集合1
- 格式:doc
- 大小:28.50 KB
- 文档页数:2
完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。
其中的各事物叫作集合的元素或简称元。
集合的元素具有三个特性:确定性、互异性和无序性。
确定性指元素是明确的,如世界上最高的山。
互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。
无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。
集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。
集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。
集合的表示方法有列举法和描述法。
常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。
2.集合间的关系集合间有包含关系和相等关系。
包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。
如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。
如果A和B是同一集合,则称A是B的子集,记作A⊆B。
反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。
相等关系表示两个集合的元素完全相同,记作A=B。
真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。
如果XXX且B⊆C,则A⊆C。
如果XXX且B⊆A,则A=B。
空集是不含任何元素的集合,记为Φ。
规定空集是任何集合的子集,空集是任何非空集合的真子集。
3.集合的运算集合的运算包括交集、并集和补集。
交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。
并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。
补集是由S中所有不属于A的元素所组成的集合,记作A的补集。
如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。
1-2.集合【知识要点归纳】一、基础概念1.集合的定义一般地,指定的某些对象的全体称为集合,记作:A,B,C,D,…2.元素的定义集合中的每个对象叫做这个集合的元素,记作:a,b,c,d,…3.集合的三个特性: 、、4.集合的分类:根据集合中所含元素的个数来分: 、、5.常用数集:非负整数集(即自然数集):有理数集正整数集实数集整数集二.集合的表示方法1、列举法:把集合中的元素一一列举出来,写在花括号内表示集合的方法。
2、描述法:用集合所含元素的共同特征表示集合的方法。
格式:{x∈A| P(x)}3、图示法:(1)数轴法:{x∈R|3<x<10}、{x∈R|3≤x<10}、{x∈R|3≤x≤10}(2)Venn图:用一条封闭的曲线的内部来表示一个集合的方法。
注:边界用直线还是曲线,用实线还是虚线都无关紧要,只要封闭并把有关元素和子集统统包含在里边就行,但不能理解成圈内每个点都是集合的元素.三.两种关系1.元素与集合的关系属于:a是集合A的元素,就说a属于集合A ,记作不属于:a不是集合A的元素,就说a不属于集合A,记作2.集合与集合的关系说明: 1.空集∅是一个特殊而又重要的集合,它不含任何元素,∅是任何集合的 ,∅是任何非空集合的 ,解题时不可忽视∅.2.若集合A 含有n 个元素,则A 的子集有 个,真子集有 个,非空真子集有 个.四.集合的三种运算常用运算性质:1.A ∩A = ,A ∩∅= ,A ∩B B ∩A ,A ∪A = ,A ∪∅= ,A ∪B B ∪A2.U A C A ⋂= ,U A C A ⋃= ,()U C C A = . 3.()U C A B ⋃= ,()U C A B ⋂= ,4.A∪B=A ⇔ ;A ∩B =A ⇔【经典例题】例1:设a,b 是非零实数,那么b b a a +可能取的值组成集合的元素是例2:用描述法分别表示(1)抛物线y=x 2上的点.(2)抛物线y=x 2上点的横坐标.(3)抛物线y=x 2上点的纵坐标.例3:已知集合230123{|222}A x x a a a a ==+⨯+⨯+⨯,其中{0,1}k a ∈(0,1,2,3)k =,且30a ≠.则A 中所有元素之和是( )(A )120 (B )112 (C )92 (D )84例4:已知集合8|6A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,试求集合A 的所有子集.例5:有限集合P 中元素的个数记作card()P .已知card()10M =,A M ⊆,B M ⊆,A B =∅ ,且c a r d ()2A =,card()3B =.若集合X 满足X M ⊆,且A X ⊄,B X ⊄,则集合X 的个数是( )(A )672(B )640(C )384(D )352例6.设集合A={a |a =3n +2,n ∈Z},集合B={b|b=3k -1,k ∈Z},则集合A 、B 的关系是________.例7:已知集合A ={x |-2£x £5},集合}12|{-≤≤=p x p x B ,若A B ⊆,求实数p 的取值范围。
