二元一次方程组的解法1-
- 格式:ppt
- 大小:714.50 KB
- 文档页数:10
二元一次方程组的解法∙二元一次方程组的解:使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。
∙二元一次方程组解的情况:一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
求方程组的解的过程,叫做解方程组。
一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况:1、有一组解。
如方程组:x+y=5①6x+13y=89②x=-24/7y=59/7 为方程组的解2、有无数组解。
如方程组:x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3、无解。
如方程组:x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。
可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:ax+by=cdx+ey=f当a/d≠b/e 时,该方程组有一组解。
当a/d=b/e=c/f 时,该方程组有无数组解。
当a/d=b/e≠c/f 时,该方程组无解。
二元一次方程组的解法:解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc (c>0)一、消元法1)代入消元法用代入消元法的一般步骤是:①选一个系数比较简单的方程进行变形,变成y = ax +b 或x = ay + b的形式;②将y = ax + b 或x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;③解这个一元一次方程,求出x 或y 值;④将已求出的x 或y 值代入方程组中的任意一个方程(y = ax +b 或x = ay + b),求出另一个未知数;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
例:解方程组:x+y=5①{6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89即y=59/7把y=59/7代入③,得x=5-59/7即x=-24/7∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。
二元一次方程的解法二元一次方程是指形如ax + by = c的方程,其中a、b、c为已知常数,而x、y为未知数。
解二元一次方程的方法有多种,下面将介绍两种常用的解法:代入法和消元法。
一、代入法解二元一次方程代入法是通过将一个变量(如x)用另一个变量(如y)的表达式代入到另一个方程中,从而将方程化简为只含一个变量的一元方程,进而求解。
例如,考虑以下二元一次方程组:2x + 3y = 8 (1)4x - 5y = 2 (2)首先,我们可以从方程(1)中解出x的表达式,得到x = (8 - 3y) / 2,将其代入方程(2)中,得到4(8 - 3y) / 2 - 5y = 2。
接下来,通过解这个一元方程,可以得到y的值。
将y的值代入到x = (8 - 3y) / 2中,可以得到x的值。
通过这种代入法,我们可以解得二元一次方程组的解。
二、消元法解二元一次方程消元法是通过适当的加减运算来消去一个变量,从而将方程组化简为含一个变量的一元方程。
具体步骤如下:例如,考虑以下二元一次方程组:2x + 3y = 8 (1)4x - 5y = 2 (2)我们可以通过倍乘或加减运算,将两个方程的系数乘以某个倍数,使得两个方程的系数相等或者互为相反数。
然后,将两个方程相加或相减,使得一个变量的系数相加或相减后消去,从而得到只含一个变量的一元方程。
在这个例子中,我们可以将方程(1)的系数乘以2,将方程(2)的系数乘以1,得到以下两个方程:4x + 6y = 16 (3)4x - 5y = 2 (4)然后,我们将方程(3)减去方程(4),可以消去x的项,得到11y = 14。
由此得到y的值。
接下来,将求得的y的值代入方程(1)或(2)中,可以解得x的值。
通过这种消元法,我们也可以解得二元一次方程组的解。
总结:二元一次方程的解法有多种,其中代入法和消元法是比较常用的方法。
通过代入法,将一个变量代入到另一个方程中,将方程化简为一元方程,然后求解。
(word 完整版)二元一次方程组的概念和解法-教师版二元一次方程的基本概念1。
含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程。
判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”。
2。
二元一次方程的一般形式:0ax by c ++=(0a ≠,0b ≠)3。
二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解。
一般情况下,一个二元一次方程有无数个解。
【例1】 下列各式是二元一次方程的是( )A 。
30x y z -+=B 。
30xy y x -+=C 。
12023x y -= D 。
210y x+-=【解析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. 【答案】故本题选C .【巩固】下列方程是二元一次方程的是( )A.31x xy -= B 。
2430x x += C.23y += D.3x y =【答案】D .【例2】 若32125m n x y ---=是二元一次方程,则求m 、n 的值.【答案】由定义知:321m -=,11n -=,所以:1m =,2n =.【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。
【答案】根据题意可得:20m -≠,11n -=,11m -=,所以2n =,0m =.二元一次方程组的概念和解法同步练习知识讲解(word 完整版)二元一次方程组的概念和解法-教师版【例3】 若32125m n x y ---=是二元一次方程,则求m 、n 的值。
【答案】由定义知:321m -=,11n -=,所以:1m =,2n =。
【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。
【数学知识点】二元一次方程详细解法步骤
含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
使方程左右两边相等的未知数的值叫做方程的解。
接下来分享二元一次方程的解法,供参考。
(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b的形式;
(2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;
(3)解这个一元一次方程,求出x的值;
(4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解;
(5)把这个方程组的解写成x=c y=d的形式。
解一些复杂的问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化。
