实现各种相应的管理功能。
MSC还支持一系列业务:电信业务、承载业务和补充业务。
VLR是服务于其控制区域内移动用户的一个寄存器,存储着进入其控制区域内已登记移动用户的相关信息,为已登记的移动用户提供建立呼叫接续的必要条件。
当某用户进入一个VLR控制的特定区域中时,移动用户要在该VLR上登记注册。
HLR用于存储每一个相同MSC中所有初始登记注册用户的个人信息和位置信息,包括用户识别号码,访问能力,用户类别和补充业务等数据,由它控制整个移动交换区域乃至整个PLMN。
AUC存储着移动用户的鉴权信息和加密密匙,主要是为了防止非授权用户接入系统和防止无线接口中数据被窃。
EIR存储着移动设备的国际移动设备识别码(IEMI),通过核查三种表格(白名单、灰名单、黑名单)使得网络具有防止非授权用户设备接入、监视故障设备的运行和保障网络运行安全的功能。
(4)操作维护子系统(OMS):操作和维护子系统可以对整个GSM网络进行远程控制。
包括网络管理中心NMC、操作维护中心OMC。
1.2 GSM系统的主要规格参数:器的3dB带宽与比特周期的乘积。
1.3主要技术:GSM蜂窝系统采用时分多址、频分多址和频分双工(TDMA/FDMA/FDD)体制,在25MHz的频段中共分为125个射频信道,去掉上下各一个100kHZ的保护带宽,实际可用的射频信道是124个。
这124个射频信道以绝对射频信道号(ARFCN)标识。
一个ARFCN代表一对前向和反向射频信道。
TDMA(时分多址):时分多址是把一个载波在时间上分割成周期性的帧,每一个帧再分割成若干个时隙,然后根据一定的时隙分配原则,使各个移动台在每帧内能按指定的时隙向基站发送信号,在满足定时和同步的条件下,基站可以分别在各时隙中接收到各移动台的信号而不混扰。
GSM系统中的交织技术: GSM系统采用交织技术来减少突发错误的影响。
交织技术的实质是时间分集,就是将要传输的数据码重新排序,重新排序的结果使得突发差错时产生的成串错误的比特位来自交织前信道编码不同的位置。
在接收端去交织后,数据编码恢复了原来的顺序,从而连续的突发差错就变成了离散的随机差错,而随机差错可以用卷积编码等信道编码技术进行纠正。
GSM系统中同时采用了比特交织和块交织两种方法。
(1)比特交织:信道编码输出的456个编码比特按行的顺序写入一个矩阵,每行8个,然后按列读出,从而将一个语音帧的456个编码比特分成了8个完成比特交织的子块,每个子块57个比特,矩阵的行数就是交织深度。
(2)块交织:块交织是在相邻不同语音帧之间进行的。
根据GSM一个突发脉冲序列中数据的结构特点,块交织是在完成了比特交织的两个语音帧共912比特语音数据之间进行的。
块交织时,第n个语音帧子块1与第n+1个语音帧的子块1分别放在TDMA帧指定时隙的两段57比特语音数据的位置;第n个语音帧的子块2与第n+1个语音帧的子块2分别放在下一个TDMA帧中对应时隙的两段57比特语音数据的位置;以此类推。
这样,块交织后就将912比特数据分散到了8个TDMA帧的同一时隙中并周期性地发送出去。
跳频技术:采用跳频技术是为了确保通信的秘密性和抗干扰性,它首先被用于军事通信,后来在GSM标准中也被采纳。
跳频功能主要是:(1) 改善衰落。
(2) 处于多径环境中的漫速移动的移动台通过采用跳频技术,大大改善移台的通信质量。
(3) 跳频相当于频率分集GSM系统中的跳频分为基带跳频和射频跳频两种。
保密措施:GSM系统在安全性方面有了显著的改进,其主要是在下列部分加强了保护:接入网路方面采用了对客户鉴权;无线路径上采用对通信信息加密;对移动设备采用设备识别;对客户识别码用临时识别码保护;SMI卡用PIN 码保护。
(1)提供三参数组客户的鉴权与加密是通过系统提供的客户三参数组来完成的。
客户三参数组的产生是在GSM系统的AUC(鉴权中心)中完成。
每个客户在签约(注册登记)时,就被分配一个客户号码(客户电话号码)和客户识别码(IMSI)。
IMSI通过SIM写卡机写入客户SIM卡中,同时在写卡机中又产生一个对应此IMSI的唯一的客户鉴权键Ki,它被分别存储在客户SIM卡和AUC中。
AUC中还有个伪随机码发生器,用于产生一个不可预测的伪随机数(RAND)。
RAND和Ki经AUC中的A8算法(也叫加密算法)产生一个Kc(密钥),经A3算法(鉴权算法)产生一个响应数(SRES)。
由产生Kc和SRES的RAND与Kc、SRES一起组成该客户的一个三参数组,传送给HLR,存储在该客户的客户资料库中。
一般情况下,AUC一次产生5组三参数,传送给HLR,HLR自动存储。
HLR可存储10组三参数,当MSC/VLR向HLR请求传送三参数组时,HLR又一次性地向MSC/VLR传5组三参数组。
MSC/VLR一组一组地用,用到剩2组时,再向HLR请求传送三参数组。
(2) 鉴权鉴权的作用是保护网路,防止非法盗用。
同时通过拒绝假冒合法客户的“ 入侵” 而保护GSM移动网路的客户。
当移动客户开机请求接入网路时,MSC/VLR 通过控制信道将三参数组的一个参数伪随机数RAND传送给客户,SIM卡收到RAND 后,用此RAND与SIM卡存储的客户鉴权键Ki,经同样的A3算法得出一个响应数SRES,传送给MSC/VLR。
MSC/VLR将收到的SRES与三参数组中的SRES进行比较。
由于是同一RAND,同样的Ki和A3算法,因此结果SRES应相同。
MSC /VLR比较的结果相同就允许接入,否则为非法客户,网路拒绝为此客户服务。
在每次登记、呼叫建立尝试、位置更新以及在补充业务的激活、去活、登记或删除之前均需要鉴权。
(3) 加密GSM系统中的加密也只是指无线路径上的加密,是指BTS和MS之间交换客户信息和客户参数时不被非法个人或团体所得或监听。
在鉴权程序中,当客户计算SRES,同时用另一算法(A8算法)也计算出密钥Kc。
根据MSC/VLR发送出的加密命令,BTS侧和MS侧均开始使用Kc。
在MS侧,由Kc、TDAM帧号和加密命令一起经A5算法,对客户信息数据流进行加密(也叫扰码),在无线路径上传送。
在BTS侧,把从无线信道上收到加密信息数据流、TDMA帧号和Kc,再经过A5算法解密后,传送BSC和MSC。