精锐教育学科教师辅导讲义练习题2答案 1.A 2.D3.B4.B5.C6.{}1,0,1,2-7.1928.⑴()()()(){}0,3,1,2,2,1,3,0;⑵{}0,1,2,,3;9.a =32-或47-. 10.{}3,2,1,0,1,2,3A =---;{}1,0,3,8B =-;()()()()()()(){}3,8,2,3,1,0,0,1,1,0,2,3,3,8C =----状元智慧树(思维导图):课后作业一、选择题:1.下列说法中正确的是 ( )A .2008年北京奥运会的所有比赛项目组成一个集合B .某个班年龄较小的学生组成一个集合C .1、2、3组成的集合与2、1、3组成的集合是不同的两个集合 D.{1,0,5,1,2,5}组成的集合有四个元素2.下列说法中①集合N 与集合N +是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素。
其中正确的个数是 ( ) A. 1 B. 2 C. 3 D. 43.下列条件中,能构成集合的是 ( ) A .世界著名的化学家B .在数轴上与原点非常接近的点C .所有的等腰三角形D .全年级成绩优秀的学生4.由实数x ,-x ,|x|,2x ,33x -所组成的集合,最多含( )A. 2个元素B. 3个元素C. 4个元素D. 5个元素 5.若{}x x 122+∈,,则x 的值为 ( )A. -2B. 1C. 1或-2D. -1或26.已知集合S={a,b,c}中的三个元素是△ABC 的三边长,那么△ABC 一定不是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形7. 设a 、b 、c 是非零的实数,则=+++a b c abc y |a||b||c||abc|的值所组成的集合为 ( )A.{4}B.{4,4}-C.{4,4,0}-D.{0,4} 二、填空题: 8.用符号“∈”,“∉”填空 ① 0N ,-1N ,3N ,21N ②31-Z ,2Q ,πQ ③ 5Z ,-11Q ,5-R9.集合{1,2}与集合{2,1}是否表示同一集合? 集合{1,2}与集合{(2,1)}是否表示同一集合? (填“是”或“不是”)10.对于集合{2,4,6}A =,若a A ∈,则6a A -∈,那么a 的值是 三.解答题11.由0,1,4组成的集合用A 表示,由1,4,(1)x x -组成的集合用B 表示,已知集合A=B ,求x 。
集合的概念(一)由方程的所有解组成的集合叫做这个————————由不等式的所有解组成的集合叫做这个————————.像方程210x-=的解组成的集合那样,由有限个元素组成的集合叫做————————.像不等式x-2>0的解组成的集合那样,由无限个元素组成的集合叫做————————.像平面上与点O的距离为2 cm的所有点组成的集合那样,由平面内的点组成的集合叫做————————由数组成的集合叫做————————.方程的解集与不等式的解集都是————————.所有自然数组成的集合叫做——————,记作—————.所有正整数组成的集合叫做————————,记作———+Ζ.所有整数组成的集合叫做————————,记作—————.所有有理数组成的集合叫做————————,记作—————.所有实数组成的集合叫做————————,记作—————.不含任何元素的集合叫做————————,记作————.例如,方程x2+1=0的实数解的集合里不含有任何元素,所以这个解集就是————————元素a是集合A的元素,记作________(读作“a————A”),a不是集合A的元素,记作__________(读作“a————A”).集合中的对象(元素)必须是确定的.对于任何的一个对象,或者属于这个集合,或者不属于这个集合,二者————练习1.1.11.用符号“∈”或“∉”填空:(1)−3 ———N,0.5 ———N,3 ———N;(2)1.5 ———Z,−5 ———Z,3 ———Z;(3)−0.2 ———Q,π———Q,7.21——Q;(4)1.5 ———R,−1.2 ———R,π———R.2.指出下列各集合中,哪个集合是空集?(1)方程210x+=的解集;(2)方程22x+=的解集.2 用列举法表示下列集合:(1)由大于4-且小于12的所有偶数组成的集合;(2)方程2560x x--=的解集.3 用描述法表示下列各集合:(1)不等式2X+1>5的解集;(2)所有奇数组成的集合;1(3)由第一象限所有的点组成的集合.1.用列举法表示下列各集合:(1)方程2340x x--=的解集;(2)方程430x+=的解集;(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组成的集合.2.用描述法表示下列各集合:(1)大于3的实数所组成的集合;(2)方程240x-=的解集;(3)大于5的所有偶数所组成的集合;(4)不等式253x->的解集.4 用适当的方法表示下列集合:(1)方程x+5=0的解集;(2)不等式3x-7>5的解集;(3)大于3且小于11的偶数组成的集合;(4)不大于5的所有实数组成的集合;5、选用适当的方法表示出下列各集合:(1)由大于10的所有自然数组成的集合;(2)方程290x-=的解集;(3)不等式465x+<的解集;(4)平面直角坐标系中第二象限所有的点组成的集合;(5)方程243x+=的解集;(6)不等式组330,60xx+>⎧⎨-<⎩的解集.2。
集合的讲解应该从语言方面出发,是一门数学语言,目的是准确的表达数学的内容。
引出集合的定义举例
石家庄分成几个区{长安区,新华区,桥东区,桥西区,裕华区},那么这几个区是不是就构成了一个集合,再比如
1:大于3小于10的整数
2:班级数学成绩前五名
3:1路车上的所有人
这些元素是不是又构成了相应的集合?