该方法在减少多项式项数,降低多项式结构复杂程度等方面能起到独到作用。
(1)变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;
(2)加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;
(3)解这个一元一次方程,求得一个未知数的值;
(4)回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值;
(5)把这个方程组的解写成x=c y=d的形式。
感谢您的阅读,祝您生活愉快。
二元一次方程的四种解法
二元一次方程的解法(Methods of Solving Simultaneous Equations),别称解二元一次方程组,指求得二元一次方程左右两边相等的未知数的值的方法。
1、一元一次方程的解法:去分母到去括号到移项到合并同类项到化系数;
2、二元一次方程组的解法:基本思想:消元;
3、代入法:用一个字母代替另外一个,y等于多少x,带入到第二个方程,解一元一次;
4、加减法:把同一个未知数系数化成一样,加减法消去一个未知数,再解一元一次。
以上就是二元一次方程的四种解法。
一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想.即二元一次方程组形如:ax=b(a,b为已知数)的方程.2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式. 6、二元一次方程组解的情况 若二元一次方程组(a 1,a 2,b 1,b 2,c 1,c 2均为不等于0的已知数),则 (1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解.二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有( )① ② ③④mn +m=7 ⑤x +y=6A .1个B .2个C .3个D .4个(2)在方程(k 2-4)x 2+(2-k)x +(k +1)y +3k=0中,若此方程为二元一次方程,则k 的值为( )A .2B .-2C .±2D .以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组.(1)先将①化简为3y=4x+5,再代入②即可消去y,从而求出x的值.(2)先将方程组进行化简,整理为标准的二元一次方程组的形式,再观察选择消去哪个未知数.解:(1)将①化简得:3y=4x+5 ③把③代入②得:2x-(4x+5)=1解得x=-3将x=-3代入③得:3y=4×(-3)+5∴∴原方程组的解为.(2)原方程组整理为由③×3-④×4,得7b=14,∴b=2.将b=2代入③,得a=2.∴原方程组的解为.例5、已知方程组与方程组有相同的解,求a、b 的值.题设的已知条件是两个方程组有相同的解。
二元一次方程的解法在代数学中,二元一次方程是一种形式为ax + by = c 的方程,其中a、b是已知的数,x、y是未知数,c是已知的数。
求解二元一次方程的目标是确定x和y的值,使得方程左右两边相等。
下面将介绍常见的两种解法:代入法和消元法。
一、代入法代入法是一种简单而直观的解方程的方法。
它的基本思想是通过将一个变量的表达式代入另一个变量的方程,从而得到一个只包含一个未知数的方程,进而求解出该未知数的值。
我们以一个具体的例子来说明代入法的步骤:假设有以下二元一次方程组:2x + 3y = 84x - 2y = 10第一步,选择其中一个方程,将其中一个变量的表达式代入另一个方程。
在本例中,我们选择第一个方程,并将式中的2x代入第二个方程,得到4(2x) - 2y = 10。
第二步,将方程简化为只包含一个未知数的方程。
我们将上式中的变量y列出来,得到y = 4 - 2x。
第三步,将第二步的结果代入原方程中。
我们将y = 4 - 2x代入第一个方程中,得到2x + 3(4 - 2x) = 8。
第四步,解出方程得到未知数的值。
我们根据第三步的方程,进行运算和整理,得到2x + 12 - 6x = 8,再化简为-4x + 12 = 8,继续整理得到-4x = -4,最后得到x = 1。
第五步,将x = 1代入第二步的结果,求解出y的值。
我们将x = 1代入y = 4 - 2x,得到y = 4 - 2(1),最后得到y = 2。
所以,该二元一次方程组的解为x = 1,y = 2。
二、消元法消元法是求解二元一次方程组的另一种常见方法。
它通过适当调整两个方程之间的关系,使得方程中的某个变量相互抵消,从而得到一个只包含一个未知数的方程。
以下是消元法的步骤:假设有以下二元一次方程组:2x + 3y = 84x - 2y = 10第一步,选择一个系数相同且相邻的变量,通过加减运算将其系数变为0。
在本例中,我们选择第一个方程的y和第二个方程的y。
代数方程解法二元一次方程组的求解方法在数学中,方程是一个带有未知数的等式,需要通过计算得出未知数的值。
当方程中含有两个未知数时,这就是一个二元一次方程组。
求解这类方程组,可以采用多种方法,包括代数方法和几何方法。
在代数方法中,我们需要了解两个基本概念:消元和代入。
下面将详细介绍这两种方法以及解方程组的步骤。
一、消元法消元法是一种通过不断消去方程组中的未知数,从而得到一个只含有一个未知数的方程的方法。
下面以一个二元一次方程组为例,来说明消元法的基本步骤。
假设我们有以下的二元一次方程组:```ax + by = cdx + ey = f```(1)让其中一个未知数的系数相等为了消元,我们需要让其中一个未知数的系数相等。
例如,在上面的方程中,我们可以通过乘以一个常数来使得 x 的系数相等:```a(dx + ey) = cdadx + aey = cdaxd + aey = cd```现在我们得到了一个只包含 x 和 y 的方程。
(2)让未知数的系数相消接下来我们要把其中一个未知数的系数消去。
例如,在上面的方程中,我们可以通过减去两个方程来消去 y 的系数:```axd + aey = cd-bxd - bey = -bf------------------axd - bxd + aey - bey = cd - bf```也就是:```x(ad - b) + y(ae - b) = cd - bf```(3)求解未知数现在我们得到了一个只包含 x 和 y 的方程,我们就可以用一些简单的代数操作来解这个方程,从而求出未知数的值。
二、代入法代入法是一种将一个方程的一个未知数表示成另外一个未知数的函数,利用已知的未知数的值求出另一个未知数的值的方法。
下面以一个二元一次方程组为例,来说明代入法的基本步骤。
假设我们有以下的二元一次方程组:```x + y = 53x + 2y = 11```(1)将一个方程表示成另一个未知数的函数我们可以通过将第一个方程表示成 y 的函数,得到:```y = 5 - x```(2)将函数代入第二个方程我们将上述函数代入第二个方程中:```3x + 2(5-x) = 113x + 10 - 2x = 11x = 1```(3)求解另一个未知数现在我们已经知道了 x 的值,我们可以将其代入第一个方程来求解y 的值:```x + y = 51 + y = 5y = 4```因此,二元一次方程组的解为 x=1,y=4。