集合是什么?集合是一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
我们把集合中的每个小个体也就是我们的研究对象称为元素,把这些研究对
象的总体成为集合。
石家庄的县{元氏县,无极县,藁城县,高邑县,鹿泉县,平山县,栾城县,
正定县,新乐县,晋州县,赵县}这样集合的元素具有什么样的特性
练习
1、写出地球上的几大洋所构成的集合
2、写出地球上的几大洲所构成的集合
3、写出1到20能被2整除的整数
二、集合内的元素的特征
1:确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的
元素,或者不是A的元素,两种情况必有一种且只有一种成立。
11不属于大于3小于10的整数的元素;
朝阳区不属于石家庄的区而是属于北京;
藁城县一定属于石家庄的县的;
像这样或者是A的元素,或者不是A的元素,两种情况必有一种且只有一
种成立。
2:互异性:一个给定集合中的元素,指属于这个集合的元素互不相同,因此,同一集合中不应重复出现同一元素。
如果把大于3小于10的整数的集合写成{4,4,5,6,7,8,9,6}肯定是
不对的,那么我们规定同一集合中不应重复出现同一元素,这样我们应该写
成{4,5,6,7,8,9}
3:无序性:给定一个集合与集合里面元素的顺序无关。
我们也可以把{4,5,6,7,8,9}写成{9,8,7,6,5,4}
4:相等性:两个集合中的元素是一样的
集合{1,3,5,7}是否和集合{5,7,3,1}相等
集合{2,4,8}是否和集合{4,2,8}相等
练习
集合{2,4,t}等于{4,2,8} 求t
{2,6,x}等于{4,y,6}求x,y
集合{3,6,8,9}与集合{3,8,6,3t-3}相等,求t
三、元素和集合的关系
我们通常用大写字母A ,B ,C ,…等来表示集合,用小写拉丁字母a ,b ,c ,…等表示集合中的元素
如A={1,2,3,4,5,},a=1,b=2,都是集合A 中的元素
如果a 属于集合A ,我们就称a 属于A ,如果a 不属于集合A ,我们就称a 不属于集合A 。
如A={1,2,3,4,5}则6∉A ,而5∈A 。
注意属于与不属于符号的书写
数学中常用的数集和其记法
全体非负整数组成的集合成为非负整数集(或自然数集),记作N ;
所有正整数组成的集合称为正整数集,记作N * 或N +
全体整数组成的集合称为整数集,记作Z
全体有理数组成的集合称为有理数集,记作Q
全体实数组成的集合称为实数集,记作R
集合常用的两种表示法
列举法:把元素一一列举出来,并用花括号{}括起来表示的集合 如1到10的整数组成集合为{1,2,3,4,5,6,7,8,9,10}
大于10小于20的整数组成的集合为{11,12,13,14,15,16,17,18,19,} 列举法注意的事项
1、集合的元素具有无序性,所以在用列举法表示集合时不必考虑元素的顺序
2、元素的书写要用逗号隔开
3、由于集合元素的互异性,所以元素不能重复
描述法:有些集合的元素是列举不完的但可以用他们具有的共同特征来描述,那么我们把这种描述写在花括号内构成的集合叫做描述法
描述法的格式{}()x A p x ∈
不等式
如{x|x-3>2},{x ︳直角三角形}
有些集合可同时用列举法和描述法同时表示
练习:分别用列举法和描述法表示下列集合
(1)方程042=-x 的所有实数根组成的集合
(2)由大于5小于10所有整数组成的集合。